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   Abstract—This  paper  considers  the  leader-following  consensus
for a class of nonlinear switched multi-agent systems (MASs) with
non-strict  feedback forms and input saturations under unknown
switching  mechanisms.  First,  in  virtue  of  Gaussian  error
functions,  the  saturation  nonlinearities  are  represented  by
asymmetric  saturation  models.  Second,  neural  networks  are
utilized  to  approximate  some  unknown  packaged  functions,  and
the structural property of Gaussian basis functions is introduced
to  handle  the  non-strict  feedback  terms.  Third,  by  using  the
backstepping  process,  a  common  Lyapunov  function  is
constructed  for  all  the  subsystems  of  the  followers.  At  last,  we
propose an adaptive consensus protocol, under which the tracking
error  under  arbitrary  switching  converges  to  a  small
neighborhood  of  the  origin.  The  effectiveness  of  the  proposed
protocol is illustrated by a simulation example.
    Index Terms—Adaptive  consensus,  input  saturation,  non-strict
feedback, switched multi-agent systems (MASs).
  

I.  Introduction

IN recent years, the topic on the leader-following consensus
control  of  multi-agent  systems  (MASs)  has  captured

considerable  attention  [1]–[5].  In  [6],  the  leader-following
consensus  problem was  addressed  for  networked MASs with
limited  communication  resources  and  unknown-but-bounded
noise.  In  [7],  by  introducing  an  auxiliary  parameter  for  each
agent,  a  distributed  dynamic  event-triggered  strategy  and  a
distributed  adaptive  consensus  protocol  were  proposed  to
solve  the  event-triggered  consensus  of  general  linear  MASs.
Leader-following  consensus  involves  many  natural
phenomena  and  has  wide  practical  applications,  such  as  the

migration of birds and formation control for mobile robots. In
the existing results, a large amount of effort has been put into
the  consensus  problem  of  linear  or  nonlinear  MASs  with
matching conditions [8]–[10].

When  the  agents  involve  mismatching  nonlinear
uncertainties,  however,  the  approaches  mentioned  above
cannot  be  used  to  achieve  consensus  of  MASs.  To  this  end,
adaptive neural/fuzzy strategies have been proposed by using
the approximation capability to unknown functions [11]–[15].
With  the  usage  of  the  backstepping  method,  the  neural
networks  (NNs)  based  results  concerning  the  consensus
control  have  been  well  reported  for  the  strict  feedback
uncertain MASs,  see,  for  example,  [16]–[18].  But,  for  MASs
with  non-strict  feedback  forms,  the  above  approaches  are
inapplicable.  The  challenge  lies  in  the  well-known  algebraic
loop issue,  which  will  break  the  backstepping  process.  Thus,
we  need  new  control  schemes  to  handle  the  non-strict
feedback  terms.  In  [19]–[21],  by  utilizing  the  structural
property  of  the  Gaussian  basis  function,  the  consensus
tracking problems were studied for nonlinear MASs subjected
to  non-strict  feedback  terms.  However,  the  results  [16]–[21]
are  obtained  just  for  MASs  whose  followers  are  modeled  by
single  dynamics.  The  multiple  dynamics  behaviors  are  very
common in engineering applications, such as the continuously
stirred  tank  reactor  system  [22]  and  the  two  inverted
pendulums  system  [23].  Thus,  it  is  important  to  propose  a
proper  consensus  protocol  for  more  general  MASs  with
multiple dynamics.

Switched  systems  provide  a  more  general  framework  to
describe  the  multiple  dynamics  behavior  of  processes
[24]–[29].  Switched  systems  have  an  important  feature  that
they do not essentially inherit the behavior of their subsystems
[30]–[32]. For example, some switching laws can destabilize a
switched  system  with  all  stable  subsystems  [33]–[35].  Thus,
when the switching mechanisms are unknown, we should deal
with  all  possible  switching  mechanisms  to  achieve  the
consensus  of  MASs,  which  implies  a  common  Lyapunov
function (CLF) for all subsystems of the agents. In [36], [37],
a  CLF  was  constructed  to  achieve  the  consensus  tracking  of
switched  MASs  with  strict  and  pure-strict  feedback  forms,
respectively.  It  is  stressed  that  the  leader-followering
consensus of MASs with non-strict feedback forms is not fully
taken  into  account.  This  is  mainly  due  to  the  fact  that  in  the
iterative design process, each agent is associated with not only
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its  spilled variables but  also state variables of  its  neighbours.
These undesired extra states make it difficult to proceed to the
iterative  process.  On  the  other  hand,  input  saturation  is
inevitable  in  many  real  life  dynamical  plants  due  to  the
physical limitation of the actuator [38]–[42]. However, due to
the interactions among unknown switching mechanisms, non-
strict  feedback  terms  and  input  saturations,  the  adaptive
leader-follower consensus for switched MASs with non-strict
feedback  terms  and  input  saturation  has  not  been  clearly
studied.

In  this  paper,  we  will  focus  on  the  consensus  tracking
control for a class of nonlinear switched MASs with non-strict
feedback forms and input saturation under unknown switching
mechanisms. The main work is summarized as follows. 1) This
paper makes the first attempt to the adaptive leader-following
consensus  for  the  uncertain  switched  MASs  with  non-strict
feedback terms and input saturations. The studied MASs have
a more general structure and can reduce to some special case
of  non-switched  MASs  or  switched  MASs  with  strict-
feedback  terms.  2)  The  nonlinear  terms  of  the  followers  are
unknown and have the non-strict feedback forms. In virtue of
the NNs approximation and the structural feature of Gaussian
basis functions, the unknown nonlinear terms are compensated
and  the  algebraic  loop  problem  caused  by  undesired  extra
states  is  solved.  3)  All  the  subsystems  of  each  follower  are
allowed to  have switched dynamics.  We construct  a  CLF for
all  the  associated  subsystems,  which  allows  the  switching
mechanisms  to  be  arbitrary  and  unknown.  Besides,  the
saturation  nonlinearities  are  represented  by  asymmetric
saturation  models.  An  appropriate  consensus  protocol  is
proposed  to  ensure  the  tracking  performance  in  presence  of
input saturation.

Rn

Rn×m n n×m
x1 |x1|

x ||x|| =
√

xT x xT

λmin(A)
A diag(b1, . . . ,bn) n×n

(i, i) bi sign(·)

The  used  notation  of  this  paper  is  standard.  Denote  by 
and  the  real -vector  space  and -matrix  space,
respectively.  For  a  scalar ,  is  its  absolute  value.  For  a
vector ,  is the Euclidean norm with  being its
transpose.  Let  be  the  minimum  singular  value  of  a
matrix .  denotes  an  diagonal  matrix
whose element  is .  denotes the sign function.  

II.  Problem Statement and Preliminaries
  

A.  Problem Statement
N

ye j

Consider  a  nonlinear  MAS  which  consists  of  followers
and one leader. The leader output is a desired reference signal

, and the dynamics of the -th follower are given by
 

ẋ j,s = f j,s(x j)x j,s+1+h
σ j
j,s(x j), s = 1, . . . , l j−1

ẋ j,l j = f j,l j (x j)u j+h
σ j
j,l j

(x j)

y j = x j,1 (1)

x j = (x j,1, . . . , x j,l j )
T ∈ Rl j y j ∈ R

j σ j : [0,∞)→ M =
{1,2, . . . ,M0}

j M0

h
i j
j,s(·)

h
i j
j,s(0) = 0 i j ∈ M0

f
j
> 0 f̄ j > 0 f

j
≤ | f j,s(x j)| ≤ f̄ j

where  and  are  the  state  and
output  of  the -th  follower,  respectively. 

 is  a  piecewise  continuous  switching  signal  and
the -th  follower  has  subsystems.  We  assume  that  the
uncertain  nonlinearity  is  locally  Lipschitz  and  satisfies

 where , and assume that there are constants
 and  such that . For brevity and

hi
j,s(·) h

i j
j,s(·)

u j j
without causing confusion, we will use  to replace .

 denotes the input of the -th follower and the output of the
saturation nonlinearity is expressed by
 

u j(v j) =


−u j,0, if v j < −u j,0

v j, if −u j,0 ≤ v j ≤ ū j,0

ū j,0, if v j > ū j,0

(2)

−u j,0 < 0 ū j,0 > 0
u j

where  and  are  the  lower  and  upper  bounds
of , respectively.

M0 = {1}
hi

j,s(·)

hi
j,s(·)

x j = (x j,1, . . . , x j,l j )
T

Remark 1: The MAS (1) is a switched system in which each
follower switches among different dynamics. When ,
the uncertain nonlinear term  of the MAS (1) reduces to
that  of  non-switched MASs considered in  [20],  [21],  [39].  In
addition,  compared  with  the  switched  MASs  in  [36],  [37]
where  the  nonlinear  functions  are  in  the  strict  and pure-strict
feedback  forms,  respectively,  the  MAS (1)  contains  the  non-
strict feedback term  which is associated with the whole
state  variables .  Thus,  the  MAS  (1)  has  a
more general structure.

ye ϱ > 0
e j = y j− ye limt→∞ |e j(t)| ≤ ϱ

j = 1,2, . . . ,N e = (e1,e2, . . . ,eN)T

The  objective  of  this  paper  is  to  explore  an  adaptive
protocol  for  each  follower  in  (1)  such  that  for  the  desired
leader  signal  and  a  small  constant ,  the  consensus
tracking  error  satisfies ,

, that is,  converges to a small
neighbourhood near the origin.

Before deriving a solution to this consensus objective, some
necessary  preliminaries  and  assumptions  are  presented,  and
some useful lemmas are introduced.  

B.  Communication Graph
G = (V,E,A)

V ={V1,V2, . . . ,VN}
E ⊆ V ×V
A = [ai, j] ∈ RN×N E j,i = (V j,Vi) ∈
E j i

A ai, j > 0
ai, j = 0
ai,i = 0 L = D−A
D = diag{d1, . . . ,dN} ∈ RN×N

di =
∑N

j=1 ai, j Ni = {V j|(V j,Vi) ∈ E}
i

Ḡ = (V̄ , Ē) G
V̄

Ē Ḡ
B = diag{b1, . . . ,bN}

bi > 0 i
bi = 0

A  directed  graph  is  introduced  to  express  the
information  transfer  between  agents.  In  an  MAS,

 denotes  the  set  of  agents  (or  nodes),
 denotes  the  set  of  directed  edges  and

 is the adjacency matrix. Edge 
 means  the  information  flow  from  agent  to  agent .  In

matrix ,  indicates the weight of this edge, otherwise,
. In our context, we do not consider the self-loop, thus,
.  Denote  by  the  Laplacian  matrix,  in  which

 is  the  in-degree  matrix  with
.  The neighbor set  contains

all  neighbors of  the agent .  A graph has a directed spanning
tree if there is a node named root, which has a directed path to
the  rest  of  nodes.  The  augmented  graph  of  is
used  when  considering  the  leader,  where  is  the  node  set
involving  the  leader,  and  denotes  the  edge  set  of .  The
leader  adjacency  matrix  is  defined  by ,
where  if  follower  can  get  information  flow from the
leader, otherwise, .

Ḡ
Assumption  1: If  the  leader  is  considered  as  the  root,  the

graph  has a directed spanning tree.
Denote the neighbourhood synchronization error as

 

z j,1 =
∑
k∈N j

a j,k(y j− yk)+b j(y j− ye)

= (b j+d j)y j−
N∑

k=1

a j,kyk −b jye. (3)
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L+BUnder  Assumption  1,  [43]  has  indicated  that  is
nonsingular. Then, we have the following lemma.

z = (z1,1,z2,1, . . . ,zN,1)T

e = (e1,e2, . . . ,eN)T
Lemma  1  [43]: Denote .  Then,  the

overall consensus tracking error  satisfies
 

∥e∥ ≤ ∥z∥
λmin(L+B)

. (4)

z = (z1,1,z2,1, . . . ,zN,1)T

For  the  consensus  design  of  MASs,  Assumption  1  is
standard and commonly used, see for example [21], [39], [43].
Using Lemma 1, our control objective can be boiled down to
designing  the  adaptive  consensus  protocol  to  make  the
neighbourhood  synchronisation  error 
bounded and small.  

C.  Saturation Nonlinearity

v j(t) u j(t) v j = −u j,0
v j = ū j,0

In this context, we adopt a new model, rather than saturation
model  (2),  to  describe  the  saturation  nonlinearity.  This  is
mainly due to the fact that in (2), there exist the sharp corners
for  the  relationship  between  and  when 
and . The new smooth model is given as in [41]
 

u j(v j) = u j,0× erf
( √π
2u j,0

v j
)

(5)

u j,0 = (u j,0− ū j,0)/2+ (u j,0+ ū j,0)/2sign(v j) erf(·)where  with 
being defined as
 

erf(v) =
2
√
π

w v

0
e−t2dt. (6)

erf(·)
u1,0 = 3 ū1,0 = 4

v1(t) = 10sin(t)

The function  is called the Gaussian error function and
is  smooth.  In Fig. 1,  by  taking ,  and

,  we  show  the  evolutions  of  the  saturation
models (2) and (5) of the first follower.
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Fig. 1.     Saturation models (2) and (5).
 

j ∆ j(·)For the -th follower, we define the function  as
 

∆ j(v j) = u j−g jv j (7)
g j ∆ j(v j)where  is some positive constant. Using the function ,

we can rewrite the saturation model (5) as follows:
 

u j = ∆ j(v j)+g jv j. (8)
To  design  a  desired  consensus  protocol,  the  following

assumption is required.
∆ j,0 > 0 g

j
> 0

ḡ j > 0 ∆ j ≤ ∆ j,0 g j ∈ [g
j
, ḡ j]

Assumption  2: There  are  constants ,  and
 such that , .

u j,0
ū j,0 u j,0 = ū j,0

Remark  2: From  (5),  each  follower  has  its  own  saturation
level,  and  the  different  lower  and  upper  bounds  of  each
saturation level can be adjusted by alternating the values 
and ,  respectively.  If ,  (5)  is  a  symmetric
saturation  actuator,  otherwise,  (5)  is  an  asymmetric  one.  In
Assumption  2,  the  boundedness  of  the  disturbances  is
required, which is reasonable. In a real application, the actual
control  input  cannot  be  infinite,  thus,  Assumption  2  is
practical  in  reality.  Some similar  restrictions  can be found in
[41], [42].  

D.  Neural Networks

h(χ)
Σχ ⊂ Rn

τ > 0 ϖTΨ(χ)

In practice, a control system often involves some nonlinear
uncertainties. To design an effective control strategy, we will
adopt  the  radial  basis  function  (RBF)  NNs  to  model  the
uncertainties.  As  shown  in  [12],  if  is  a  continuous
function  defined  on  a  compact  set ,  then  for  a  pre-
given accuracy level , there is an RBF NN  such
that
 

h(χ) =ϖTΨ(χ)+ε(χ) (9)

|ε(χ)| ≤ τ ϖ = (ϖ1,ϖ2, . . . ,

ϖl)T ∈ Rl l
Ψ(χ) = (ψ1(χ),ψ2(χ), . . . ,ψl(χ)) ∈ Rl

ψi(χ)

where  is  the  approximation  error, 
 is the weight vector with  being the neuron number,

and  is  the  basis  function
vector with  being selected as the Gaussian function
 

ψi(χ) = exp
[
− (χ−ρi)T (χ−ρi)

ν2
i

]
(10)

ρi = (ρ1,ρ2, . . . ,ρn)T

νi ψi(χ)
where  is  the  center  of  the  receptive  field
and  indicates the width of .

In  what  follows,  some  lemmas  and  an  assumption  are
introduced.

Ψ(χ̄q) = [ψ1
(χ̄q), . . . ,ψl(χ̄q)]T

χ̄q = [χ1, . . . ,χq]T ∈ Rq

q ≥ p ≥ 1

Lemma  2  [19]: It  is  assumed  that 
 is  the  basis  function  vector  of  an  RBF  NN

and  is  the  input  vector.  For  any
integers , the following inequality holds
 

∥Ψ(χ̄q)∥ ≤ ∥Ψ(χ̄p)∥. (11)

(a,b) ∈ R2 ε > 0 p > 1
q > 1 p+q = pq

Lemma 3 [14]: For all , constants  and ,
 satisfying , it holds

 

ab ≤ ε |a|
p

p
+ε
− q

p |b|
q

q
. (12)

ϑ̇ = −γϑ+ s(t) γ

s(t)
ϑ(t0) ≥ 0 ϑ(t) ≥ 0 ∀t ≥ t0

Lemma 4 [13]: Consider  a  system .  If  is  a
positive  constant  and  is  a  positive  function,  then,  for  all

, it holds , .
ye(t)

y(L)
e (t) L =max{l1, l2, . . . , lN}

y0

|y( j)
e | ≤ y0 j = 1,2, . . . ,L

Assumption  3: The  signal  and  its  derivatives  up  to
 are continuous and bounded with .

It  is  assumed  that  there  is  a  positive  constant  such  that
, for .

Lemma  2  shows  the  property  of  the  Gaussian  basis
functions of RBF NNs and is useful to apply backstepping for
the system with non-strict feedback forms. Young’s inequality
in  Lemma  3  is  used  to  handle  some  important  inequalities.
Lemma 4 is  applied to guarantee that  all  adaptive signals are
positive.  
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III.  Main Result

In  this  section,  we  will  design  the  adaptive  consensus
tracking protocol and construct a CLF for the MAS (1). Then,
an  analysis  procedure  will  be  presented  to  give  the  main
result.  

A.  Design of Consensus Protocol

l j
j

In  this  subsection,  the  backstepping  method  is  used  to
design  the  desired  protocol.  The  design  process  involves 
steps  for  the -th  follower,  and  at  each  step  we  will  use  the
NNs to approximate the uncertain functions.

j
z j,s s = 1,2, . . . , l j z j,1

For the -th follower, we introduce a new set of coordinates
, . The coordinate  is defined in (3) and

 

z j,s = x j,s− x∗j,s, s = 2, . . . , l j (13)

x∗j,swhere  is some virtual protocol to be designed.
We now present the design process.

z j,1 i
j

Step  1: By  the  definition  of  in  (3)  and  along  the -th
subsystem of the -th follower, one can deduce from (1) that
 

ż j,1 = (b j+d j)( f j,1(x j)x j,2+hi
j,1(x j))

−
N∑

k=1

a j,k( fk,1(xk)xk,2+hi
k,1(xk))−b jẏe. (14)

Choose the Lyapunov function candidate as
 

W j,1 =
1

2(b j+d j)
z2

j,1+
1

2λ j,1
ϑ̃2

j,1 (15)

ϑ̃ j,1 = ϑ j,1− ϑ̂ j,1 ϑ̂ j,1 ϑ j,1
i

where , and  is the estimation of  which
will  be  defined  latter.  By  (14)  and  along  the -th  subsystem,
one obtains that
 

Ẇ j,1 = z j,1
(

f j,1(x j)x j,2+hi
j,1(x j)

−
N∑

k=1

a j,k

b j+d j
( fk,1(xk)xk,2+hi

k,1(xk))

−
b j

b j+d j
ẏe

)
− 1
λ j,1

ϑ̃ j,1
˙̂ϑ j,1. (16)

H j,1(χ j,1) =maxi∈M0 {|hi
j,1(x j)−∑N

k=1(a j,k/(b j+d j))( fk,1(xk)xk,2+hi
k,1(xk)) − (b j/(b j + d j))ẏe|}

χ j,1 = (xT
j ,x

T
k, j,ye, ẏe)T xk, j

k k ∈ N j

Denote  for  convenience 

where  and  is  the  column  vector
composed of all the states of the -th agent, .  Then, by
(16) one has
 

Ẇ j,1 ≤ f j,1(x j)z j,1x j,2+ |z j,1|H j,1(χ j,1)− 1
λ j,1

ϑ̃ j,1
˙̂ϑ j,1. (17)

H j,1(χ j,1)
hi

j,1(x j) hi
k,1(xk)

H j,1(χ j,1)
H j,1(χ j,1)

Ωχ j,1 τ j,1 > 0

Since  the  function  is  related  to  the  unknown
functions  and ,  we  cannot  directly  use

 to design the desired virtual protocol. To this end, an
RBF  NN  is  utilized  to  approximate  on  a  compact

 such that for any given ,
 

H j,1(χ j,1) =ϖT
j,1Ψ j,1(χ j,1)+ε j,1(χ j,1) (18)

ε j,1(χ j,1)
|ε j,1(χ j,1)| ≤ τ j,1

where  denotes  the  approximation  error  satisfying
. Applying (18) and Lemmas 2–3, one has 

|z j,1|H j,1(χ j,1) ≤ |z j,1|(|ϖT
j,1Ψ j,1(χ j,1)|+τ j,1)

≤ 1
2c2

j,1

z2
j,1||ϖ j,1||2ΨT

j,1(χ j,1)Ψ j,1(χ j,1)

+
1
2

c2
j,1+

1
2
z2

j,1+
1
2
τ2

j,1

≤ 1
2c2

j,1

z2
j,1ϑ j,1Ψ

T
j,1(χ̄ j,1)Ψ j,1(χ̄ j,1)

+
1
2

c2
j,1+

1
2
z2

j,1+
1
2
τ2

j,1 (19)

χ̄ j,1 = (x j,1, xT
k, j,1, ȳ

T
e,1)T ȳe,1 = (ye, ẏe)T xk, j,1

xk,1 k ∈ N j
ϑ j,1 = ||ϖ j,1||2 c j,1 > 0

where  with ,  is  the
column  vector  composed  of  all  the  states , ,

 is an unknown constant, and  is a design
parameter. It follows from (17) and (19) that
 

Ẇ j,1≤z j,1
(

f j,1(x j)x j,2+
1

2c2
j,1

z j,1ϑ j,1Ψ
T
j,1(χ̄ j,1)Ψ j,1(χ̄ j,1)

+
1
2
z j,1

)
− 1
λ j,1

ϑ̃ j,1
˙̂ϑ j,1+

1
2

c2
j,1+

1
2
τ2

j,1. (20)

x∗j,2
ϑ̂ j,1

Next,  we construct  the  desired  virtual  protocol  and  the
adaptive law  as
 

x∗j,2 = −
µ j,1

f
j

z j,1−
1

2 f
j

z j,1

− 1
2 f

j
c2

j,1

z j,1ϑ̂ j,1Ψ
T
j,1(χ̄ j,1)Ψ j,1(χ̄ j,1)

˙̂ϑ j,1 =
λ j,1

2c2
j,1

z2
j,1Ψ

T
j,1(χ̄ j,1)Ψ j,1(χ̄ j,1)−γ j,1ϑ̂ j,1 (21)

µ j,1 λ j,1 γ j,1where  the  constants ,  and  are  positive  design
parameters. By (20) and (21) one deduces that
 

Ẇ j,1 ≤ −µ j,1z2
j,1+

γ j,1

λ j,1
ϑ̃ j,1ϑ̂ j,1+ f j,1(x j)z j,1z j,2+δ j,1 (22)

δ j,1 = (1/2)c2
j,1+ (1/2)τ2

j,1where .
2 ≤ s ≤ l j−1 x∗j,1 = 0

(s−1)
x∗j,m m = 2, . . . , s

χ j,m−1 = (x̄T
j,m−1, x

T
k, j,1,

¯̂ϑT
j,m−1, ȳ

T
e,m−1)T

¯̂ϑ j,m−1= (ϑ̂ j,1, ϑ̂ j,2, . . . , ϑ̂ j,m−2)T ȳe,m−1= (ye,y
(1)
e , . . . ,y(m−1)

e )
ϑ̂ j,m

W j,s−1

Step  s ( ): Denote  for  convenience .
Suppose that at the first -th step, we have designed a set
of  desired  stabilizing  functions , ,  which  are
dependent  on  with

 and ,
the  adaptive  laws ,  and  a  Lyapunov  function  candidate

, such that
 

Ẇ j,s−1 ≤ −
s−2∑
k=1

(µ j,k −
1
2

)z2
j,k −µ j,s−1z2

j,s−1

+

s−1∑
k=1

γ j,k

λ j,k
ϑ̃ j,kϑ̂ j,k + f j,s−1(x j)z j,s−1z j,s

+δ j,s−1 (23)
δ j,s−1

s
where  is a constant. In what follows, we will prove that
a similar inequality in the form of (23) holds at the step  for
the following Lyapunov function candidate 
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W j,s(x̄ j,s) =W j,s−1(x̄ j,s−1)+
1
2
z2

j,s+
1

2λ j,s
ϑ̃2

j,s. (24)

i jBy  (1)  and  (13),  along  the -th  subsystem  of  the -th
follower, one has
 

ż j,s = f j,s(x j)x j,s+1+hi
j,s(x j)− ẋ∗j,s (25)

where
 

ẋ∗j,s =
s−1∑
k=1

∂x∗j,s
∂x j,k

( f j,k(x j)x j,k+1+hi
j,k(x j))

+

N∑
k=1

a j,k
∂x∗j,s
∂xk,1

( fk,1(xk)xk,2+hi
k,1(xk))

+

s−1∑
k=1

∂x∗j,s

∂y(k)
e

y(k+1)
e +

s−2∑
k=1

∂x∗j,s
∂ϑ̂ j,k

˙̂ϑ j,k. (26)

W j,s iIn  view  of  (23),  the  derivative  of  along  the -th
subsystem satisfies
 

Ẇ j,s ≤ −
s−2∑
k=1

(
µ j,k −

1
2

)
z2

j,k −µ j,s−1z2
j,s−1

+

s−1∑
k=1

γ j,k

λ j,k
ϑ̃ j,kϑ̂ j,k + f j,s−1(x j)z j,s−1zs+δ j,s−1

+ z j,s( f j,s(x j)x j,s+1+hi
j,s(x j)− ẋ∗j,s)

− 1
λ j,s

ϑ̃ j,s
˙̂ϑ j,s. (27)

χ j,s = (xT
j , x

T
k, j,

¯̂ϑT
j,s−1, ȳ

T
e,s)

T

H j,s(χ j,s) =maxi∈M0 {|hi
j,s(x j)− ẋ∗j,s|}

For convenience, we denote  and
.  Then,  it  follows  from

(27) that
 

Ẇ j,s ≤ −
s−2∑
k=1

(
µ j,k −

1
2

)
z2

j,k −µ j,s−1z2
j,s−1

+

s−1∑
k=1

γ j,k

λ j,k
ϑ̃ j,kϑ̂ j,k + f j,s−1(x j)z j,s−1z j,s+δ j,s−1

+ f j,s(x j)z j,sx j,s+1+ |z j,s|H j,s(χ j,s)

− 1
λ j,s

ϑ̃ j,s
˙̂ϑ j,s. (28)

H j,s(χ j,s)
hi

j,s(x j) hi
k,1(xk)

H j,s(χ j,s) Ωχ j,s

τ j,s > 0

Since  the  function  is  related  to  the  unknown
functions  and ,  an  RBF  NN  is  utilized  to
approximate  on  a  compact  such  that  for  any
given ,
 

H j,s(χ j,s) =ϖT
j,sΨ j,s(χ j,s)+ε j,s(χ j,s) (29)

ε j,s(χ j,s)
|ε j,s(χ j,s)| ≤ τ j,s

where  denotes  the  approximation  error  satisfying
. Applying (29) and Lemmas 2–3, one has

 

f j,s−1(x j)z j,s−1z j,s ≤
1
2
z2

j,s−1+
f̄ 2

j

2
z2

j,s

|z j,s|H j,s(χ j,s) ≤ |z j,s|(|ϖT
j,sΨ j,s(χ j,s)|+τ j,s)

 

≤ 1
2c2

j,s

z2
j,s∥ϖ j,s∥2ΨT

j,s(χ j,s)Ψ j,s(χ j,s)

+
1
2

c2
j,s+

1
2
z2

j,s+
1
2
τ2

j,s

≤ 1
2c2

j,s

z2
j,sϑ j,sΨ

T
j,s(χ̄ j,s)Ψ j,s(χ̄ j,s)

+
1
2

c2
j,s+

1
2
z2

j,s+
1
2
τ2

j,s (30)

χ̄ j,s = (x̄T
j,s, x

T
k, j,1,

¯̂ϑT
j,s−1, ȳ

T
e,s)

T ϑ j,s = ∥ϖ j,s∥2 c j,s > 0

x∗j,s+1 ϑ̂ j,s

where , , and 
is  a  design  parameter.  Next,  construct  the  virtual  protocol

 and the adaptive law  as
 

x∗j,s+1 = −
µ j,s

f
j

z j,s−
f̄ 2

j +1

2 f
j

z j,s

− 1
2 f

j
c2

j,s

z j,sϑ̂ j,sΨ
T
j,s(χ̄ j,s)Ψ j,s(χ̄ j,s)

˙̂ϑ j,s =
λ j,s

2c2
j,s

z2
j,sΨ

T
j,s(χ̄ j,s)Ψ j,s(χ̄ j,s)−γ j,sϑ̂ j,s (31)

µ j,s λ j,s γ j,swhere  the  constants ,  and  are  positive  design
parameters. Using (28), (30) and (31), one arrives at
 

Ẇ j,s ≤−
s−1∑
k=1

(
µ j,k −

1
2

)
z2

j,k −µ j,sz2
j,s

+

s∑
k=1

γ j,k

λ j,k
ϑ̃ j,kϑ̂ j,k + f j,s(x j)z j,sz j,s+1+δ j,s (32)

δ j,s = δ j,s−1+ (1/2)c2
j,s+ (1/2)τ2

j,swhere .

l jStep : At  the  finial  step,  we  consider  the  Lyapunov
function candidate as
 

W j,l j =W j,l j−1+
1
2
z2

j,l j
+

1
2λ j,l j

ϑ̃2
j,l j
. (33)

iBy (1) and (13), along the -th subsystem, one has
 

ż j,l j = f j,l j (x j)u j+hi
j,l j

(x j)− ẋ∗j,l j
(34)

ẋ∗j,l j
where  is  similarly  defined  as  in  (26).  By  (8)  and
(32)–(34), one obtains that
 

Ẇ j,l j ≤ −
l j−2∑
k=1

(
µ j,k −

1
2

)
z2

j,k −µ j,l j−1z2
j,l j−1

+

l j−1∑
k=1

γ j,k

λ j,k
ϑ̃ j,kϑ̂ j,k + f j,l j−1(x j)z j,l j−1z j,l j

+ f j,l j (x j)g jz j,l jv j+ |z j,l j |(|∆ j(v j)|+H j,l j (χ j,l j ))

− 1
λ j,l j

ϑ̃ j,l j
˙̂ϑ j,l j +δ j,l j−1 (35)

H j,l j

ϖT
j,l j
Ψ j,l j (χ j,l j )

where  is  similarly  defined  as  in  (28).  An  RBF  NN
 is used to approximate the unknown nonlinear
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H j,l j (χ j,l j ) Σχ j,l j

τ j,l j > 0
function  on a compact  such that for any given

,
 

H j,l j (χ j,l j ) =ϖ
T
j,l j
Ψ j,l j (χ j,l j )+ε j,l j (χ j,l j ) (36)

ε j,l j (χ j,l j )
|ε j,l j (χ j,l j )| ≤ τ j,l j

where  denotes  the  approximation  error  satisfying
. Applying (36) and Lemmas 2–3 results in

 

f j,l j−1(x j)z j,l j−1z j,l j ≤
1
2
z2

j,l j−1+
f̄ 2

j

2
z2

j,l j

|z j,l j ||∆ j(v j)| ≤
1

2∆ j,c
z2

j,l j
+
∆ j,c

2
∆2

j,0

|z j,l j |H j,l j (χ j,l j ) ≤ |z j,l j |(|ϖT
j,l j
Ψ j,l j (χ j,l j )|+τ j,l j )

≤ 1
2c2

j,l j

z2
j,l j
∥ϖ j,l j∥2ΨT

j,l j
(χ j,l j )Ψ j,l j (χ j,l j )

+
1
2

c2
j,l j
+

1
2
z2

j,l j
+

1
2
τ2

j,l j

≤ 1
2c2

j,l j

z2
j,l j
ϑ j,l jΨ

T
j,l j

(χ̄ j,l j )Ψ j,l j (χ̄ j,l j )

+
1
2

c2
j,l j
+

1
2
z2

j,l j
+

1
2
τ2

j,l j
(37)

∆ j,c > 0 c j,l j > 0
v j

where ,  are  design  parameters.  We  construct
the actual protocol  and the adaptive law as
 

v j = −
1

f
j
g

j

(
µ j,l jz j,l j +

1
2∆ j,c

z j,l j +
f̄ 2

j

2
z j,l j

)
− 1

2 f
j
c2

j,l j
g

j

z j,l j ϑ̂ j,l jΨ
T
j,l j

(χ̄ j,l j )Ψ j,l j (χ̄ j,l j )

˙̂ϑ j,l j =
λ j,l j

2c2
j,l j

z2
j,l j
ΨT

j,l j
(χ̄ j,l j )Ψ j,l j (χ̄ j,l j )−γ j,l j ϑ̂ j,l j (38)

µ j,l j λ j,l j γ j,l j

ϑ̂ j,l j (t0) ≥ 0
ϑ̂ j,l j (t) ≥ 0 ∀t ≥ t0

where  the  constants ,  and  are  positive  design
parameters.  Recalling  Lemma  4,  for ,  one  has

, . Therefore, it follows from (38) that
 

f j(x j)g jz j,l jv j

≤ −µ j,l jz
2
j,l j
− 1

2∆ j,c
z2

j,l j
−

f̄ 2
j

2
z2

j,l j

− 1
2c2

j,l j

z2
j,l j
ϑ̂ j,l jΨ

T
j,l j

(χ j,l j )Ψ j,l j (χ j,l j ). (39)

Substituting (37)–(39) into (35) produces
 

Ẇ j,l j ≤−
l j∑

k=1

(
µ j,k −

1
2

)
z2

j,k +

l j∑
k=1

γ j,k

λ j,k
ϑ̃ j,kϑ̂ j,k

+
1
2

c2
j,l j
+

1
2
τ2

j,l j
+δ j,l j−1+

∆ j,c

2
∆2

j,0. (40)

ϑ̃ j,kϑ̂ j,k ≤ −(1/2)ϑ̃2
j,k + (1/2)ϑ2

j,k k = 1, . . . , l jSince , ,  it
follows from (40) that
 

Ẇ j,l j ≤−
l j∑

k=1

(
µ j,k −

1
2

)
z2

j,k −
l j∑

k=1

γ j,s

2λ j,k
ϑ̃2

j,k +
∆ j,c

2
∆2

j,0

+

l j∑
k=1

γ j,k

2λ j,k
ϑ2

j,k +
1
2

c2
j,l j
+

1
2
τ2

j,l j
+δ j,l j−1

≤−
l j∑

k=1

(
µ j,k −

1
2

)
z2

j,k −
l j∑

k=1

γ j,k

2λ j,k
ϑ̃2

j,k +δ j,l j (41)

δ j,l j =
∑l j

k=1 (γ j,k/2λ j,k) ϑ2
j,k + (1/2)c2

j,l j
+ (1/2)τ2

j,l j
+

δ j,l j−1+ (∆ j,c/2)∆2
j,0

where 
.

  

B.  Consensus Analysis
In this subsection, we present the main result.

µ j,s > 1/2 c j,s > 0
∆ j,c > 0 c j,s > 0 τ j,s > 0 γ j,s > 0 j = 1, . . . ,N s = 1, . . . , l j

δ =
∑N

j=1 δ j,l j µ =min j=1,...,N;k=1,...,l j {2µ̄ j,1(b j+d j),2µ̄ j,k,

γ j,k} µ̄ j,k = µ j,k −1/2

limt→∞ |e j,1(t)| ≤
√

2δ/
√
µλmin(L+B) j = 1,2, . . . ,N

Theorem  1: Consider  the  switched  MAS  (1)  under
Assumptions  1–3,  and  design  the  consensus  protocol  (38),
related to the virtual protocols and the adaptive laws (21) and
(31),  with  the  designed  parameters , ,

, ,  and , , .
Let  and 

 with .  Then,  for  the  bounded  initial
conditions,  all  the  closed-loop  signals  under  arbitrary
switching are bounded, and the consensus tracking error tends
to  a  small  neighbourhood  near  the  origin  and  satisfies

, .

W =
∑N

j=1 W j,l j

Proof: Choose  a  common  Lyapunov  function  of  the  MAS
(1) as . From (41), it follows that
 

Ẇ ≤ −
N∑

j=1

( l j∑
k=1

(
µ j,k −

1
2

)
z2

j,k +

l j∑
k=1

γ j,k

2λ j,k
ϑ̃2

j,k

)
+

N∑
j=1

δ j,l j . (42)

δ µAccording to the definitions of  and , we can rewrite (42)
as
 

Ẇ ≤ −µW +δ. (43)
By (43), we derive that

 

W(t) ≤ e−µtW(0)+
δ

µ
(1− eµt) (44)

W(t) W(z1(t), . . . ,zN(t), ϑ̃1(t), . . . , ϑ̃N(t))
W

where  stands for . From
(44)  and  the  definition  of ,  it  can  be  obtained  that  all  the
closed-loop signals are bounded under arbitrary switching. In
addition, using (44), we can also achieve that
 

N∑
j=1

z2
j,1(t) ≤ 2e−µtW(0)+

2δ
µ

(1− eµt). (45)

Hence, the following relationship holds
 

lim
t→∞

N∑
j=1

z2
j,1(t) ≤ 2δ

µ
. (46)

Recalling Lemma 1, we arrive at
 

lim
t→∞
|e j,1(t)| ≤

√
2δ

√
µλmin(L+B)

. (47)

ϱ > 0For  any  constant ,  we  can  choose  appropriate  design
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2δ/µ ≤ ϱ2λ2
min(L+B)
|e j,1(t)|

parameters such that , which implies that
the  consensus  tracking  errors  can  be  made  small
enough. ■

s j

x j,s+1, . . . , x j,l j xk

Remark  3: For  the  switched  MAS  (1),  how  to  construct  a
CLF candidate is rather difficult due to the interaction among
switching  subsystems,  non-strict  feedback  terms  and  input
saturation.  In  the  iterative  design  process,  at  step ,  the -th
agent  is  associated  with  not  only  its  spilled  variables

 but also state variables  of its neighbours. The
extra  undesired  variables  often  destroy  the  solvability  of
virtual  controllers.  To  this  end,  the  structural  feature  of
Gaussian  basis  functions  is  utilized  to  eliminate  the  effect  of
these undesired variables.

µ δ

c j,s τ j,s ∆ j,c µ j,s γ j,s

Remark  4: According  to  the  definitions  of  and ,  the
satisfactory  leader-following  consensus  performance  can  be
achieved by decreasing , ,  and increasing , .
But, in such a way, a high gain of the designed protocol will
be  caused.  Thus,  in  practice,  the  trade-off  between  desired
performance  and  the  protocol  gain  can  be  used  to  guide  the
choice of design parameters.  

IV.  An Illustrative Example

In  this  section,  we  give  an  example  to  illustrate  the
effectiveness of the designed protocol.

Example  1: Consider  a  switched  MAS  composed  of  three
followers  and  one  leader. Fig. 2 shows  the  communication
graph, and the dynamics of each follower are described by
 

ẋ j,1 = x j,2+h
σ j
j,1(x j)

ẋ j,2 = x j,3+h
σ j
j,2(x j)

ẋ j,3 = u j+h
σ j
j,3(x j)

y j = x j,1 (48)
j = 1,2,3 σ j : [0,∞)→ M0 = {1,2}

h j,s(x j) = 1 j, s = 1,2,3 hi
j,1 hi

j,2 hi
j,3

i ∈ 1,2 h1
j,1 = 0.1x j,2x j,3

h2
j,1 = (x j,1x j,3)/(10+ x2

j,3) h1
j,2 = h2

j,2 = 0 h1
j,3 = x j,2+ sin(x j,3)

h2
j,3 = x j,2+ x j,3e−x2

j,3 j = 1,2 h1
3,1 = sin(x3,3) h2

3,1 =

x3,1 h1
3,2 = sin(x3,1)+ x3,1 cos(x3,2) h2

3,2 = 1− cos(x2
3,3) h1

3,3 =

0 h2
3,3 = x3,1+ x2

3,2 ye = sin(t)
u1,0 = 50

ū1,0 = 70 u2,0 = 800 ū2,0 = 800 u3,0 = 1200 ū3,0 = 1500

where , .  The  functions
, . The nonlinear terms ,  and ,

,  have  the  following  form ,
, , ,

,  for ,  and , 
, , , 

, . The leader output is selected as .
The  saturation  lower  and  upper  bounds  are ,

, , , , .
Following the process of Section III, the consensus protocol

and the adaptive laws are designed as

 

v j = −
1
g

j

(
µ j,3z j,3+

1
2∆ j,c

z j,3+
1
2
z j,3

)

− 1
2c2

j,3g
j

z j,3ϑ̂ j,3Ψ
T
j,3(χ̄ j,3)Ψ j,3(χ̄ j,3)

˙̂ϑ j,k =
λ j,k

2c2
j,k

z2
j,kΨ

T
j,k(χ̄ j,k)Ψ j,k(χ̄ j,k)−γ j,kϑ̂ j,k (49)

j = 1,2,3 k = 1,2,3 z1,1 = 2(y1− ye) z2,1 = 3(y2− y1)
z3,1 = 2(y3− y1) z j,2 = x j,2− x∗j,2 z j,3 = x j,3− x∗j,3 x∗j,2
x∗j,3 χ̄1,1 = (x1,1,ye, ẏe)T

χ̄1,2= (x1,1, x1,2, ϑ̂1,1, ȳT
e,2)T χ̄1,3= (x1, x1,2, x1,3, ϑ̂1,1, ϑ̂1,2, ȳT

e,3)T

j = 2,3 χ̄ j,1 = (x j,1, x1,1,ye, ẏe)T χ̄ j,2 = (x j,1, x j,2, x1,1,

ϑ̂1,1, ȳT
e,2)T χ̄ j,3 = (x j,1, x j,2, x j,3, , x1,1, ϑ̂ j,1, ϑ̂ j,2, ȳT

e,3)T

ȳe,2 = (ye, ẏe, ÿe)T ȳe,3 = (ye, ẏe, ÿe,
...
y e)T

where , , , ,
, ,  with  and

 being  defined  by  (21)  and  (31), ,
, ,

and  for , , 
, ,  where

, .
µ1,1 = 4 µ1,2 = 15

µ1,3 = 30 c1,k = 0.5 λ1,k = 5 γ1,k = 3 k = 1,2,3 µ2,1 = 4
µ2,2 = 10 µ2,3 = 25 c2,k = 0.5 λ2,k = 6 γ2,k = 3 k = 1,2,3
µ3,1 = 6 µ3,2 = 20 µ3,3 = 30 c3,k = 0.5 λ3,k = 6 γ3,k = 4
k = 1,2,3 g

j
= 1 ∆ j,c = 1 j = 1,2,3 u1,0 = 30 ū1,0 = 50 u2,0 =

ū2,0 =100 u3,0 = ū3,0 = 200
(x1,1(0), x1,2(0), x1,3(0)) = (0,0.2,0.1) (x2,1(0), x2,2(0), x2,3(0)) =
(0.3,−0.1,0.1) (x3,1(0), x3,2(0), x3,3(0)) = (−0.2,0,0)
ϑ̂1,1(0) = 0 ϑ̂2,1(0) = ϑ̂3,1(0) = 0.1 ϑ̂i, j(0) = 0 i = 1,2,3
j = 2,3

The  parameters  are  selected  as , ,
, , , , , ,
, , , , , ,

, , , , , ,
, , , . , , 
, .  The  initial  states  are  taken  as

, 
, ,  and

, , , ,
.  In  the  sequel,  we  take  the  RBF  NNs  including  16

neurons,  and  their  centers  evenly  space  in  [–3,3]  and  their
widths are equal to 5.

σ1(t) σ2(t) σ3(t)

xi, j i, j = 1,2,3
ϑ̂i, j i, j = 1,2,3

|e j(t)| ≤ 0.02 j = 1,2,3 t = 1.26

Figs. 3–7 show  the  simulation  results. Fig. 3 depicts
switching  signals ,  and . Fig. 4 shows  the
consensus  errors  of  the  followers  and  the  leader. Figs. 5–7
demonstrates  the  responses  of  the  states ,  and
the  adaptive  laws , .  From Figs. 4–7,  it  follows
that all  the closed-loop system signals are bounded under the
chosen  switching  signals,  and  from Fig. 4,  it  can  be  clearly
seen  that  all  outputs  of  the  followers  track  that  of  leader
successfully.  Besides,  in  this  example,  the  real  errors  satisfy

, . The simulation time is  s.
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M jq̈ j = −(1/2)m jl jgsin(q j)+u j

x j,1 = q j x j,2 = q̇ j j = 1,2,3

Example  2: We  consider  three  groups  of  single-link  robot
manipulators subjected to nonlinear disturbances. Each system
is  modeled  as ,  where  the
physical  meanings  and  the  values  of  the  system  parameters
can be founded in [44]. Due to the potential changes of system
dynamics, we introduce the switching disturbances. By taking

 and , ,  the  system  model  can  be
rewritten as
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Fig. 2.     Communication graph between leader and agents.
 

 1758 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 11, NOVEMBER 2021



 

x j,1 = x j,2+h
σ j
j,1(x j)

x j,2 =
1

M j
u j−

m jl jg
2M j

sin(x j,1)+h
σ j
j,2(x j)

y j = x j,1 (50)

j = 1,2,3 σ j : [0,∞)→ M0 = {1,2} hi
j,1(x j)

hi
j,2(x j) i ∈ M0

where , ,  and ,
, ,  denote  the  switching  disturbances.  The

communication graph and the switching laws are chosen as in
Figs. 2 and 3, respectively. The adaptive consensus protocol is
designed as in Section III.

h1
j,1 = 0.5x j,1 sin(x j,2) h2

j,1 =

x j,1+0.1x j,2 cos(x j2 ) h1
j,2 = x j,2 h2

j,2 = x2
j,2 sin(x j,2) j = 1,2,3

µ j,i = 7 c j,i = 1 λ j,1 = 3
γ j,i = 2 g

j
= 1 ∆ j,c = 1 u j,0 = ū j,0 = 20 j = 1,2,3 i = 1,2

ye = 0.1sin(πt/2)+0.1cos
(πt/2) (x1,1(0), x1,2(0)) = (0.4,0.1)
(x2,1(0), x2,2(0)) = (−0.3,−0.1) (x3,1(0), x3,2(0)) = (0.5,0.2)

ϑ̂i, j(0) = 0 i = 1,2 j = 1,2

In  the  simulation,  we  select , 
, , , .

The  parameters  are  selected  as , , ,
, , , , , ,

The  leader  output  is  selected  as 
. The initial states are taken as ,

, ,
and , , .  We  take  the  RBF  NNs
including 25 neurons, and their centers evenly space in [–4,4]
and their widths are equal to 3. From Fig. 8 and Figs. 9–11, it
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Fig. 5.     The states and adaptive laws of the follower 1.
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Fig. 6.     The states and adaptive laws of the follower 2.
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Fig. 7.     The states and adaptive laws of the follower 3.
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Fig. 8.     The consensus errors in Example 2.
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Fig. 9.     The state and adaptive laws of the follower 1 in Example 2.
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Fig. 10.     The state and adaptive laws of the follower 2 in Example 2.
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Fig. 11.     The states and adaptive laws of the follower 3 in Example 2.
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can  be  seen  that  under  the  chosen  switching  signals,  the
consensus  errors  between  the  three  followers  and  the  leader
converge to a neighborhood of the origin,  and all  the closed-
loop system signals remain bounded.  

V.  Conclusions

In  this  paper,  an  adaptive  consensus  protocol  has  been
proposed  for  a  class  of  nonlinear  switched  MASs  with  non-
strict  feedback  forms  and  input  saturations.  By  utilizing  the
Gaussian  error  functions  and  NNs  approximation,  the
unknown  nonlinear  terms  are  compensated,  and  by
constructing a CLF for all the followers, we make the tracking
error  convergent  under  arbitrary  switching.  An  interesting
problem  worthy  of  further  investigation  is  to  extend  the
developed  control  strategy  to  the  output  feedback  design
based  on  an  observer.  Recent  results  on  cyber  deception
attacks have been achieved, see e.g. [45]–[47], thus, a problem
is  whether  some  results  can  be  obtained  for  non-strict
feedback  switched  MASs  with  input  saturation  under
deception attacks.
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