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   Abstract—In  this  work,  the  dynamics  of  networked  goods
distribution systems subject to the control of a continuous-review
order-up-to  inventory  policy  are  investigated.  In  the  analytical
study,  as  opposed  to  the  earlier  models  constrained  to  the  serial
and  arborescent  interconnection  structures,  an  arbitrary  multi-
echelon topology is considered. This external,  uncertain demand,
following any distribution, may be imposed on all network nodes,
not  just  conveniently  selected  contact  points.  As  in  the  physical
systems,  stock  relocation  to  refill  the  reserves  is  subject  to  non-
negligible  delay,  which  poses  a  severe  stability  threat  and  may
lead  to  cost-inefficient  decisions.  A  state-space  model  is  created
and  used  as  the  framework  for  analyzing  system  properties.  In
particular, it is formally demonstrated that despite unpredictable
demand  fluctuations,  a  feasible  (nonnegative  and  bounded)
reserves  replenishment  signal  is  generated  at  all  times,  and  the
stock  gathered  at  the  nodes  does  not  surpass  a  finite,  precisely
determined level. The theoretical content is illustrated with a case
study of the Chinese oil supply system.
    Index Terms—Inventory  control,  networks,  supply  systems,  time-
delay systems.
  

I.  Introduction

THE  challenges  associated  with  complex  connectivity
architectures in current production and goods distribution

systems predispose control policy selection towards numerical
methods  [1]–[3]  and  approximate  solutions  [4],  [5].  Formal
studies are primarily restricted to basic configurations: single-
echelon [6], serial [7], or arborescent (with separable paths of
goods flow) [8]–[10]. In contrast, this work aims to establish a
formal  framework  to  analyze  the  dynamics  of  modern
distribution systems organize in a more complex – networked
– scheme  of  suppliers,  distribution  centers,  and  retailers
exchanging  resources  with  a  delay  according  to  the  popular
order-up-to (OUT) inventory policy [11].

Earlier studies on distribution system dynamics regulated by
the  OUT  policy  are  summarized  in  [12].  Later  on,  using  the
transfer-function  approach,  Hoberg et  al.  [13]  assessed  the
impact  of  delay  on  the  stability  of  the  periodic-review  two-
echelon  configuration.  The  study  was  extended  over
perishable  inventories  in  [14]  and  variability  containment

objectives in [15]. In [16], a block-diagram manipulation was
employed  to  give  more  insights  into  the  dynamical
phenomena in contemporary supply chains, albeit still limited
to  the  localized  approximation.  The  serial  configuration  in  a
discrete-time  framework  was  investigated  in  [17]  as  a  basis
for H∞-optimal  controller  design,  and  in  [18]  for  model-
predictive  control.  A  continuous-time  model  of  a  similar
system was developed in [7] to help in choosing suitable gains
for the modified – proportional OUT policy. The works on the
arborescent retarded systems continued in [19]–[21], targeting
parameter  selection  to  improve  stability  margin  [19],  reduce
variability [20], or costs [21], under a given demand type.

Approximating  the  presently  deployed  multi-echelon
systems  with  non-trivial  interconnection  dependencies  [22],
[23] by fundamental constructs leads to cost increase, or even
instability  [24],  [25].  In  this  paper,  as  opposed  to  [6]–[10],
[13]–[21],  the  networked  nature  of  resource  distribution
systems  is  given  explicit  consideration.  The  constructed
framework  allows  for  an  arbitrary  interconnection  topology
among  system  elements  (nodes)  and  uncertain,  time-varying
demand to be placed at any node. The excess demand is lost,
which  breaks  the  frequently  applied  simplification  to  linear
stock dynamics [12], [15]. The reserves, from which both the
exogenous  and  internal  demand  is  served,  are  acquired  with
non-zero lead-time delay.

The  contributions  of  this  paper  include  providing  a  state-
space  model  of  networked  goods  distribution  systems  with
retarded  transshipments  and  lost  sales  and  conducting  an
analytical  study  of  OUT policy  dynamical  performance.  It  is
formally  shown  that  the  policy  always  issues  a  feasible,  i.e.,
nonnegative  and  bounded,  replenishment  signal  despite
having no knowledge of demand future evolution, or a global
perspective on the system interconnection structure. The stock
level  at  the  nodes  is  demonstrated  to  be  nonnegative  and
upper-bounded.  The  policy  can  thus  be  safely  deployed  in
current  systems  with  cross-border  cooperation,  in  a  fully
distributed  mode.  The  choice  of  the  reference  stock  level  for
high  demand  satisfaction  rate  is  indicated.  The  inventory
managers are thus equipped with explicit guidelines regarding
the selection of storage space at the nodes and maximizing the
response towards external actors. Consequently, the attractive
image  of  a  reliable  goods  provider  is  established,  and  solid,
long-term  business  relationships  may  be  formed.  The
theoretical  content  is  illustrated  via  a  case  study  of  the
Chinese oil supply system [9].  

II.  Analytical Framework

In  the  considered  class  of  systems,  suppliers,  distribution
centers,  and  retailers  interact  with  each  other  in  goods
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exchange so that an exogenous, uncertain demand is satisfied.
The controlled elements – distribution centers, retailers – will
be termed “nodes.” An example setting comprising six nodes,
three  of  which  are  subjected  to  market  demand,  and  two
external  suppliers  is  sketched in Fig. 1.  Neither  the statistical
parameters  nor  the  actual  demand  pattern  is  accessible
beforehand.  From  a  logistic  system  perspective,  the  demand
constitutes  a  driving  factor  for  ordering  decisions  to  refill
stock.  Hence,  there  are  two  types  of  inputs:  the  exogenous
signal – demand – that in the dynamical framework is treated
as  a  perturbation,  and  the  control  signal – the  sequence  of
stock refill decisions.
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Fig. 1.     Chinese oil  supply system: 1–6 controlled nodes, 7, 8 external
sources. Demand is placed at nodes 1–3. The numbers at the links signify:
(supplier contribution, delivery delay).
 

As  opposed  to  [6]–[10],  [13]–[21],  an  arbitrary  system
topology  in  which  a  unidirectional  path  connecting  each
controlled node with at least one supplier exists is considered.
In  the  proposed  model,  the  topology  encompasses n nodes
whose  indices  are  taken  from the  set Xn =  {1,  2,…, n}.  The
stock  gathered  at  the  nodes,  used  to  answer  the  demand,  is
refilled  from m external  suppliers.  The  set  of  indices  of  all
nodes and suppliers is X = {1, 2,…, m + n}.

The  evolution  of  time  will  be  tracked  by  the  continuous
variable t. Let xi(t) denote the stock level at node i, i ∈ Xn, at
instant t,  and di(t)  be the intensity of external demand placed
at  that  node.  The  operations  performed  at  the  node  proceed
according to the following sequence:

1)  Determine  the  current  stock  level xi(t),  received
shipments ui

R(t), and external demand di(t).
2)  Fulfill  the  demand  up  to  the  volume  of  available

resources.  In  the  case  of  a  deficit,  the  surplus  demand  is
realized elsewhere – a lost-sales system.

3)  Record  the  (internal)  replenishment  requests  from
neighbors in the network.

4) Respond to internal requests using leftover resources. In
the  case  of  deficit,  the  requested  quantity  is  proportionally
reduced, i.e., the shortage at time t at node i, say εi(t), implies
the reduction of the lot  sent  towards node j, uj(t),  to uj(t)[1 –

∑
k∈XS

i
uk(t)εi(t)/ ], Xi

S – the set of node indices for which node i
supplies goods.

The  reserves  gathered  at  a  node  are  used  to  fulfill  both
external  market  demand  and  internal  requests  from  the
neighbors,  with  external  demand  given  priority  to  achieve  a
better company image. Unlike previous similar approaches to
the  analysis  of  inventory  system  dynamics,  e.g.,  [9],  in  the
presented  model,  the  demand  may  be  placed  at  any  node.
Although substantially complicates the design framework, this
premise  allows  one  to  relate  to  the  phenomena  occurring  in
the currently deployed physical systems more closely.

The  demand  is  represented  by  an  a  priori  unknown,  time-
varying function
 

0 ≤ di (t) ≤ di
max (1)

where di
max ≥ 0 designates the estimate of its upper value. No

other assumption is imposed – the demand can adhere to any
stochastic  or  deterministic  process,  typically  analyzed  in
inventory control models [12].

Let ui
R(t) denote the quantity of the goods received by node

i and  let ui
S(t)  be  the  quantity  sent  by  that  node  to  the

neighbors at instant t. In order to capture the dynamics of lost-
sales  systems,  let  us  introduce  a  function – si(t) – reflecting
the response to the external demand by node i, si(t) = min{xi(t) +
ui

R(t), di(t)}.  Then,  the  stock  balance  equation  at  node i may
be written as
 

ẋi(t) = uR
i (t)− si(t)−uS

i (t). (2)
The  request  issued  by  node i at  time t for  its  suppliers

(external sources and neighbors in the system) will be denoted
by ui(t), i ∈ Xn, and the lot to be retrieved from supplier j, j ∈
X, via partitioning coefficient ϕji(t) ∈ [0, 1]. Consequently, the
quantity of the goods sent by node i to the neighbors
 

uS
i (t) =

∑
j∈Xn

ϕi j(t)u j(t). (3)

∑
j∈X ϕ ji = 1If  the  nominal  order  partitioning: ;  is  not

possible  because  of  a  goods  shortage,  the  coefficients  are
reduced as dictated by rule 4. More specifically, if node j has
gathered  enough  resources  to  respond  to  the  request  from
node i immediately, then ϕij(t) = ϕij, otherwise ϕij(t) < ϕij, and
 

∀
i

0 ≤
∑
j∈X
ϕ ji(t) ≤ 1. (4)

The  external  suppliers  are  assumed  to  be  uncapacitated
(they  do  not  experience  shortage).  Coefficients ϕij reflect  the
connection structure. Without losing generality, it  is assumed
that no node is isolated, i.e., a path exists from each node to at
least  one  external  source,  and  the  network  is  directed,  i.e.,
ϕji(t)  ≠  0  implies ϕij(t)  =  0,  and ϕii(t)  =  0,  to  preclude  self-
supply.

The order realization takes a non-negligible amount of time.
The delay in goods provision from node j to i will be denoted
by hji, hji ∈ H, H – the set of all delay values at the internode
links. With this notation, the quantity of the goods received by
node i at instant t is
 

uR
i (t) =

∑
j∈XR

j

ϕ ji(t−h ji)ui(t−h ji) (5)

where Xj
R is  the  set  of  indices  of  node j suppliers.  It  is
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assumed  that,  initially,  there  are  no  shipments  in  transit,  i.e.,
ui(t) = 0 and ϕji(t) = 0 for t < 0.

In order to perform a detailed, formal analysis, a state-space
description  of  the  system  dynamics  will  be  introduced.  The
following representation is proposed
 

ẋ(t) =Φ0(t)u(t)+
∑
h∈H
Φh(t−h)u(t−h)− s(t) (6)

where,
1) x(t) = [x1(t) ··· xn(t)]T is the state vector (stock level at the

nodes),
2) u(t)  =  [u1(t)  ··· un(t)]T is  the  controlled  input  (repleni-

shment quantity requested by the nodes),
3) s(t) = [s1(t) ··· sn(t)]T is the perturbing input which expre-

sses  the  uncertainty  in  demand  realization  at  the  nodes;  with
dmax = [d1

max ··· dn
max]T, one has from (1)

 

0 ≤ s(t) ≤ dmax (“ ≤”−point-wise inequality) (7)
4) Matrix

 

Φ0(t) = −


0 ϕ12(t) . . . ϕ1n(t)

ϕ21(t) 0 . . .
...

...
...

. . . ϕn−1,n(t)
ϕn1(t) ϕn1(t) . . . 0

 (8)

describes the node interconnection topology, and
 

Φh(t) = diag

 ∑i:hi1=h

ϕi1(t),
∑

i:hi2=h

ϕi2(t), . . . ,
∑

i:hin=h

ϕin(t)

 (9)

stores the data involving link delays.
Under a zero initial input, u(t) = 0 for t < 0, (6) leads to the

following expression for the stock level at any time t ≥ 0
 

x(t) = x(0)+
w t

0
Φ0(τ)u(τ)dτ

+
∑
h∈H

w t

0
Φh(τ−h)u(τ−h)dτ−

w t

0
s(τ)dτ

= x(0)+
w t

0
Φ0(τ)u(τ)dτ+

∑
h∈H

w t−h

−h
Φh(τ)u(τ)dτ−

w t

0
s(τ)dτ

= x(0)+
∑

h∈H∪{0}

w t−h

0
Φh(τ)u(τ)dτ−

w t

0
s(τ)dτ.

(10)

For  the  sake  of  further  analysis,  a  matrix,  grouping  the
topological information, will be defined as
 

Φ =Φ0+
∑
h∈H
Φh. (11)

The  time  reference  has  been  dropped  in  (11)  to  emphasize
the nominal – no-goods-shortage – conditions.

Lemma 1: Matrix Φ given by (11) has a positive inverse.
Proof: One  needs  to  show  that  all  the  entries  of Φ–1 are

nonnegative. In the nominal case, for each i, one has from (4),
 ∑

j∈X
ϕ ji = 1 and

∑
j∈Xn

ϕ ji ≤ 1. (12)

∑
h∈HΦh = IUsing (8) and (9), ,  and the matrix in question

Φ = Φ0 + I, where I is an n × n identity matrix. The entries of
Φ0, –ϕij ∈ [–1, 0], sum up at most to –1 (column-wise). Since

⇒
the graph representing the connection topology is directed (ϕij ≠
0  ϕji =  0),  the  determinant  and  all  the  leading  principal
minors  of Φ equal  1.  Therefore,  using  the  Sylvester’s
criterion,  it  may  be  concluded  that Φ is  a  positive-definite
matrix and thus non-singular. Moreover, as ||Φ0|| < 1, with ||·||
denoting  induced  norm,  the  inverse  of Φ accepts  a  series
representation,
 

Φ−1 = (I− (−Φ0))−1 = I+ (−Φ0)+ (−Φ0)2+ · · · . (13)
Since  all  the  entries  of “–Φ0” are  nonnegative,  it  follows

from (13) that Φ–1 is positive. ■  

III.  Order-Up-To Inventory Control

The OUT policy states that the stock should be refilled to a
reference  level  whenever  it  falls  below this  level.  In  systems
with non-negligible delivery delays, the quantity of the goods
in  transit  needs  to  be  incorporated  into  the  replenishment
request, usually through the inventory position [11, ch. 3].

The  order  quantity  at  node i at  instant t is  determined  as
(forecasts ignored)
 

ui(t) = xref
i − IPi(t) (14)

where xi
ref is the reference level and

 

IPi(t) = xi(t)+Ωi(t) (15)
is  the  inventory  position,  which  holds  information  about  the
on-hand  stock xi(t)  and  the  transported  goods  Ωi(t),  i.e.,  the
shipments  already  requested  but  not  yet  procured  due  to
delays. The open-order quantity Ωi(t) is calculated by tracking
the  difference  between  the  requested  and  retrieved  resources
as
 

Ωi(t) =
∑
j∈X

w t

0
ϕ ji(τ)ui(τ)dτ−

∑
j∈X

w t

0
ϕ ji(τ−h ji)ui(τ−h ji)dτ

=
∑
j∈X

w t

t−h ji
ϕ ji(τ)ui(τ)dτ. (16)

Consequently, the ordering signal generated by node i is
 

ui(t) = xref
i − IPi(t) = xref

i − xi(t)−
∑
j∈X

w t

t−h ji
ϕ ji(τ)ui(τ)dτ. (17)

For notational convenience, the summation in (17) is taken
over all j ∈ X.  However,  coefficients ϕji(·) are non-zero only
for the node i suppliers.

Looking  at  (17)  from  the  perspective  of  a  control  system,
the calculation of the replenishment quantity – the input signal –
proceeds  according  to  proportional  control  (with  unity  gain)
with dead-time compensation. Since resource accumulation at
the nodes is  an integrating process,  the controlled plant  is  an
integrator.  In  turn,  tracking  the  open-order  quantity  may  be
interpreted  as  an  operation  of  the  Smith  predictor.  The
presence  of  multiple  channels  in  the  network,  however,
requires  extending  the  classical  predictor  structure  over
multiple  loops  modulated  by  time-varying  weighting
coefficients.  The  block  diagram  of  control  structure  (17)  is
illustrated in Fig. 2.  The weights ϕji(t)  change with time with
respect to the resource state at the upstream nodes. If the delay
undergoes  uncertain  variations,  to  uphold  the  information
about the open-order quantity, the delay compensator may be
complemented  by  a  corrective  term,  as  in  [26].  The
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continuous-time systems, however, require separate treatment,
possibly using recent advancements [27], [28].
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Fig. 2.     OUT policy in a time-delay system perspective.
 

In order to establish a replenishment order, the OUT policy
needs  no  explicit  information  from  other  nodes – it  can  be
conveniently  deployed in  a  distributed fashion.  However,  the
ordering decisions will impact the entire system state owing to
a non-trivial interconnection topology. To examine the control
system  properties  as  a  whole,  a  state-space  policy
representation, consistent with (6), will be introduced.

First, the information about reference levels is grouped into
the  vector xref =  [x1

ref ··· xn
ref]T.  With  this  notation,  using

(6)–(9),  the  OUT  policy  (17),  implemented  independently  at
the nodes, can be synthesized into a vector form as
 

u(t) = xref − x(t)−
∑
h∈H

w t

t−h
Φh(τ)u(τ)dτ. (18)

  

IV.  OUT Policy Property Analysis

It  follows  from  (18)  that u(0)  = xref – x(0).  Consequently,
for a feasible (nonnegative and upper-bounded) replenishment
signal,  one  needs  to  choose  the  reference  as xref ≥ x(0).  The
theorem  below  demonstrates  that u remains  feasible  for  any
t > 0 despite a priori unknown demand fluctuations.

Theorem  2: The  input  signal u(t)  in  system  (6),  generated
according to  (18),  is  nonnegative  and upper-bounded for  any
t > 0.

Proof: Substituting (10) into (18), yields
 

u(t) = xref − x(0)−
w t

0
Φ0(τ)u(τ)dτ−

∑
h∈H

w t−h

0
Φh(τ)u(τ)dτ

+
w t

0
s(τ)dτ−

∑
h∈H

w t

t−h
Φh(τ)u(τ)dτ = xref − x(0)

−
w t

0
Φ0(τ)u(τ)dτ−

∑
h∈H

w t

0
Φh(τ)u(τ)dτ+

w t

0
s(τ)dτ

= xref − x(0)−
∑

h∈H∪{0}

w t

0
Φh(τ)u(τ)dτ+

w t

0
s(τ)dτ.

(19)
Differentiating both sides of (19), results in

 

u̇(t) = −
∑

h∈H∪{0}
Φh(t)u(t)+ s(t). (20)

∑
h∈HΦh(t) ≤ ICondition (4) implies . Thus

 

∑
h∈H∪{0}

Φh(t) ≤ I+Φ0(t) ≤Φ. (21)

u̇ = 0

The control process commences with u(0) = xref – x(0) ≥ 0.
Hence, it follows from (20) and (21) that the components of u
decrease  as  long  as  they  are  bigger  than  the  corresponding
components of vector s,  which are nonnegative by definition.
Consequently,  they  may  not  drop  below  zero.  In  turn,  to
establish the maximum value of the replenishment signal, it is
necessary  to  investigate  the  case  when .  In  those
circumstances,  once ui(·)  reaches  the  corresponding  level  of
vector Φ–1dmax,  since si(·)  ≤ di

max (constraint  (7)), ui may
never grow beyond that level again, and u(t) ≤ Φ–1dmax. ■

The  derivations  presented  so  far  prove  that  to  ensure  a
realizable – non-negative – stock  replenishment  signal,  the
reference  level  cannot  be  set  lower  than  the  initial  reserves.
Equivalently,  only  such  set  of  the  initial  states  is  permitted,
which  conform  to  the  inequality x(0)  ≤ xref.  The  theorem
formulated  in  a  later  part  of  the  text  demonstrates  that  the
stock  never  grows  beyond  the  reference  level,  which  thus
designates the storage space to be reserved at the nodes.

Theorem  3: If  control  (18)  is  applied  in  system  (6)  to
regulate  the  goods  distribution  process,  then  the  stock
accumulated at the nodes is nonnegative and does not exceed
the reference level, i.e.,
 

∀
t≥0

0 ≤ x(t) ≤ xref . (22)

Proof: Rules  2  and  4  imply xi(t)  ≥  0  at  any  node.
Consequently, x(t) ≥ 0, and it remains to show that for any t ≥
0 the upper bound dictated by (22) is also satisfied.

The  reference  stock  level  is  chosen  so  that x(0)  ≤ xref.
Applying (19) to (6), yields
 

ẋ(t) =
∑

h∈H∪{0}
Φh(t−h)

xref − x(0)−
∑

h∈H∪{0}

w t−h

0
Φh(τ)u(τ)dτ

+
w t−h

0
s(τ)dτ

]
− s(t)

= −
∑

h∈H∪{0}
Φh(t−h)

x(0)+
∑

h∈H∪{0}

w t−h

0
Φh(τ)u(τ)dτ

−
w t

0
s(τ)dτ

]
+
∑

h∈H∪{0}
Φh(t−h)

[
xref −

w t

t−h
s(τ)dτ

]
− s(t).

(23)
The term in the first square brackets in (23) equals x(t), thus

 

ẋ(t) = −
∑

h∈H∪{0}
Φh(t−h)x(t)

+
∑

h∈H∪{0}
Φh(t−h)

[
xref −

w t

t−h
s(τ)dτ

]
− s(t). (24)

ẋ = 0
A  most  significant  change  of x may  occur  under  no

shortage,  i.e.,  when Φh(·)  = Φh.  Hence,  analyzing ,  one
arrives at
 

x(t) = xref −Φ−1
∑

h∈H∪{0}
Φh

w t

t−h
s(τ)dτ−Φ−1s(t)

= xref −Φ−1
∑
h∈H
Φh

w t

t−h
s(τ)dτ−Φ−1s(t). (25)

 1712 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 10, OCTOBER 2021



By definition, Φh ≥ 0 and s(t)  ≥ 0.  In turn,  it  follows from
Lemma 1 that the inverse of Φ is a positive matrix (it contains
only nonnegative entries). Hence, using (25), x(t) ≤ xref. ■

Theorem  3  shows  that  the  warehouse  space  equal  to  the
stock reference level is sufficient to store all goods transported
to  each  node.  Thus  (costly)  emergency  storage  is  never
required. Another desirable property is being able to obtain a
high  service  level,  i.e.,  to  satisfy  as  much  of  the  demand  as
possible from the immediately available resources. The sequel
demonstrates  how  to  achieve  full  demand  satisfaction  by
selecting a single design parameter – the stock reference level.

u̇ = 0
uss = (

∑
h∈H∪{0}Φ

ss
h )−1dss Φss

h

The  order  quantity uss in  response  to  the  steady-state
demand dss can  be  determined  by  setting  in  (20)  as

, where  is the steady-state matrix
Φh(·). Then, the steady-state stock level is obtained from (18)
as
 

xss = xref −uss−
∑
h∈H

w t

t−h
Φss

h qssdτ = xref −uss−
∑
h∈H

hΦss
h uss

= xref −
I+∑

h∈H
hΦss

h


 ∑

h∈H∪{0}
Φss

h


−1

dss. (26)

Φss
h

If,  after  serving  the  demand,  the  stock  level  is  positive,  it
means  that  a  100% service  level  has  been  achieved.  In  the
worst  case, dss = dmax and  = Φh.  However,  using (26),  if
the reference stock level satisfies
 

xref >

I+∑
h∈H

hΦss
h

Φ−1dmax (27)

then xss > 0, implying a full service rate.  

V.  Numerical Example

dmax
1 dmax

2 dmax
3

The characteristics of the resource distribution process will
be illustrated for the example setting depicted in Fig. 1, which
reflects  the  China  oil  supply  system  [9].  The  oil  for  market
contact points 1–3, responding to demands d1–d3, is delivered
through intermediate nodes 4–6 using channels with different
parameters  (ϕij – lot  partitioning, hij – delay),  originating  at
two external sources 7 and 8. The demand, depicted in Fig. 3,
experiences  seasonal  variations  with  abrupt,  unanticipated
intensity  shifts.  The  stock  replenishment  in  the  controlled
network  (nodes  1–6)  is  regulated  by  the  OUT  policy  (18).
Assuming  = 2.5,  = 3.5, and  = 4 Mbpd (millions
of barrels per day), the reference level is selected according to
(27) as xref = [20.5 15 63 21.5 52 113.5]T Mb to maximize the
service rate. The initial condition x(0) = xref.

The analytical findings from Section IV regarding the OUT
policy performance are verified in relation to another common
policy – (r, Q) one – that states that one must refill the stock
by Q units when the level of reserves drops below r, which is
useful  when  the  trading  agreements  favor  shipments  of  a
predetermined quantity. Here, Q is set equal to the large crude
oil  tanker  capacity  of  2.0  Mb.  The stock evolution  under  the
OUT policy is  sketched in Fig. 4 and under the (r, Q)  one in
Fig. 5. One can learn from Fig. 4 that, precisely as dictated by
Theorem  3,  the  OUT  policy  keeps  the  stock  within  the
allocated  storage  space  set  as xref.  The  stock  stays  positive

even when the demand is at its maximum, which means a full
service  rate  and  uninterrupted  oil  supply  despite  a  priori
unknown  demand  changes.  Although  the  (r, Q)  policy
generates  smaller  holding  costs  at  intermediate  nodes  4–6,  it
leads to unfulfilled demand at the end-points. As evidenced in
Fig. 5, the reserves drop to zero in response to a demand surge
(at node 2: days 18–25, at node 3: days 33–40), which implies
inconsistent supplies.
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Fig. 4.     Stock level evolution under OUT policy.
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Fig. 5.     Stock level evolution under (r, Q) policy.
   

VI.  Summary and Conclusions

In  the  paper,  a  framework  to  conduct  a  formal  analysis  of
inventory  policy  dynamics  in  systems  with  complex,
networked  structures  has  been  provided.  It  was  proved  that
irrespective  of  the  demand  pattern  imposed  onto  the  system,
the  OUT  policy  generates  a  nonnegative  and  upper-bounded
stock replenishment signal, even though it has access to local
information  only.  It  was  also  shown  that  the  stock  of  goods
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Fig. 3.     Daily demand.
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accumulating at the nodes does not grow beyond the reference
level.  Thus,  it  was  formally  demonstrated  that  this  popular-
among-practitioners  strategy  could  be  safely  deployed  in
modern,  multi-dimensional  distribution  systems.  Moreover,
guidelines  for  tuning  policy  performance  to  maximize  the
service  level  have  been  provided.  As  a  result,  the  image
towards  external  actors  of  a  reliable  goods  distributor  can be
preserved,  even  in  the  uncertain  lost-sales  setting.  While  the
analytical study emphasizes the OUT policy, the framework is
flexible  to  investigate  the  performance  of  other  inventory
control strategies, e.g., a nonlinear (r, Q) policy. It is a subject
of the current work to be reported in future publications.
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