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   Abstract—This  paper  deals  with  the  consensus  problem  in  an
uncertain  multi-agent  system  whose  agents  communicate  with
each other through a weighted undirected (primary)  graph.  The
considered multi-agent system is described by an uncertain state-
space  model  in  which  the  involved  matrices  belong  to  some
matrix  boxes.  As  the  main  contribution  of  the  paper,  a  unified
optimization-based  framework  is  proposed  for  simultaneously
reducing the weights of the edges of the primary communication
graph  (optimizing  the  network  topology)  and  synthesizing  a
controller  such  that  the  consensus  in  the  considered  uncertain
multi-agent  system  is  ensured  with  an  adjustable  convergence
rate.  Considering  the  NP-hardness  nature  of  the  optimization
problem related to the aforementioned framework,  this  problem
is  relaxed  such  that  it  can  be  solved  by  regular  LMI  solvers.
Numerical/practical-based  examples  are  presented  to  verify  the
usefulness of the obtained results.
    Index Terms—Convergence-rate,  element-wise  uncertainty,  robust
controller, topology design.
  

I.  Introduction

THE distributed consensus is a fundamental issue in multi-
agent  networks.  Over  the  past  few  years,  there  has  been

considerable  interest  in  developing  algorithms  to  force  a
multi-agent system to reach a consensus. The survey paper [1]
has  summarized  some  new progress  in  this  regard.  It  is  well
known that  many practical  problems in  multi-agent  networks
such as flocking and swarming [2], [3], formation control [4],
[5],  sensor  fusion  [6],  [7],  and  synchronization  of  coupled
oscillators  [8]  can  be  formulated  as  a  consensus  problem.
Generally  speaking,  in  a  consensus-seeking  process,  the
agents  in  a  given  network  try  to  agree  on  some  quantity  by
communicating  what  they  know  only  to  their  neighboring
agents.  As  a  particular  type  of  consensus  problem,  some
researchers  have  studied  the  multi-agent  networks  in  which

the aim is to converge to the average of the involved agents’
initial values (e.g., [9]).

Up  to  now,  various  algorithms  have  been  proposed  and
implemented  to  reach  consensus  in  multi-agent  systems.  An
important  issue  regarding  the  consensus  algorithms  is  their
performance. Considering this importance, the performance of
consensus  algorithms  has  been  evaluated  from  different
aspects. External attack resistance [10], robustness in the case
of link failure [11] or the existence of delay [12], robustness to
edge  weight  perturbations  [13],  and  convergence  rate  are
some  indicators  that  determine  the  effectiveness  of  these
algorithms. In this paper, we focus on the convergence speed
in the consensus of multi-agent systems.

Regarding  the  convergence  speed  of  the  consensus,  it  is
intuitively  expected  that  the  stronger  connections  in  the
communication  graph  yield  a  more  enhanced  convergence
rate.  Generally  speaking,  this  expectation  means  that  if  the
number  of  communication  edges  between  the  agents  and  the
weight of these edges increases, the consensus’s convergence
speed  is  improved.  But,  promoting  the  communication
between  the  agents  imposes  additional  costs,  for  example,  in
the  viewpoint  of  energy  consumption.  In  some  real-world
multi-agent  systems,  the  batteries  powering  the  agents  have
very  low  capacity  and  can  not  be  conveniently
recharged/replaced. As a result, reducing energy consumption
to extend the agents’ battery lifetime has emerged as a critical
issue in these networks.  That  is  why various research studies
have  tried  to  reduce  the  energy  consumption  of
communications  [14]–[16].  Reviewing  the  facts  mentioned
above  naturally  raises  a  question  about  the  best  network
topology  for  the  neighborhood  graph  and  corresponding
distributed control law to optimize a cost function considering
closed-loop  performance  (such  as  convergence  speed)  and
communication costs.

On the other hand, in many practical cases, uncertainty is an
inseparable  part  of  modeling,  and  the  controller  should  be
designed to deal with the model’s uncertainties. Uncertainties
can be generally modeled in different ways in the state-space
representation.  For  example,  in  some  research  works,  the
uncertainty  has  been modeled via  norm-bounded forms (e.g.,
[17]).  As  a  well-known  fact,  robust  control  approaches
constructed  on  basis  of  norm-bounded  modeling  of
uncertainty  often  lead  to  over-conservative  results  in  dealing
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with  uncertainties.  In  some other  cases,  uncertainty  has  been
modeled  by  an  affine  polytopic  structure  (e.g.,  [18]).  In
polytopic models, system parameters are modeled as uncertain
linear  combinations  of  some  known  quantities.  Although  the
polytopic  modeling  can  cover  linear  parameters  and  multi-
model  uncertainties,  it  seems  that  the  element-wise  (or
interval) modeling can provide a richer framework to describe
the model in the presence of different sources of uncertainties.
Moreover,  a  great  advantage  of  element-wise  modeling  is  its
ability to simply express all  systems included by this  type of
models.  Considering  these  capabilities,  element-wise  models
(or  interval  matrices  in  the  state-space  representation)  have
received  a  great  attention  in  control  systems  literature  (for
example, in order to benefiting from their abilities in modeling
of  uncertain  plants  [19],  [20]  and  stability  analysis  and
stabilization of uncertain interval systems [21]–[23]). Dealing
with  uncertain  multi-agent  systems,  two  approaches  are
prevalent  to  model  the  uncertainties  by  element-wise
structures. The first approach is constructed based on that the
uncertainties are assumed to be different for each agent (e.g.,
[24], [25]). Another approach is based on the assumption that
the uncertainties on the dynamic models of the agents are due
to the same but uncertain factors. Some research works, such
as [26]–[28], have considered this assumption in element-wise
modeling  of  the  under-study  multi-agent  system.  In  the
present paper, we follow the second aforementioned approach.

Related  Literature: There  are  different  topology  design
methods  for  multi-agent  systems  in  the  literature  constructed
based on performance optimization issues. It has been shown
that  the  eigenvalues  of  the  Laplacian  matrix  of  the
communication  graph  play  a  significant  role  in  determining
the properties and performance of a wide range of multi-agent
network  systems.  Considering  this  point,  [29]  has  tried  to
optimize  some  specific  functions  of  graph  Laplacian
eigenvalues  by  appropriately  choosing  the  edge  weights  via
applying  semi-definite  programming.  Some  other  relevant
research  works  have  solved  constrained  versions  of  this
problem.  For  example,  [30]  has  introduced  an  algorithm  to
find  a  graph  with  weighted  edges  which  maximizes  the
convergence  speed  under  the  constraint  that  the  number  of
edges  with  nonzero  weight  is  less  than  or  equal  to  a  given
positive  integer.  By  considering  another  case,  the  mentioned
work  has  solved  the  problem  under  the  constraint  that  the
Laplacian  graph’s  second  eigenvalue  is  greater  than  or  equal
to a given positive value. Also, [31] deals with the problem of
finding optimal communication graphs with a fixed number of
vertices  and  edges  that  maximize  the  convergence  speed.
Moreover,  [32]  has  investigated  the  problem  of  removing
some  links  such  that  the  largest  eigenvalue  of  the  resulting
graph’s  adjacency  matrix  is  minimized.  Recently,  [33]  has
introduced  a  method  to  optimize  any  cost  function  defined
based  on  Laplacian  eigenvalues  for  a  directed  graph.  As
another  example,  [34]  has  solved  the  convergence  rate
problem  subject  to  the  constraints  limiting  the  weighted
degree of graph nodes.

The  majority  of  the  relevant  research  papers,  such  as  the
above-cited  works,  have  focused  only  on  optimizing  the
network  parameters  and  have  not  simultaneously  optimized

the other factors (e.g., free parameters of the controller or the
different factors influencing the security issues) which may be
effective on the performance of the multi-agent systems. Even
though  there  are  a  few  works  in  which  combined  objectives
have been satisfied in a unified framework. For example, [35]
has  introduced an algorithm to  balance between convergence
rate  and  security  level  for  an  undirected  graph.  As  another
example,  [36],  [37]  have  considered  a  discrete-time  multi-
agent  system  and  proposed  an  algorithm  that  minimizes  the
sum  of  the  quadratic  infinite  horizon  cost  and  the
communication one.

Various  research  works  have  tried  to  design  consensus
algorithms for uncertain multi-agent systems to deal  with the
model  uncertainties.  In  some  papers,  such  as  [38],  [39]  have
considered  multi-agent  models  with  norm-bounded  additive
uncertainties  in  the  frequency  domain  and  used  analytical
tools  like  small-gain  theorem  to  propose  robust  consensus
algorithms.  As  another  example,  [40]  has  analyzed  scalable
consensus for a class of scalar uncertain multi-agent systems.
Also, some other papers have studied consensus in the multi-
agent  systems  that  are  modeled  with  uncertain  state-space
models.  Reference  [41]  has  proposed  a  consensus  algorithm
for double integrators’ networks with parametric uncertainties.
Moreover,  [42]  has  considered  a  network  of  scalar  uncertain
linear  time-invariant  agents  and  designed  a  consensus
algorithm  for  them.  Multi-agent  models  with  norm-bounded
uncertainties have been considered in [43], [44], and [45] has
considered  consensus  in  multi-agent  systems  with  polytopic
uncertainty.  To  the  best  of  the  authors’ knowledge,  multi-
agent models with element-wise uncertainty have not received
much  attention,  and  consequently,  the  present  paper  tries  to
address  this  gap.  More  precisely,  in  this  paper,  we  will
propose a linear matrix inequality (LMI) based method to co-
design a network topology and a robust controller for a multi-
agent  system  with  element-wise  uncertainties  such  that  the
preservation  of  the  convergence  rate  and  reducing  the
communication  costs  are  simultaneously  met.  The  main
novelty  of  the  present  research  work  in  comparison  with  the
existing  literature,  including  the  relevant  works  discussed
above,  is  that  the  targets  of  optimizing the  network topology
and finding an appropriate controller to ensure consensus with
a  reasonable  convergence  rate  in  uncertain  multi-agent
systems  are  simultaneously  achieved  by  solving  a  single
optimization  problem.  Such  a  unified  optimization-based
framework to achieve the aforementioned targets in consensus
of  multi-agent  systems  with  element-wise  uncertainties  has
not been introduced in previous research works.

Contributions: As  discussed,  this  paper  provides  a  unified
computational  framework  for  simultaneously  optimizing  the
network  topology  and  designing  robust  controllers  in
uncertain multi-agent  systems such that  communication costs
are  reduced  with  no  unfavorable  effect  on  the  convergence
speed.  It  is  assumed that  the  uncertainties  in  the  under-study
multi-agent  systems  are  modeled  in  an  element-wise  form.
The  main  contributions  of  the  paper  can  be  summarized  as
follows:

1) Unified Framework for the Design of Robust Controllers
and Optimizing the Network Topology: An optimization-based
framework that introduces a sufficient condition that helps us
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to find robust controllers for consensus in multi-agent systems
with element-wise uncertainties  and the weights  of  the edges
in  the  corresponding  optimized  communication  graph  is
introduced (Theorem 1).

2)  Convex  Optimization  Relaxation: It  is  justified  that  the
problem  discussed  in  the  previous  item  (the  problem
addressed  by  Theorem  1)  is  NP-hard.  Benefiting  from  the
state-of-the-art  in  literature,  the  obtained  optimization-based
sufficient  condition  is  relaxed  such  that  it  can  be  verified  by
using regular LMI solvers (Theorem 2).

Organization: The  remainder  of  the  paper  is  organized  as
follows.  Section  II  briefly  introduces  the  notations  and
definitions  used  in  this  paper.  The  under-study  problem  is
formulated  with  some  basic  assumptions  in  Section  III.  In
Section  IV,  firstly,  some  preliminary  results  from  previous
works  are  restated,  and  then  by  using  them,  the  main  results
of  the  paper  are  presented.  Examples  are  given  in  Section  V
to  illustrate  the  theoretical  results  of  the  paper.  Finally,
Section VI concludes the paper and suggests some directions
for future research works in continuation of the work done in
this paper.  

II.  Notations and Definitions

Sn
≻0 S

n
⪰0 n×n

A ≻ B A ⪰ B A B
A−B ∈ Sn

≻0 Sn
⪰0

[A]† = A+A⊤ A
A1,A2, . . . ,An

Diag{A1,A2, . . . ,An}

A B A⊗B
[

A B
∗ C

]
[

A B
B⊤ C

]

The symbol  ( )  in this paper denotes the set  of 
positive-definite  (semi-definite)  symmetric  matrices.  The
notation  ( ),  where  and  are  two  symmetric
matrices,  means  that  (respectively, ).

,  where  is  a  square  matrix.  A  block  diagonal
matrix  with  blocks  is  specified  by

.  Also,  the  Kronecker  product  of  matrices

 and  is denoted by . Moreover,  denotes the

matrix .

G = (V,E,W) V E W
G = (V,E,W)

(i, j) ∈ E⇐⇒ ( j, i) ∈ E

G Ni ⊂V
i m
C = [c1 c2 . . . c2m]

lth G i
j (c2l)i = (c2l−1) j = 1 (c2l) j = (c2l−1)i = −1

c2l c2l−1 L

0 ≤ wi j = w ji ≤ 1
i j

G̃ = (V, Ẽ,W̃)
G G̃ ⊆ G Ẽ ⊆ E (i, j) ∈ Ẽ

0 ≤ w̃i j ≤ wi j

In  this  paper,  a  weighted  graph  is  denoted  by
, where , , and  are respectively the sets

of  graph’s  vertices,  edges,  and  weights.  is
called  undirected  if .  Furthermore,  an
undirected  graph  is  assumed  to  be  connected  provided  that
there  is  a  path  between  each  pair  of  distinct  vertices  in  the
graph. In graph ,  denotes the set of all neighbors of
vertex . If this graph has  edges with positive weights, then
the  matrix  is  called  the incidence  matrix
of  this  graph,  and  if  edge  of  graph  connects  node  to
node  then,  and  and
other elements of  and  are equal to zero.  is used to
specify  the  Laplacian  matrix  of  this  graph.  Furthermore,  in
this  graph,  shows  the  weight  of
communication edge between vertices  and . Moreover, the
weighted  undirected  graph  is  called  subgraph
of  ( ) if and only if  and for every , we
have .

em
1 = (1,0, . . . ,0)⊤, . . . ,em

m = (0,0, . . . ,1)⊤

Rm 1m ∈ Rm

Rn×n In
n

 specify  the  standard
coordinate  basis  of .  Also,  is  a  vector  whose  all
elements equal 1. The identity matrix in  is denoted by 
(The subscript  is omitted in the cases that the dimension of
the  identity  matrix  can  be  determined  with  respect  to
dimensions of the other matrices).  

III.  Problem Statement

nConsider a multi-agent system with  agents such that each
agent updates its state vector by the dynamic model
 

ẋi(t) = A⋆xi(t)+B⋆ui(t); i = 1,2, . . . ,n (1)
xi(t) ∈ Rnx ui(t) ∈ Rnu

ith
G = (V,E,W)

V = {1,2, . . . ,n}
G̃ ⊆ G

{ui(t)}1≤i≤n

x(0) = [x1(0) x2(0) · · · xn(0)] ∈ Rn×nx

G̃

where  and  are  respectively  the  state
vector and the control input of the  agent. It is assumed that
there  is  a  predefined  weighted  graph  for  the
communication between the agents of this multi-agent system,
where .  In this paper,  the main objective is to
simultaneously  find  a  sub-graph  with  minimum
weights  for  its  edges  (optimizing  the  network  topology)  and
the control signals  such that consensus is achieved
with a suitable convergence rate in the multi-agent system (1).
Formally  speaking,  we  aim  to  ensure  that  for  any  initial
condition ,  reducing the
communication  graph  to  sub-graph  and  applying  the
obtained control signals can guarantee
 

lim
t→∞
∥xi(t)− x j(t)∥ = 0; ∀1 ≤ i, j ≤ n. (2)

A⋆ B⋆Also, it is assumed that the matrices  and  in (1) are not
precisely known, and all the information we have about them
is described as follows.

A,B

Assumption 1 (Uncertainty Characterizations): Consider the
multi-agent  system  (1).  There  are  known  nominal  matrices

 such that
 

|A⋆−A| ≤ Ab, |B⋆−B| ≤ Bb

Ab =
[

ab
i j

]
i, j

Bb =
[

bb
ik

]
i,k

where  the  above  inequalities  are  interpreted  in  an  element-
wise  form,  and  matrices  and 
denote the uncertainty bounds.

Assumption  1  describes  the  model  uncertainties  and  avail-
able  information  about  the  nominal  values  and  uncertainty
bounds  in  system  (1).  The  next  assumption  is  related  to  the
primary  communication  graph  of  the  considered  multi-agent
system.

G = (V,E,W)

V = {1,2, . . . ,n} W = {wi j}1≤i, j≤n 0 ≤ wi j =

w ji ≤ 1 i
j G

m

Assumption  2  (Communication  Characterizations): Consi-
der multi-agent system (1). For this multi-agent system, there
is  a  weight  graph ,  that  determines  the  quality
of communication between agents in system (1). In this graph,

.  Moreover, ,  where 
 is the weight of the edge which connects the agent  to

agent .  Also,  it  is  assumed that  the  graph  has  a  spanning
tree,  and  denotes  the  number  of  its  edges  which  have
positive weights.

G
In  this  paper,  we  intend  to  simultaneously  find  a  simple

controller and a subgraph for graph  under which system (1)
reaches  to  consensus  at  an  appropriate  convergence  rate.
Naturally,  we  expect  a  trade-off  between  the  communication
graph  edges’ weight  values  and  the  convergence  speed.
Generally speaking, this means that the convergence rate can
be improved for a given controller if the weights of the graph
edges  are  increased.  Finding  the  optimal  subgraph  and  the
robust controller guaranteeing consensus is the main focus of
this  paper  in  Section  IV.  The  corresponding  problem  can  be
formulated as follows.
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{x j(t)} j∈Ni 7→ ui(t) G̃ ⊆ G

G̃

Problem  1: Consider  multi-agent  system  (1)  under
Assumptions  1  and  2.  Determine  the  continuous-time
controller  and  the  subgraph  for  the
communication  between  agents  such  that  the  consensus  with
an  arbitrary  convergence  rate  is  guaranteed,  whereas  the
minimum weights for edges in subgraph  are conceived.

Due  to  the  trade-off  nature  of  Problem  1,  by  defining  a
balance parameter, the importance of two objective factors in
this  problem  (i.e.,  the  convergence  speed  and  the  weights  of
the  edges  in  the  graph)  can  be  relatively  rated.  By  changing
such a parameter, the answer of the Problem 1 moves between
the answer yielding in the highest convergence speed and the
solution  resulting  in  the  edges  having  the  smallest  weights
guaranteeing consensus.  

IV.  Main Results

The  main  focus  of  this  section  is  to  find  a  solution  for
Problem  1.  To  formulate  the  concept  of  convergence  rate
(speed),  it  is  necessary  to  provide  a  precise  mathematical
definition  for  this  concept  before  trying  to  solve  Problem  1.
The next definition clarifies this point.

ẋ = f (x)

V(x)
V(x) > 0 V̇(x) < 0 x , 0

Definition 1 (Convergence Rate) [46]: Consider a dynamic
system  in  the  form .  Assume  that  the  origin  is  a
globally  asymptotically  stable  fixed  point  for  this  system.
Also,  assume  that  there  exists  Lyapunov  function  such
that  and  for  all .  Based  on  this
Lyapunov function, the convergence rate of the system can be
defined in following form:
 

β :=
1
2

inf
{
− V̇(x)

V(x)

∣∣∣∣∀x , 0
}
. (3)

ẋ = Ax

Definition  1  introduced  the  convergence  rate  for  a  general
nonlinear  system.  In  the  special  case  of  facing  with  a  stable
linear system in the form , by simple calculations it can
be  shown  that  the  convergence  rate,  which  is  generally
expressed  by  (3),  can  be  found  for  this  linear  system  by
solving an optimization program in the following form:
  β = sup

λ,P
λ

s.t. P = P⊤ ≻ 0, λ ∈ R, [PA]† ⪯ −λP.
(4)

Now  that  the  convergence  rate  is  mathematically  defined,
we can begin to solve Problem 1. For this purpose, consider a
simple  proportional  controller  and  assume  that  each  agent
updates its control effort as
 

ui(t) = K
∑
j∈Ni

w̃i j(x j− xi); 1 ≤ i ≤ n (5)

K ∈ Rnu×nx w̃i j
i j

G̃
K

G̃

where,  is the controller gain and  is the weight
of  the  edge  that  connects  the  agent  to  the  agent  in  the
subgraph . The next theorem provides an optimization based
framework to obtain the controller gain  in (5) along with a
suitable  communication  graph  and  the  corresponding
Lyapunov function.

Theorem  1  (Solving  Problem  1): Consider  the  multi-agent
system (1) satisfying Assumptions 1 and 2. Also, consider the
optimization problem 



max
w̃i j,K̄,β

f
(
β, {wi j}i, j

)
s.t. Q ∈ Snx

≻0, λ2,µ, {w̃i j}i j ∈ R≥0, β ∈ R

λ2In ⪯ µ1n1⊤n +CDiag{w̃i j, w̃i j}C⊤

0 ≤ w̃i j ≤ wi j[
(A⋆−λ2B⋆K̄)

]† ⪯ −βQ,
∀|A⋆−A| ≤ Ab, |B⋆−B| ≤ Bb

(6)

C ∈ Rnx×m G
f : Rn2−n+1→ R

G̃
β K̄⋆,β⋆,Q⋆ {w̃⋆i j}i, j

β⋆ ≥ 0
G̃

β⋆

K = K̄⋆Q⋆−1

where  is  the  incidence  matrix  of  graph ,  and
 is an arbitrary function that makes a trade-off

between the weight  of  edges in subgraph  and convergence
rate .  Also,  assume  that ,  and  are  the
optimal  solutions  of  decision  variables  in  the  optimization
problem  (6),  where .  Then,  the  system  (1)  with  the
communication  graph  and  the  controller  (5)  reaches  to
consensus  with  convergence  rate  if  the  controller  gain  is
chosen as .

ei(t)Proof: Define  as
 

ei(t) := x1(t)− xi(t); 2 ≤ i ≤ n (7)
which  can  be  used  to  verify  the  consensusability  in  the
considered  multi-agent  system.  From  definition  (7)  and
dynamic model (1), it is obtained that
 

ėi(t) = A⋆ei(t)

−B⋆K

 ∑
j∈N1∪Ni

(w1 j−wi j)e j(t)+
∑
j∈Ni

wi jei(t)


2 ≤ i ≤ n e(t) :=

[
e⊤2 (t) e⊤3 (t) · · · e⊤n (t)

]⊤
for . Defining , it
can be concluded that
 

ė(t) =
[
In−1⊗A⋆− (L̃22+1n−1.ν̃)⊗B⋆K

]
e(t)

L̃ G̃where  is the Laplacian matrix of graph  and is in the form
 

L̃ =
[
ν̃11 −ν̃
∗ L̃22

]
.

According to the fact that
 [

1 0
1n−1 In−1

]−1

L̃
[

1 0
1n−1 In−1

]
=

[
0 −ν̃
0 L̃22+1n−1.ν̃

]
L̃22+1n−1.ν̃

L̃
L̃22+1n−1.ν̃

T ∈ R(n−1)×(n−1)

it  can  be  deduced  that  the  eigenvalues  of  are
equal to non-zero eigenvalue of . Without loss of generality,
assume that  is diagonalizable. Hence, there exists
matrix , such that
 

T−1(L̃22+1n−1.ν̃)T = J
J ∈ R(n−1)×(n−1)where  is  a  diagonal  matrix.  Using  this

equation  and  doing  some  straightforward  computations,  it  is
deduced that
 

(T ⊗ In)−1F⋆e (T ⊗ In) = In−1⊗A⋆− J⊗B⋆K (8)
F⋆e = In−1⊗A⋆− (L̃22+1n−1.ν̃)⊗B⋆K

ė(t) = F⋆e e(t) ˙̄e(t) = (In−1⊗A⋆− J⊗
B⋆K)ē(t)

L̃22+1n−1.ν̃

where .  From  (8),  we
can conclude that the stability and convergence rate of system

 is similar to those of system 
.  According  to  the  diagonalizability  assumption  for

matrix ,  it  can  be  concluded  that  the  matrix
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In−1⊗A⋆− J⊗B⋆K
˙̄e(t) = (In−1⊗A⋆− J⊗B⋆K)ē(t)

 is  a  diagonal  matrix.  Therefore,  the
convergence  speed  of  is
determined  by  the  minimum  of  the  convergence  rate  of  the
following systems:
 

ẏ j(t) = (A⋆−λ jB⋆K)y j(t); 2 ≤ j ≤ n (9)
λ2 ≤ · · · ≤ λn J

L̃22+1n−1.ν̃

L̃

where  are  diagonal  elements  of  matrix ,  or
equivalently the eigenvalues of matrix , which are
equal to nonzero eigenvalues of .  According to (4),  we can
find  the  convergence  rate  of  systems  in  (9)  from solving  the
optimization problem
 

sup
α j,P j,K

α j

s.t. P j ∈ Snx
≻0, K ∈ R

nu×nx , α j ∈ R[
P j(A⋆−λ jB⋆K)

]† ⪯ −α jP j

∀|A⋆−A| ≤ Ab, |B⋆−B| ≤ Bb.

(10)

ė(t) = F⋆e e(t)
min{α⋆2 , . . . ,α

⋆
n } α⋆i

α⋆i
ε > 0

K = −lB⋆⊤P j l > 0

The convergence rate  of  system  will  be equal
to ,  where  denotes  the  optimal  solution  of
optimization  problem (10).  According  to  [46,  Proposition  2],
it  can  be  concluded that  if  is  the  solution  of  optimization
problem  (10),  then  for  all ,  there  exists  matrix

 with , such that the solution of optimization
problem
 

sup
β j,P j

β j

s.t.
[
P j(A⋆− lλ jB⋆B⋆⊤P j)

]† ⪯ −β jP j

∀|A⋆−A| ≤ Ab, |B⋆−B| ≤ Bb

(11)

α⋆j −ε
K⋆ = −l⋆B⋆⊤P j

α⋆2
j = 2

is greater than or equal to . This fact helps to show that
 can  be  the  optimal  solution  for  the

optimization problem (10).  Assume that  is  the solution of
the optimization problem (10) for . According to (11),
 

α⋆2 Inx +2(λi−λ2)l⋆B⋆B⋆⊤P2 ≤ α⋆i Inx ; 3 ≤ i ≤ n

l⋆ > 0
α⋆2 −ε

ε > 0

λ2
λ2 ≤ λ j 3 ≤ j

where  is a constant guaranteeing that the solution of the
optimization  problem  (11)  is  greater  than ,  for  an
arbitrary  small .  The  above-mentioned  inequality  and
result  related  to  optimization  problem  (11)  show  that  the
minimum convergence rate between systems in (9) belongs to
the  system  which  is  related  to .  Now,  we  reformulate  the
inequality  for  all .  It  can  be  replaced  by  the
inequality
 

λ2In ⪯ µ1n1⊤n + L̃. (12)
G̃On the other hand, the Laplacian matrix of graph  can be

written in the following form:
 

L̃ = CDiag{w̃i j, w̃i j}C⊤ (13)
C G

Q := P−1
2 K̄ := KQ β = α2

where  is the incidence matrix of graph . The proof is then
completed  by  considering  the  equations  (10),  (12),  and  (13)
with variables , , and . ■

K̄0 = 0 Q0 = Inx

w̃i j0 = wi j λ20 L

To justify the feasibility of the optimization problem (6), we
can  find  a  feasible  point  satisfying  the  constraints  of  this
problem.  For  this  purpose,  assume that , ,  and

. Now if  is the second smallest eigenvalue of 

β0

{−[A⋆]†}|A⋆−A|≤Ab

(
K̄0,Q0,λ20 ,β0, w̃i j0

)and  is  the  minimum of  the  eigenvalues  of  the  matrices  in
the  convex  set ,  then 
specifies a feasible point for the optimization problem (6).

f
(
β, {w̃i j}i, j

)As mentioned before, by determining the objective function
 in  the  optimization  problem  (6)  the  trade-off

between the weight of edges in the communication graph and
the  convergence  rate  can  be  appropriately  balanced.  The
following remark investigates special forms for this objective
function.

f (·)

Remark  1  (Special  Objective  Functions): As  discussed
before,  increasing  the  weights  of  the  edges  in  the  neighbor-
hood  graph  yields  in  improving  data  sharing  between  the
agent,  and  this  generally  results  in  speeding  up  the  conver-
gence.  This  fact  reveals  that  there  is  a  trade-off  between
convergence  rate  and  graph’s  edge  weights.  Such  a  trade-off
can  be  considered  in  various  forms  in  the  objective  function

 of  the  optimization  problem  (6)  in  order  to  meet  the
design  objective.  As  an  example,  consider  the  case  that  the
exchange of data between two agents costs proportional to the
weight  of  the edge connecting these two agents.  In this  case,
the concave objective function can be considered as follows:
 

f
(
β, {w̃i j}i, j

)
= ln (β)− ζ ln

∑
i, j

w̃i j

 . (14)

ζ ∈ R
ζ = 0

ζ

ζ

In  the  function  (14),  by  properly  setting  the  parameter
,  the mentioned trade-off can be appropriately modeled.

As  a  special  case  of  this  function,  if  we  set ,  then  the
optimization  problem  (6)  reduces  to  the  classic  problem  of
optimizing  the  convergence  rate  in  consensus  of  a  linear
multi-agent  system  (e.g.,  [47]).  As  mentioned,  in  objective
function  (14),  the  parameter  balances  the  weight  of  the
convergence  rate  and  that  of  the  communication  load.  In
particular,  if  in  the  design  process  the  reduction  of  the
communication load is  a higher priority in comparison to the
convergence  speed,  the  designer  should  accomplish  this
priority by choosing a large value for parameter .

A⋆ B⋆

The  optimization  problem (6)  in  Theorem 1,  in  its  general
form,  is  non-convex.  The  non-convexity  originates  from  the
fact that the last constraint in this optimization problem should
be satisfied for a family of matrices. It is worth noting that, as
a  special  case,  if  the  system  matrices  (  and )  are  fixed
and  known,  then  the  problem  reduces  an  LMI  and  can  be
solved by using regular LMI solvers. But, unfortunately, when
these matrices are uncertain, finding the exact solution of the
aforementioned optimization problem is  provably  intractable.
In  order  to  clarify  the  point,  let  us  consider  the  problem  of
checking the stability of system
 

ż(t) = (A⋆−λ2B⋆K)z(t) (15)
A⋆ B⋆ K

P ∈ S nx
≻0

V(z) = z⊤Pz

for  all  possible  values  of  and ,  where  is  known.
Checking the stability of system (15) is  equivalent to finding

 (for  constructing  the  Lyapunov  function
), such that it can guarantee

 

∀|A⋆−A| ≤ Ab, ∀|B⋆−B| ≤ Bb

∃PA⋆,B⋆ ∈ S nx
≻0 :
[
PA⋆,B⋆

(
A⋆+B⋆K

)]† ⪯ 0. (16)

The  problem  (16)  is  a  special  case  of  the  problem  of
stability checking of an interval matrix [48], which is strongly
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j = 2 K

NP-hard [49,  Corollary  2.6].  It  is  clear  that  the  problem (16)
has  a  solution  if  and  only  if  the  solution  of  the  optimization
problem  (10)  for  and  a  fixed  is  non-negative.
Consequently,  it  is  expected that  there is  no polynomial-time
algorithm  for  solving  problem  (16)  (or  problem  (6)).  A
conservative  approach  for  relaxing  the  situation  is  to  use  a
common  Lyapunov  function  in  (16),  which  yields  in  the
following problem:
 

∃P ∈ S nx
≻0 : ∀|A⋆−A| ≤ Ab, ∀|B⋆−B| ≤ Bb,[

P
(
A⋆+B⋆K

)]† ⪯ 0. (17)

Inequality (17) is a special form of the problems, which are
known as the “matrix cube problems” in [50]. Unfortunately it
has been proved that  this  class  of  problems are also NP-hard
[50,  Proposition  4.1].  Hence,  we  have  to  resort  to  approxi-
mation methods for solving such problems. Existing results in
this area offer effective conservative approximations such that
the resulted conservatism is bounded independently of the size
of  the problem [51].  Benefiting from such developments,  the
following  theorem  provides  a  conservative  (but
computationally  tractable)  convex  optimization  to  be  solved
instead of the optimization problem (6).

C G f

G = (V,E,W̃)
K = K̄⋆Q⋆−1 β⋆ ≥ 0 β⋆, K̄⋆,Q⋆

{w̃i j}i, j

Theorem  2  (Convex  Optimization  Framework): Consider
the  multi-agent  system  (1)  under  Assumptions  1  and  2.
Assume that  is the incidence matrix of the graph  and  is
a  concave  function  with  respect  to  its  variables.  The  system
(1)  with  the  controller  (5)  reaches  to  consensus  under  the
communication  graph  and  with  the  controller
gain , if , where  and the weight
of  graph  edges  ( )  are  the  solution  of  convex
optimization problem
 

max
w̃i j,K̄,β

f
(
β, {wi j}i, j

)
s.t. Q ∈ Snx

≻0, λ2,µ, {w̃i j}i j ∈ R≥0, β ∈ R

κi j,γik ∈ R≥0, H1 = 1nx ⊗ Inx

H2 = λ2K̄
[

1nu ⊗ enx
1 . . .1nu ⊗ enx

nx

]
G1 = −Diag{κi jI}i, j,G2 = −Diag{γikI}i,k
λ2In ⪯ µ1n1⊤n +CDiag{w̃i j, w̃i j}C⊤

0 ≤ w̃i j ≤ wi j
H0 ⋆ ⋆

H⊤1 G1 ⋆

H⊤2 0 G2

 ⪯ 0

(18)

with1
 

H0 =
[
A−λ2BK̄

]†−βQ+∑
i, j

{
κi j(ab

i j)
2enx

i [enx
i ]⊤
}

+
∑
i,k

{
γik(bb

i j)
2enx

i [enx
i ]⊤
}
. (19)

[
(A⋆−λ2B⋆K̄)

]† ⪯ −βQ
Proof: To  approximate  problem  (6)  by  a  conservative  one

that  can  be  solved  by  off-the-shelves  convex  optimization
solvers,  we  need  to  use  a  conservative  relaxation  for  the
constraint .  According  to  the
mentioned definitions,
 

A⋆ = A+
nx∑
i=1

nx∑
j=1

enx
i δai j[e

nx
j ]⊤, |δai j| ≤ ab

i j

B⋆ = B+
nx∑
i=1

nu∑
k=1

enx
i δbik[enu

k ]⊤, |δbik | ≤ bb
ik (20)

{δai j} {δbik} A⋆−A
B⋆−B[

(A⋆−λ2B⋆K̄)
]† ⪯ −βQ

where  and  denote the elements of matrices 
and ,  respectively.  From  (20),  the  constraint

 can be represented as
 [

λ2BK̄ −A
]†
+βQ+

nx∑
i=1

nx∑
j=1

[
enx

i (−δai j)[e
nx
j ]⊤
]†

+

nx∑
i=1

nu∑
k=1

[
enx

i δbikλ2[enu
k ]⊤K̄

]† ⪰ 0. (21)

Mi j,Nik, κi j,γik
i, j ∈ {1, . . . ,nx} k ∈ {1, . . . ,nu}

According  to  [51,  Theorem  3.1],  it  can  concluded  that  the
constraint (21) holds if there exist parameters ,
where  and , such that
 

κi j,γi j ≥ 0 Mi j− κi j(ab
i j)

2enx
i [enx

i ]⊤ ⋆

[enx
j ]⊤ κi jI

 ⪰ 0

 Nik −γik(bb
i j)

2enx
i [enx

i ]⊤ ⋆

λ2[enu
k ]⊤K̄ γikI

 ⪰ 0

[
λ2BK̄ −A

]†
+βQ ⪰

∑
i, j

Mi j+
∑

i,k
Nik. (22)

Using the Schur complement in the first two inequalities of
(22) yields
 

κi j,γik ≥ 0

Mi j− κi j(ab
i j)

2enx
i [enx

i ]⊤− κ−1
i j enx

j [enx
j ]⊤ ⪰ 0

Nik −γik(bb
i j)

2enx
i [enx

i ]⊤−γ−1
ik λ

2
2K̄⊤enu

k [enu
k ]⊤K̄ ⪰ 0[

λ2BK̄ −A
]†
+βQ ⪰

∑
i, j

Mi j+
∑

i,k
Nik.

{Mi j}i, j, {Nik}i,k
By  doing  some  simple  computations  and  by  eliminating

 in the above inequalities, it is obtained that
 

κi j,γik ≥ 0[
A−λ2BK̄

]†−βQ
+
∑

i, j

{
κi j(ab

i j)
2enx

i [enx
i ]⊤+ κ−1

i j enx
j [enx

j ]⊤
}

+
∑

i,k

{
γik(bb

i j)
2enx

i [enx
i ]⊤+γ−1

ik λ
2
2K̄⊤enu

k [enu
k ]⊤K̄

}
⪯ 0.

(23)

Reusing  the  Schur  complement  for  (23)  leads  to  the
conclusion that these inequalities are equivalent to 

  

β

1 Formally  speaking,  there  is  a  bilinear  term  in  the  constraint  of  the
optimization  (18)  which  can  cause  non-convexity.  However,  since  the  only
source of non-convexity is the scalar variable , a straightforward approach is
to adjust  this  variable through a grid-search or  some other  efficient  methods
like as that proposed in [52].
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
H0 ⋆ ⋆

H⊤1 G1 ⋆

H⊤2 0 G2

 ⪯ 0 (24)

H0, H1, H2,G1 G2where, , and  were defined in (18) and (19).
Using  the  result  of  (24),  we  can  conclude  that  (6)  can  be
replaced with the conservative version (18). ■

K̄1 = 0 Q1 = Inx w̃i j1 = wi j κi j1 = 1 λ21

L β1 γi j1

To  confirm  the  feasibility  of  optimization  problem  (18),
assume that , , ,  and .  Let 
be  the  second  smallest  eigenvalue  of  and  and  be  a
feasible point in the convex set
 

γi j ∈ R>0,β ∈ R,Wi j ∈ Rnx×nx Wi j−γi j(ab
i j)

2enx
i enx⊤

i J ∗
enx⊤

j J γi j

 ⪰ 0

0 ⪰ βI+A+A⊤+
∑
i, j

Wi j.(
K̄1,Q1,λ21 , w̃i j1 ,β1,γi j1 , κi j1

)
Then,  is  a  feasible  point  for

optimization problem (18).

Ab = 0 Bb = 0
G

(A⋆,B⋆)
(A⋆,B⋆)

β⋆ G̃ = G

β β ≥ 0

β

K
{w̃i j}i, j

A⋆ B⋆

Ab Bb

Ab
n =

π
2 Ab

Bb
n =

π
2 Bb K

Ab = Ab
n Bb = Bb

n

Remark 2  (About  Solutions  of  the  Optimization  Problems):
In [47, Corollary 1], it has been proved that the certain version
of  system  (1)  (i.e.,  in  the  case  and )  is
consensusable  if  the  communication  graph  has  a  spanning
tree  and  the  pair  is  stabilizable.  This  result  reveals
that if the system matrices are known and the pair  is
stabilizable,  then  the  optimization  problem (6)  has  a  positive
solution  for  (because  we  can  set  and  according  to
[47],  the  system  (1)  with  this  communication  graph  has  a
stabilizer in the form (5)). On the other hand, in the case that
the system matrices are uncertain, if the optimization problem
(18) is infeasible, there is no  with the condition  in the
feasible  set  of  this  optimization  problem.  Considering  the
conservative  nature  of  problem  (18),  the  absence  of  non-
negative  in  the  mentioned  feasible  set  does  not  mean  that
the  problem  (6)  is  necessarily  infeasible  (i.e.,  in  this  case  it
cannot  be  necessarily  deduced that  the  controller  gain  and
graph weights  are not found to stabilize system (1) for
all possible values of  and ). But thanks to the results of
[51], we can conclude that if the optimization problem (18) is
infeasible  for  some  bounds  and ,  then  the  optimization
(6)  will  be  infeasible  for  optimization  bounds  and

. This means that in this case matrix  in controller
(5)  cannot  be  found  to  guarantee  the  consensus  in  uncertain
system (1) with uncertainty bounds  and .
  

V.  Numerical Examples

In  this  section,  numerical  examples  illustrating  the
applicability of the main results of the paper are presented.

Example 1: Consider  a  group  of  5  homogeneous  uncertain
agents  described  by  dynamic  model  (1),  which  satisfies
Assumption 1, with
 

A=


1.40 −0.21 6.71 −5.68
−0.58 −4.29 0 0.67
1.07 4.27 −6.65 5.89
0.05 4.27 1.34 −2.10

 ,B=


0 0
5.68 0
1.14 −3.15
1.14 0

 .

Ab = 0.1(1⊤4 ⊗14) Bb = 0.1(1⊤2 ⊗14) and  (The  nominal
matrices  are  selected  from “REA2” example  in Complib
library of MATLAB2).

1

f
(
β, {w̃i j}i, j

)
= ln (β)−

ζ ln
(∑

i, j w̃i j
)

ζ

ζ

ζ

ζ

ζ

Suppose  that  the  primary  communication  graph  of  the
mentioned  multi-agent  system is  as  that  shown  in Fig. 1 and
the  weight  of  all  edges  in  this  graph  is  equal  to .  In  this
example,  we  consider  the  objective  function  for  the
optimization  problem  (18)  in  the  form 

.  By  solving  this  optimization  problem  for
various random multi-agent systems with dynamic matrices in
the aforementioned intervals, the trade-off between the weight
of  edges  and  the  convergence  speed  for  different  values  of
parameter  is  revealed  in  the  numerical  simulation  results
presented  in Fig. 2.  These  results  have  been  derived  by
solving  the  optimization  problem (18)  for  different  values  of
,  and then finding the  convergence speed and the  weight  of

edges based on the obtained solutions.  The red (blue)  plot  in
Fig. 2 shows the variations of the optimal convergence speed
(sum  of  the  weight  of  edges  as  an  indicator  for  the
communication  load)  with  respect  to .  Confirming  through
the  numerical  simulation  results  of Fig. 2,  by  increasing  the
tuning parameter ,  the weight  of  the communication load in
comparison  to  that  of  the  convergence  speed  in  the
optimization problem increases. As a result, in solution of the
optimization problem (6) (or in that of its conservative version
given  by  (18)),  the  communication  load  decreases  by
increasing .  This  causes that  the convergence rate  decreases
and the consensus time increases.
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Fig. 1.     Communication topology in Example 1.
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Fig. 2.     The trade-off between the weight of edges and the convergence
speed for different values of parameter .
 

The  following  example,  borrowed  from  [28]  with  some
modifications, verifies the applicability of the obtained results
in  consensus  analysis  in  a  platoon  of  homogeneous  vehicles
  
2 http://www.complib.de/
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with boundary uncertainties.
10

10

i ∈ {1, . . . ,10}

Example 2: Consider a platoon of  automated vehicles, as
a multi-agent system with  agents.  Using an inverse model
compensation based approach, such agents have been modeled
by  uncertain  linear  models  in  [28].  The  reduced  uncertain
linear dynamic model of agent  is of the form
 

ẋi = (A+∆A)xi+ (B+∆B)ui (25)
where
 

A =


0 1 0
0 0 1
0 0 −k̄

 , ∆A =


0 0 0
0 0 0
0 0 −∆k


B =
[

0 0 −k̄
]⊤
, ∆B =

[
0 0 −∆k

]⊤
.

xi =
[

pi vi ai
]⊤

pi vi

ai ith
1.21 ≤ k̄+

∆k ≤ 2.95

17

 is the state vector, in which , , and
 are  the  vehicle’s  position,  velocity  and  acceleration,

respectively.  In  this  example,  it  is  assumed  that 
.  Suppose that the primary communication graph of

this multi-vehicular system is as that shown in Fig. 3. The sum
of the weight of the primary graph’s edges is equal to , and
the Laplacian matrix of this graph is in the form
 

L =



2 ⋆ ⋆ · · · ⋆
−1 3 ⋆ · · · ⋆
−1 −1 4 · · · ⋆
...

...
...
. . .

...

0 0 0 · · · 2


.
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Fig. 3.     Communication topology in Example 2.
 

ζ = 30

1.9541
[1 2 3 . . . 10]⊤

7

Let  the  aim  in  this  problem  be  to  optimize  the  network
topology  such  that  the  convergence  rate  in  consensus  of  the
agents  is  not  considerably  affected.  For  this  purpose,  the
optimization  problem  (18)  with  the  objective  function  in  the
form  (14)  and  has  been  solved.  By  solving  the
optimization  problem  with  the  specified  objective  function,
the sum of the weight of the graph edges is reduced to .
In addition, starting from the initial positions ,
the agents converge to consensus after about  seconds, as that
shown in Fig. 4.  

VI.  Conclusion

In  this  paper,  an  optimization-based  framework  was
introduced  to  solve  the  consensus  problem  for  an  uncertain
homogeneous linear multi-agent system. The main advantage
of this framework, introduced in Theorem 1, is that in addition
to synthesizing a robust controller for ensuring consensus with
an  adjustable  convergence  rate,  it  can  simultaneously  reduce
the  communications  between  the  agents.  Furthermore,  it  was
shown  that  the  optimization  problem  that  was  introduced  in
Theorem  1  is  NP-hard.  To  deal  with  this  challenge,  the
corresponding  optimization  problem  was  conservatively
relaxed  in  the  Theorem  2  such  that  the  alternative
conservative  problem  can  be  solved  by  applying  the  regular
LMI  solvers.  There  are  some  interesting  lines,  which  invite
further research works in the continuation of the research done
in this paper. For instance, a relevant research work in future
can  be  to  propose  a  distributed  algorithm  for  solving  the
optimization problem (18). It seems that the idea of Projected
Primal-Dual  Gradient  Flow,  which  has  been  introduced  in
[53],  can  be  helpful  to  propose  such  a  distributed  algorithm.
As another  relevant  future work,  similarly to the frameworks
surveyed  in  [54],  the  obtained  results  can  be  extended  to
balance  the  convergence  rate  and  the  communication  load  in
consensus of heterogeneous multi-agent systems.
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