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   Abstract—In this paper, a novel remaining useful life prediction
approach  considering  fault  effects  is  proposed.  The  Wiener
process  is  used  to  construct  the  degradation  process  of  single
performance characteristic with the fault effects. The first passage
time  based  remaining  useful  life  distribution  is  calculated  by
assuming  fault  occurrence  moment  is  a  random  variable  and
follows  a  certain  distribution.  Expectation  maximization
algorithm  is  employed  to  estimate  model  parameters,  where  the
fault occurrence moment is considered as a missing data. Finally,
a Copula function is used to describe the dependence between the
multiple  performance  characteristics  and  derive  joint  remaining
useful life (RUL) distribution of product with the fault effects. The
effectiveness  of  the  proposed  approach  is  verified  by  the
experiments of turbofan engines.
    Index Terms—Degradation  process,  fault  effects,  fault  occurrence
moment  (FOM),  performance  characteristic  (PC),  remaining  useful
life (RUL).
  

I.  Introduction

R EMAINING  useful  life  (RUL)  prediction  is  a  key
technology  of  ensuring  the  product’s  reliability  and

safety,  it  is  also  an  effective  path  to  reduce  the  maintenance
costs  for  practical  product  [1],  [2].  Therefore,  the  researches
on  the  RUL  prediction  methods  have  drawn  much  attention
from both academia and engineering circles in recent years. In
general,  RUL  prediction  means  to  find  the  probability
distribution  function  (PDF)  of  the  RUL  or  the  expectation
value  of  the  RUL  [3],  [4].  Most  of  products  have  their  own
performance  characteristics  (PCs)  that  increase  or  decrease
over time, and PCs are collectively referred to as degradation
data.  As  degradation  data  is  directly  related  to  the  health
condition  of  the  products,  the  prediction  methods  based  on
degradation data become more and more popular [5]–[8].

In  past  few  decades,  there  are  many  methods  of  RUL
prediction  based  on  degradation  data  that  have  been
researched,  these  are  generally  summarized  into  three  types:

physical,  data-driven,  and  hybrid  methods  [9].  Among  these
categories, the methods of data-driven become the mainstream
direction in research of RUL prediction, because the methods
only need to establish a statistical model to fit the observations
without  any  assumption  of  physical  parameters  or  additional
expertise.  Machine  learning  has  been  extensively  studied  in
the past decade, it does not need to understand the degradation
mechanism of the product, but uses a large amount of data to
train the prediction model. In order to improve the accuracy of
remaining life prediction, Gebraeel and Lawley [10] were the
first  to  use  the  trained  neural  network  to  calculate  the
remaining life distribution function of the device based on the
monitored data.  Ren et  al.  [11]  used the self-encoding multi-
dimensional  feature  extraction  to  characterize  the  health
degradation  trend  of  the  battery,  and  then  trained  the  life
prediction  model  based  on  the  deep  neural  network,  and
successfully  applied  the  method  to  the  prediction  of  the
remaining life  of  the lithium battery.  Wu et  al.  [12]  used the
least squares support vector machine (SVM) method to fit the
performance  degradation  process  of  equipment  for  the
problem  of  only  a  small  number  of  samples  in  reliability
analysis. Tran et al. [13] used the minimum mean variance to
establish a degenerated index of equipment, and then used the
established  index  as  training  data  to  complete  the  remaining
life  prediction  test  of  related  mechanical  equipment  by
combining  with  SVM.  However,  because  of  random  and
dynamic  characteristics  of  product’s  degradation  process,  the
stochastic-process based prediction approaches have attracted
great  attention  in  the  data-driven  methods.  According  to  Si
et al. [14], the data-driven based RUL prediction methods are
classified  into  two  main  types:  indirect  data  and  direct  data
based  methods,  and  the  scope  of  application  of  stochastic
process  in  the  prediction  of  RUL  is  illustrated  in  detail.  The
stochastic  process  mainly  includes  Markov  chains,  Wiener
processes,  and  Gamma  processes.  Among  them,  for  its
important  physical  interpretation  and  nice  mathematical
properties,  Wiener  process  can  describe  non-monotonic
degradation  process  of  many  typical  products.  It  has  been
widely applied to establish the degradation process and predict
the  RUL  of  a  variety  of  industrial  components.  Tseng et  al.
[15]  used  a  Wiener  process  to  determine  the  lifetime  for  the
light intensity of light emitting diode (LED) lamps of contact
image scanners. The Wiener process was even extended to the
adaptive  Wiener  process  model  by  Zhai  and  Ye  [16].  More
detail  about  Wiener  process  applied  in  RUL  prediction  can
refer to [17].

In  reality,  many  products  usually  have  complex  structure,
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and  consist  of  multiple  components  or  a  component  having
multiple  PCs.  Compared  to  single  PC,  multiple  PCs  can
provide  more  accurate  information  for  RUL  prediction.  In
such a situation, a bivariate or multivariate degradation model
is  needed  to  estimate  RUL  of  products,  where  the  existing
methods  can  be  roughly  classified  into  multivariate
distribution,  multivariate  stochastic  process  and  Copula
function. Multivariate normal distribution as a popular method
has  been  utilized  to  identify  a  multivariate  joint  probability
[18]. Wang and Coit [19] conducted a degradation analysis of
a  system  with  multiple  degradation  measurements,  and
introduce  a  multivariate  s-normal  distribution  model.
Multivariate or bivariate degradation process models based on
Gamma  processes,  Wiener  processes  are  introduced  by
[20]–[23].  In  practice,  assuming  degradation  data  follows  a
multivariate  distribution  or  multivariate  stochastic  process
may  not  be  suitable  for  all  conditions,  when  degradation
mechanisms  of  multiple  PCs  are  not  consistent  or
independent.  As  a  useful  alternative,  Copula  function  is
employed to identify a multivariate joint probability [24]. Due
to  its  flexibility,  Copula  function  has  been  widely  used  in
RUL  prediction  of  a  product  with  multiple  PCs.  Sari et  al.
[25] investigated the degradation mechanisms of LED lamps,
and presented a bivariate degradation model based on Copula
function.  Copula  function  is  widely  applied  in  degradation
modeling,  reliability  analysis  and  prognostics,  more
introductions are in [26]–[29].

In  practice,  with  the  wear  of  the  components,  overload
operation,  or  the  changes  of  environment  factors,  many
different  kinds  of  faults  may  occur  in  the  product’s
degradation process. Most of these faults are not equal to the
functional  failure,  product  can  continue  to  work,  but  the
occurrence  of  the  fault  will  aggravate  its  degradation  degree
and  change  the  product’s  degradation  trajectory,  ultimately
shorten  the  product’s  RUL.  Meanwhile,  there  are  many
researches about that some product’s degradation path will be
changed  at  a  moment  and  even  more  times  during  the
degradation  process.  More  specially,  after  a  product  has
degraded  down  to  a  certain  level  (which  can  be  called
transition  time),  the  initial  function  form  of  the  condition
monitoring  signal  may  be  changed,  evolve  more  rapidly  or
gradually  compared  to  the  early  stage  of  usage.  It  is  a  quite
common  phenomenon  that  degradation  trajectory  changes
during  the  degradation  process  for  display  devices,  such  as
plasma display panels, LED, and organic light emitting diode
(OLED) studied by Tang et al. [30] and Ng [31]. Si et al. [32],
research  the  RUL  prediction  of  systems  with  operation  state
switching between the working state and storage state, and the
degradation rates of two states are different, the transition time
and transition number are derived. Cui et al. [33] assumed that
the  changing  location  was  determinate,  and  the  Wiener
process  is  employed  to  model  the  degradation  process,  the
first  passage  time  of  the  degradation  process  governed  by  a
discontinuous trend function is studied.

However,  the  fault  is  hard  to  be  detected,  if  it  occurs  after
observations, it means the fault may not occur in observations

but  in  a  future  span,  and  its  probability  of  occurrence
increases  over  time.  Therefore,  compared  to  the  operation
state  switches  and  determinate  changing  location,  the
transition time from normal state to fault  state (which can be
called  fault  occurrence  moment  (FOM))  is  difficult  to  be
detected directly, so the changing time of the degradation rate
with the fault effects is unobservable and random. The effects
of  a  fault  in  the  degradation  process  cannot  be  neglected,
because the occurrence of  FOM will  accelerate  the failure  of
the  product.  Moreover,  very  few  efforts  have  been  made  to
address  the  RUL  prediction  which  involves  fault  effects.
Besides,  when  a  fault  occurs  in  the  degradation  process,  the
degradation rates of multiple PCs will be changed at the same
time,  which  is  shown  in Fig. 1.  In  addition,  PCs  may  be
dependent  because  of  the  strong  coupling  between  the
product’s components. Therefore, our final goal is to estimate
the  RUL  joint  distribution  of  multiple  dependent  PCs
considering fault effects.
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Fig. 1.     The degradation process of multiple performance characteristics for
two states.
 

In  this  paper,  in  order  to  solve  the  problem of  the  product
RUL prediction with the fault  effects,  the proposed approach
is divided into two parts. First, a degradation model based on
the  Wiener  process  is  used  to  account  for  the  changing  of
degradation  process.  In  the  presented  model,  the  drift
coefficient is utilized to describe the fault effects for the whole
degradation  path,  and  the  diffusion  coefficient  characterizes
the stability of the degradation process respectively. Then, the
RUL distribution of the product based on the definition of first
passage  time  is  obtained,  where  it  is  assumed that  FOM is  a
random  variable  and  follows  a  certain  distribution.  In  this
work,  the  FOM  is  regarded  as  a  missing-data  in  the
observations  since  the  FOM  can  not  be  detected  directly,
expectation  maximization  (EM)  algorithm  is  employed  to
tackle the problem of parameter estimation. Then, the product
RUL for single PC considering fault effects can be estimated.
Second, as multiple PCs will be influenced by the fault at the
same  time,  and  may  be  dependent  during  the  degradation
process. A Copula function is used to describe the dependence
between multiple PCs and derive the RUL joint distribution of
the product  based on the RUL distribution of  single  PC with
the fault effects.

The  main  contributions  of  this  paper  are  summarized  as
follows:
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1)  A  novel  product  RUL  prediction  approach  is  proposed
for  the  problem  that  degradation  process  is  impacted  by  the
fault  effects,  which  considers  the  FOM as  a  random variable
and  follows  a  certain  distribution.  To  the  best  of  our
knowledge,  this  is  the  first  time to  consider  fault  effects  into
the RUL prediction.

2)  As  FOM  cannot  be  detected  directly  after  observations,
which  causes  the  incomplete  observations,  FOM  is  regarded
as  a  missing-data  in  problem  of  parameter  estimation.  EM
algorithm is used to estimate parameters of degradation model
and fault distribution simultaneously.

3)  For  the  multiple  PCs  will  be  affected  by  the  fault  and
may  be  dependent  during  the  degradation  process,  Copula
function  is  employed  to  describe  the  dependence  of  PCs  and
obtain the joint distribution function of the product’s RUL.

The rest of this paper is organized as follows. In Section II,
the  degradation  model  based  on  the  Wiener  process  is
established  considering  fault  effects.  RUL  distribution  is
discussed in Section III. Section IV focuses on the method of
inference for the unknown parameters. The RUL prediction of
product with multiple PCs that are influenced by fault is given
in Section V. The experiments and results analyses are given
in  Section  VI  to  illustrate  the  effectiveness  accuracy  of  the
proposed  method.  Finally,  some  concluding  remarks  and
discussions are made in Section VII.  

II.  Degradation Model With FOM For Single PC

As  a  mathematical  expression  of  Brown  motion  (BM),
Wiener  process  has  been  widely  used  in  degradation
modeling.  Consider  single  fault  occurs  in  the  degradation
process,  which  can  be  described  by  changing  the  drift
parameter of Wiener process. In this section, we focus on the
degradation  process  models  governed  by  the  Wiener  process
considering  fault  effects.  In  general,  a  Wiener  process  based
degradation model can be represented by
 

X (t) = X (0)+λt+σB (t) (1)
λ σ

B (t) B (t) ∼ (0, t) X (0)

X (0) X (t) ∼ N(λt,σ2t)

where  is a drift coefficient,  is a diffusion coefficient and
 is a standard BM, ,  represents the initial

value  of  the  degradation  process.  Without  loss  of  generality,
 is zero, so .

1) Continuous  Degradation  Model  Considering  Fault
Effects

σ

Equation  (1)  demonstrates  a  normal  degradation  process,
but  through the above analysis  in  Section I,  the fault  may be
generated  during  the  degradation  process,  so  the  product
suffers additional load, and this state has a higher degradation
rate than the case in the normal state. The FOM separates the
whole  degradation  process  into  two  states,  the  former  is  a
gradual  degradation  state  expressed  and  the  latter  one  is  a
rapid  degradation  state.  Therefore,  the  whole  process  can  be
described by changing drift function, the diffusion coefficient

 is  assumed  to  be  the  same  during  the  both  states.  The
degradation process considering fault effects is then indicated
as
 

X (t) =
{
λ1× t+σB (t) , t < τ

λ2× (t−τ)+λ1×τ+σB (t) , t ≥ τ
(2)

τ λ1 λ2
t < τ t ≥ τ X (t)
X (t) ∼ N(λ1t,σ2t) t ∈ [0, τ) X (t) ∼ N(λ2 (t−τ)+λ1τ,

σ2t) t ∈ [τ,+∞)

where  is  the  FOM,  and  are  the  degradation  rates  for
 and ,  respectively.  is  normally  distributed  as

 for  and 
 for .

2) Increment Degradation Model Considering Fault Effects

Xi, j
i

ti, j {i = 1, . . . ,m; j = 1,2, . . . ,ni} ni
∆Xi, j = Xi, j+1−Xi, j

∆ti, j = ti, j+1− ti, j

As  the  measurement  time  is  discrete,  we  suppose  that m
similar  products  are  tested,  and  denotes  the  degradation
observation value of performance characteristics for product 
at time , , where  is the number
of  inspection  time  of  each  product.  from

.  The  increment  degradation  model  consider-
ing fault effects can be divided into three cases.

τ ≥ ti, j+1Case 1:  ( )

ti, j τti, j+1

 

∆Xi, j = λ1∆ti, j+σB
(
∆ti, j

)
(3)

ti, j < τ < ti, j+1Case 2:  ( )

ti, j τ ti, j+1

 

∆Xi, j = λ1
(
τ− ti, j

)
+λ2

(
ti, j+1−τ

)
+σB

(
∆ti, j

)
(4)

τ ≤ ti, jCase 3:  ( )

ti, jτ ti, j+1

 

∆Xi, j = λ2∆ti, j+σB
(
∆ti, j

)
(5)

where three cases respectively represent the FOM occurs after
the  increment,  FOM  occurs  in  the  increment,  FOM  occurs
before the increment.

∆Xi, j

According to specifications above, the PDF of the increment
 is expressed as

 

f
(
∆Xi, j| (k)

)

=



1√
2π∆ti, jσ

exp


(
∆Xi, j−λ1∆ti, j

)2

2σ2∆ti, j

 , k = 1

1√
2π∆ti, jσ

exp(

(
∆Xi, j−λ1

(
τ− ti, j

)
−λ2

(
ti, j+1−τ

))2

2σ2∆ti
,

k = 2

1√
2π∆ti, jσ

exp


(
∆Xi, j−λ2∆ti, j

)2

2σ2∆ti, j

 , k = 3

(6)
k = 1,2,3 τ > ti, j+1 ti, j < τ < ti, j+1

τ < ti, j
where  denote  the  scenarios , ,
and , respectively.

Here,  our  attention  is  paid  on  not  only  the  degradation
model  for  single  PC  considering  fault  effects,  but  also  RUL
distribution  and  parameter  estimation.  Therefore,  two
important  parts  in  the  following  sections  are  described  in
detail.  

III.  RUL Distribution Cosidering Fault Effects

In general, the prediction for product’s RUL often means to
find  its  PDF  or  cumulative  distribution  function  (CDF)  of
RUL  distribution  and  calculate  the  expectation  value  finally.
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w
Xi, j

w T

Therefore, one of the main goals is to obtain RUL distribution
for the product. Based on the concept of the first passage time,
a  product  is  regarded  as  to  be  failure,  when  its  degradation
value  exceeds  the  preset  failure  threshold.  Suppose  is  the
failure  threshold,  and  has  not  exceeded  the  failure
threshold .  The  lifetime  under  the  concept  of  the  first
passage time is expressed as
 

T = in f {t : X(t) ≥ w|X (0) < w}. (7)
Li, j ti, jTherefore, let  denote the RUL at time  as

 

Li, j = in f
{
l : X

(
ti, j+ l

)
≥ w|Xi, j < w

}
(8)

lwhere  is the time interval of a product that from normal state
to failure state.

At first,  consider the degradation process without the fault.
According  to  properties  of  the  Wiener  process,  the  CDF  of
RUL  in  the  normal  state  follows  the  inverse  Gaussian
distribution
 

FLi, j (t) = P
(
Li, j ≤ t,Zi, j

)
= Φ

(
−w+λt

σ
√

t

)
+ exp

(
λt−Zi, j

σ2t
×2

(
w−Zi, j

))
×Φ

(−w−λt+2Zi, j

σ
√

t

)
(9)

Φ(·) Zi, j
ti, j

where  is  a  standard  normal  distribution,  represents
current observation value at observation time .

The corresponding PDF is
 

fLi, j (t) =
w−Zi, j√
2πσ2t3

exp

− (w−Zi, j−λt)2

2σ2t

 . (10)

τ

However, the degradation process in (2) is divided into two
parts  by  FOM .  The  PDF  of  RUL  distribution  should  also
consist  of  two  parts,  and  if  the  FOM  is  determined  and  its
position is  known in observations,  the PDF can be expressed
as
 

fLi, j (t) =

w−Zi, j√
2πσ2t3

exp

− (w−Zi, j−λ1t)2

2σ2t

 , 0 < t < τ

w−Zi, j√
2πσ2t3

exp

− (w−Zi, j−λ2 (t−τ)−λ1τ)2

2σ2t

 , t ≥ τ

(11)
0 < t < τ

t ≥ τ
where  denotes  the  no  fault  occur  in  the  product
degradation  process,  denotes  the  fault  will  occur  in  the
product degradation process.

f (τ;θτ) F(τ;θτ) θτ

Because  the  FOM  is  unobservable  in  the  future,  it  is
impossible  to  know  its  precise  position,  so  form  (11)  is  not
applicable.  To  derive  the  RUL  distribution,  the  FOM  is
regarded  as  a  random variable  which  is  assumed  to  follow a
certain  distribution,  and  the  CDF  and  PDF  of  the  FOM  are

, , respectively, where  is the set of unknown
parameters  of  distribution  function.  The  CDF  of  RUL
distribution can be then expressed as 

FLi, j (t) =
w +∞

t

{
FLi, j (t)

(
t|λ1t,σ2,w

)}
× fτ (τ,θτ)dτ

+
w t

0

{
FLi, j (t)

(
t|λ2 (t−τ)+λ1τ,σ

2,w
)}
× fτ (τ,θτ)dτ

= FLi, j (t)
(
t|λ1t,σ2,w

)
× (1−Fτ (t, θτ))

+
w t

0

{
FLi, j (t)

(
t|λ2 (t−τ)+λ1τ,σ

2,w
)}
× fτ (τ,θτ)dτ.

(12)
  

IV.  Parameter Estimation

θp = {λ1,λ2,σ} θτ

τ

θp θτ

According  to  above  specification,  the  unknown parameters
considering  fault  effects  consist  of  and .  In
this  section,  we  focus  on  the  issue  of  parameter  estimation
under  the  assumption  that  the  FOM  is  a  random  variable.
FOM  cannot be observed in the future span, this will cause
the  incomplete  observations,  and  the  FOM  is  regarded  as  a
missing  data  in  the  observations.  In  a  missing-data  problem,
EM  algorithm  is  used  to  estimate  the  parameters , .  The
EM algorithm consists of two steps performed iteratively. The
expectation-step (E-step) computes the expectation of the log-
likelihood  with  respect  to  the  complete-data  conditioned  on
the observed data. The maximization step (M-step) then finds
the maximizer of this expected likelihood [31]. The two steps
are  repeated  iteratively  until  satisfactory  convergence  is
achieved.

{τ1, τ2, . . . , τm}

∆Xi

For applying EM algorithm, observed data likelihood needs
to  be  obtained  firstly.  Let  be  the  FOM  set
corresponding  to m products  which  are  random  variables
during  the  degradation  process  of  each  product.  Because  the
FOM is  random in  the  degradation process,  the  joint  PDF of
increment for each product  is then written in three cases:

τi < ti,11) Fault occurs before all observations ( ),
 

A (∆Xi) =
ni−1∏
j=1

f (∆Xi, j| (3)). (13)

ti,1 ≤ τi ≤ ti,ni2) Fault occurs in observations ( ),
 

B j (∆Xi) =


j−1∏
j′=1

f
(
∆Xi, j′ | (1)

)× f (∆Xi, j| (2))

×


ni−1∏

j′= j+1

f (∆Xi, j′ | (3))

 . (14)

ti,ni < τi3) Fault occurs after all observations ( ),
 

C (∆Xi) =
ni−1∏
j=1

f (∆Xi, j| (1)). (15)

∆Xi τiThe  joint  PDF  of  conditioned  on  for ith  product  is
then expressed as
 

f∆Xi

(
∆Xi;θp, θτ

)
=

+∞w
0

f (∆Xi;θp) f τ(τi;θτ)dτi

=

ti,1w
0

A (∆Xi)× fτ (τi;θτ)dτi
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+

ni−1∑
j=1

ti, j+1w
ti, j

B j (∆Xi)× fτ (τi;θτ)dτi

+

+∞w
ti,ni

C (∆Xi)× fτ (τi;θτ)dτi. (16)

Observed data likelihood is then written as
 

Lobs =

m∏
i=1

+∞w
0

f (∆Xi;θp)× f τ(τi;θτ)dτi

=

m∏
i=1

{ti,1w
0

A (∆Xi)× fτ (τi;θτ)dτi

+

ni−1∑
j=1

ti, j+1w
ti, j

B j (∆Xi)× fτ (τi;θτ)dτi

+

+∞w
ti,ni

C (∆Xi)× fτ (τi;θτ)dτi

}
. (17)

τ

{∆X,∆t, τ} τ

{τ1, τ2, . . . , τm}

The  PDF  of  is  given,  and  the  complete  data  vector
consists  of ,  where  is  a  set  of  the  FOMs

, the complete-data likelihood is
 

Lc =

m∏
i=1

[
f
τi

(τi;θτ)

×
ni−1∏
j=1

(
f
(
∆Xi, j| (1)

)
× I

{
τi > ti, j+1

}
+ f

(
∆Xi, j| (2)

)
× I

{
ti, j < τi < ti, j+1

}
+ f

(
∆Xi, j| (3)

)
× I

{
τi < ti, j

} )]
=

m∏
i=1

fτi (τi, θτ)

×
m∏

i=1

ni−1∏
j=1

3∏
k=1

f (∆Xi, j| (k) ;λ1,λ2, τi,σ
2)
δk,i, j (18)

δk,i, j τ ∆ti, j
k = 1,2,3

δk,i, j = 1, k ∈ 1,2,3 δk,i, j = 0

where  is  an  indicator  variable  for  and  in  three
scenarios,  such  as  when  scenario  occurs,  it
corresponds to the ,  otherwise.

The complete-data log-likelihood is then written as
 

ln (Lc) =
m∑

i=1

ln
(

fτi
(
τi, θτ))

+

m∑
i=1

ni−1∑
j=1

3∑
k=1

δk,i, j× ln f (∆Xi, j| (k) ;λ1,λ2, τi,σ
2).

(19)
Use  the  following  notation  for  simplifying  the  above  log-

likelihood expression
 

l∗i (θτ) = ln( fτi (τi, θτ)) (20)
 

l∗∗i, j,k
(
θp

)
= ln f (∆Xi, j| (k) ;λ1,λ2, τi,σ

2). (21)

The complete-data log-likelihood can then be written as 

L∗c =
m∑

i=1

l∗i (θτ)+
m∑

i=1

ni−1∑
j=1

3∑
k=1

δk,i, j× l∗∗i, j,k
(
θp

)
. (22)

λ1,λ2,σ
2

τ

In  order  to  apply  the  EM algorithm to  solve  the  maximum
likelihood estimates  of  ( )  for  the case that  the FOM
is  not  observed,  the  problem  is  firstly  cast  as  a  missing-data
problem,  where  is  regarded  as  the  missing  data  in
observations.

∆X ∆t

1)  E-step: The  goal  of  the  E-step  is  to  compute  the
expectation  of  the  complete-data  log-likelihood  of  the
missing-data conditioned on the observed data , .
 

Q = E
(
L∗c |∆X, θbp, θ

b
τ

)
= Q1+Q2

=

m∑
i=1

E
{
l∗i
(
θbτ |∆Xi)}

+

m∑
i=1

ni−1∑
j=1

3∑
k=1

E{δk,i, j× l∗∗i, j,k(θbp)|∆Xi}

(23)
θbτ θbp b = 0,1,2 . . . ,n

b
where  and , ( ) denote the currently iterated
estimates,  is number of iterations.

τ

L∗c = VT ·m∗ V
τ m∗ θp θτ

l∗i = V∗i
T ·m∗i l∗∗i, j = V∗∗i, j

T ·m∗∗i, j

The  EM  algorithm  is  only  effective  for  the  case  that  the
complete-data  likelihood  is  linearly  separable  in  the  set  of
missing-data  statistics,  and  form  (23)  is  not  analytical-form.
Therefore,  the  missing  data  from  the  function  needs  to  be
separated, log-likelihood expression can be written in the form
of , where the vector  consists of only functions
of  the  missing  data ,  and  consists  of  only ,  and
observe  data.  In  the  forms,  the  components  of  the  log-
likelihood  expressions  are ,  and ,
where
 

V∗∗i, j
T
=

[
δ1,i, j×V∗∗i, j,k=1, δ2,i, j×V∗∗i, j,k=2, δ3,i, j×V∗∗i, j,k=3

]T
(24)

 

m∗∗i, j = [m∗∗i, j,k=1, m∗∗i, j,k=2, m∗∗i, j,k=3]. (25)

m∗ m∗i m∗∗i, j V l∗i l∗∗i, j

V
Q1 Q2

So,  consists  of  and ,  consists  of  and .
When  linear  separability  can  be  established,  it  is  then
necessary  to  compute  the  expectations  of  conditioned  on
observed data. Form  and  given in (23) can be expressed
as respectively
 

Q1 =

m∑
i=1

E
(
V∗i

T |∆Xi, , θ
b
p, θ

b
τ

)
×m∗i (26)

 

Q2 =

m∑
i=1

ni−1∑
j=1

E
(
V∗∗i, j

T |∆Xi, θ
b
p, θ

b
τ

)
×m∗∗i, j. (27)

V∗iThe  conditional  expectation  for  can  be  evaluated  as
follows:
 

E
(
V∗i |∆Xi, θ

b
p, θ

b
τ

)
=

1
f∆Xi (∆Xi;θbτ , θbp)

+∞w
0

V∗i (τi)× f∆Xi (∆Xi;τi)× f τ
(
τi;θbτ

)
dτi
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=
1

f∆Xi (∆Xi;θbτ , θbp)
×

{ti,1w
0

V∗i (τi)×A (∆Xi)× fτ
(
τi;θbτ

)
dτi

+

ni−1∑
j=1

ti, j+1w
ti, j

V∗i (τi)×B j (∆Xi)× fτ
(
τi;θbτ

)
dτi

+

+∞w
ti,ni

V∗i (τi)×C (∆Xi)× fτ
(
τi;θbτ

)
dτi

}
. (28)

δk,i, j · l∗∗i, j,k

Next,  the  conditional  expectation  under  the  second
summation  series  given  in  (23)  is  computed.  However,  it
involves conditional expectation of , which needs to
be discussed in three cases:
τ ≥ ti, j+1 = (ti, j+1 ≤ τ ≤ ti,ni )+ (τ > ti,ni )a) 

 

E
(
δ1,i, j×V∗∗i, j,1|∆Xi, θ

b
p, θ

b
τ

)
=

1
f∆Xi (∆Xi;θbτ , θbp)

[ ni−1∑
j′= j+1

ti, j′+1w
ti, j′

V∗∗i, j,1 (τi)

×B j′ (∆Xi)× fτ
(
τi;θbτ

)
dτi+

+∞w
ti,ni

V∗∗i, j,1 (τi)

×C (∆Xi)× fτ
(
τi;θτ

(
ti, j+1

))
dτi

]
. (29)

ti, j < τ < ti, j+1b) 
 

E
(
δ2,i, j×V∗∗i, j,2|∆Xi, θ

b
p, θ

b
τ

)

=
1

f∆Xi (∆Xi;θbτ , θbp)

ti, j+1w
ti, j

V∗∗i, j,2 (τi)

×B
(
∆Xi, j

)
fτ

(
τi;θbτ

)
dτi. (30)

τ≤ ti, j = (τ < ti,1)+ (ti,1 ≤ τ ≤ ti, j)c) 
 

E
(
δ3,i, j×V∗∗i, j,3|∆Xi, θ

b
p, θ

b
τ

)
=

1
f∆Xi (∆Xi;θbτ , θbp)

[ti,1w
0

V∗∗i, j,3 (τi)×A (∆Xi)× fτ
(
τi;θbτ

)
dτi

+

j−1∑
j′=1

ti, j′+1w
ti, j′

V∗∗i, j,3 (τi)×B j′ (∆Xi)× fτ
(
τi;θbτ

)
dτi

]
.

(31)
b = b+1

θb

Q1 θτ Q2 θp
θbτ θbp

2) M-step: Based on E-step, update ,  new estimates
for  can be generated by solving for the complete-data MLE
to (23).  As  only  contains  and  only  contains ,  the
estimator  vectors  and  can  be  calculated  by  (32),  (33),
respectively.

One  iteration  is  completed  through M steps,  repeat  the
above two steps so that when the parameters tend to converge
or  the  number  of  iterations  is  reached,  the  iteration  will  be

stopped.
 

∂Q1

∂θbτ
=

∂
[∑m

i=1 E
{
V∗i |∆X

}T×m
∗

i

(
θbτ

) ]
∂θbτ

= 0

(32)
 

∂Q2

∂θbp
=
∂
[∑m

i=1
∑ni−1

j=1
∑3

k=1 E{δk,i, j×V∗∗i, j,k |∆X}T m∗∗i, j,k
(
θbp

)]
∂θbp

= 0.

(33)

Algorithm 1 The Computational Procedure for the EM Algorithm

θ0p θ
0
τ1:  Begin  with  an  initial  set  of  estimates  for , ,  initialize  the

iteration b = 0.
2:  Obtain Q in  (23),  the  complete  data  likelihood  conditioned  on

ΔX by using (28)–(31).
θbp θ

b
τ3:  Update b = b+1.  Compute  the  MLE ,  by  using  (32)  and

(33).
4:  If  satisfactory  convergence  of  unknown  parameter  or

expectation  value  is  achieved,  the  procedure  terminates.  Otherwise
go to Step 2.
  

V.  RUL Prediction Of Product With Multiple PCs

n
F(c)

ti, j (t) , {c = 1, . . . ,n}
ti, j

ti, j Li, j =min{L(1)
i, j , ..,L

(n)
i, j }

RUL

The  RUL  prediction  of  the  product  with  single  PC
considering  fault  effects  can  be  calculated  by  Sections  II-IV.
As  the  occurrence  of  the  fault  can  change  the  degradation
trajectories  of  multiple  PCs,  the  final  goal  is  to  obtain  RUL
prediction  of  product  with  multiple  PCs.  Suppose  that  a  pro-
duct has  PCs, and these PCs are observed at the same measure-
ment time. The RUL distribution  for cth
degradation feature at  can be calculated by Sections II-IV
considering  fault  effects.  At  first,  when  multiple  PCs  of  the
product are independent, the RUL of the target product at time

 can  be  expressed  as .  Therefore,  the
joint CDF of product’s  can be calculated by
 

Fti, j (t) = P
(
Li, j ≤ t

)
= P

(
min

(
L(1)

i, j , ..,L
(n)
i, j

)
≤ t

)
= 1−P

(
min

(
L(1)

i, j , ..,L
(n)
i, j

)
> t

)
= 1−P

(
L(1)

i, j > t, . . . ,L(n)
i, j > t

)
= 1−

n∏
c=1

P
(
L(c)

i, j > t
)

= 1−
n∏

c=1

(1−P
(
L(c)

i, j ≤ t
)

= 1−
n∏

c=1

(
1−F(c)

ti, j (t)
)
. (34)

fti, j (t) = F′ti, j (t)Then, the joint PDF of product’s RUL . It is
easy  to  get  the  RUL  distribution,  if  PCs  are  independent
during the degradation process. However, as one of our main
issues  in  this  paper,  it  is  not  appropriate  to  ignore  the
dependence  among  multiple  performance  characteristics.  To
capture the dependence among multiple degradation features,
the Copula function is employed to obtain the product’s joint
RUL  distribution.  The  Copula  function  has  been  widely
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F (y1) ,F (y2) , . . . ,F (yn)
y1,y2, . . . ,yn

H (y1,y2, . . . ,yn) y1,y2, . . . ,yn

adopted to modeling the dependency between PCs, due to its
flexibility  to  link  the  relationship  between  the  univariate
marginal distributions and the joint distribution. According to
Sklar’s  theory  [34],  suppose  that  are
CDFs  of  random  variables ,  respectively,  a  joint
distribution  function  for  is
constructed through a multivariate Copula function as
 

H (y1,y2, . . . ,yn) =C (F (y1) ,F (y2) , . . . ,F (yn) ;α) (35)
C(·) αwhere  is  the  Copula  function,  denotes  Copula

parameter,  it  can  be  calculated  by  Kendall’s  tau  shown  in
Table I.
 

TABLE I 

Five Common Copula Functions

Copulas C (u1,u2, . . . ,un;α) Relationship

Gaussian Φ
(
Φ−1 (u1) , . . . ,Φ−1 (un)

)
tau = 2

π arsin(α)

t t
(
t−1 (u1) , . . . , t−1 (un)

)
tau = 2

π arsin(α)

Clayton
(

n∑
i=1

ui
−α −n+1

)−(1/α)
tau = α

2+α

Gumbel exp

−
[

n∑
i=1

(− lnui)α
]1/α

 tau = 1− 1
α

Frank − 1
α ln

(
1+

∏n
i=1(e−αui−1)
(e−α−1)n−1

)
tau = 1+4 D1(α)−1

α

where Φ–1(·) is the inverse of standard normal distribution, t(·) denotes
student t distribution, t–1(·) is the inverse of student t distribution.
 
 

The  dependence  of  multiple  variables  is  characterized  by
(35).  By  using  different  Copula  functions,  different  types  of
multivariate distribution functions can be constructed. Popular
multivariate  Copula  functions  include:  the  Gaussian  Copula,
the  Frank  Copula,  the  Gumbel  Copula,  and  the  Clayton
Copula.  The  corresponding  five  forms  are  shown  in Table I,
and more detail about Copula function can refer to [34].

Based  on  the  RUL  distribution  for  each  PC  has  been
predicted,  and according to the Copula theory,  the joint  CDF
of RUL distributions can be calculated as
 

Fti, j (t) =C(F(1)
ti, j (t) ,F(2)

ti, j (t) , . . . ,F(n)
ti, j (t) ;α). (36)

Then,  the  joint  PDF of  the  product’s  RUL distribution  can
be calculated as
 

fti, j (t) = c(F(1)
ti, j (t) ,F(2)

ti, j (t) , . . . ,F(n)
ti, j (t) ;α)

n∏
c=1

f (c) (t) (37)

c(·)where  is a derivative function.
The Akaike information criterion (AIC) is used to select the

most suitable Copula function to link the marginal distribution
function, and the smaller value of AIC denotes better, AIC is
defined as
 

AIC = 2q−2ln(L) (38)
q
ln (L)

where  denotes  the  number  of  unknown  parameters  in  the
model,  is  the  maximum  value  of  the  log-likelihood
function.  

VI.  Experiments and Results Analyses

In  this  section,  an  open  source  degradation  dataset  of

turbofan engines denoted by “FD001” (please refer to [35]) is
used to verify the proposed approach. The dataset includes 26
columns  of  data,  the  1st  to  the  3rd  columns  represent  the
engine’s serial number, the number of engine flight cycles, the
engine’s  settings  under  different  operating  conditions,
respectively.  Then,  the  6th  column  to  the  26th  columns
represent  21 sensors,  each sensor  corresponds  to  a  PC of  the
engine, and these sensors have collected sufficient degradation
data  from  the  engine.  The  parameters  measured  by  sensors
include total temperature at fan inlet, total temperature at low-
pressure  compressor  (LPC)  outlet,  total  temperature  at  high-
pressure  compressor  (HPC)  outlet,  total  temperature  at  low-
pressure  turbine  (LPT)  outlet,  pressure  at  fan  inlet,  total
pressure in bypass-duct, total pressure at HPC outlet, physical
fan speed, etc. Some measurements are constant value, such as
the 6th, the 10th, and the 21st. Some measurements vary over
time,  such  as  the  12th,  the  14th,  and  the  19th.  The  dataset
includes  one  training  set  and  one  testing  set  of  100  engines
respectively. The engine operates normally at the start of each
time  series,  and  develops  a  fault  at  some  point  during  the
series.  Each  unit  in  the  training  set  runs  from  initial
degradation  until  the  system  fails,  there  are  20 631  sets  of
monitoring data in the training set. The longest life span in the
training  set  is  378  cycles,  and  the  shortest  life  span  is  128
cycles. In the test set, the time series is before the system fails,
and  there  are  13 096  sets  of  monitoring  data.  In  the  training
dataset, the engine operates normally at the start of each time
series,  and  develops  a  fault  at  a  moment  during  the  series,
when  the  fault  occurs,  PCs  begin  to  degrade  rapidly  until
failure.

At first, the monotonicity of each performance characteristic
is  evaluated by the  Spearman coefficient,  which is  expressed
as
 

ρi =

∣∣∣∑K
k=1(Tk −T1:k)(Xi

k −Xi
1:k)

∣∣∣√∑K
k=1(Tk −T1:k)2∑K

k=1(Xi
k −Xi

1:k)2
(39)

T1:k Xi
1:k {T1,T2 . . .Tk}

{Xi
1,X

i
2, . . . ,X

i
k} i

where  and  are  the  means  of  and
 of the th feature.

When  the  degradation  value  of  a  PC  monotonously
increases or decreases over time, the trendability value is not
equal to zero.  In contrast,  if  the degradation value of a PC is
constant or varies randomly over time, the value is zero. So, a
higher  trendability  means  a  better  monotonicity.  The
trendability  values  of  21  sensors  are  calculated  by  Spearman
coefficients and the results are shown in Table II.  The values
of Sensor 9 and Sensor 14 are bigger than others, so they are
selected as two key PCs. In the training dataset, some units do
not have an increasing trend, 65 units that have an increasing
trend  used  to  verify  the  proposed  method  are  selected  as
training  data.  For  simplicity,  Sensor  9  is  named  as  PC1,
Sensor 14 is named as PC2.

The  dataset  contained  unknown  noises  to  a  great  extent.
Because  the  noise  sources  are  complicated  and  indeed  not
available,  it  is  difficult  to  directly  use  the  original  observed
data.  Therefore,  moving  average  filtering  is  applied  to
eliminate the high frequency fluctuations from the degradation
paths.  The  denoising  results  of  two  degradation  features  in
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Engine 3 are shown in Figs. 2(a) and 2(b), respectively.  

A.  The Experiment for Single PC Considering Fault Effects

τ

τ

τ ∼ N(uτ,στ2)

The  RUL  predictions  of  product  with  PC1  and  PC2
considering  fault  effects  are  discussed  separately.  For  a
comparison purpose, traditional Wiener process that considers
no  fault  effects  is  used  to  this  dataset.  As  FOM is  a  random
variable  and  assumed  to  follow  a  certain  distribution,  the
distribution  followed  that  should  be  determined  under  the
training data.  The method of  combination of  cumulative sum
charts  (the  detailed  principles  can  refer  to  [36])  is  used  to
roughly  discriminate  the  position  of  the  fault  occurrence  for
100 engines, and the bar graph is shown in Fig. 2(c). Through
the distribution histogram for 100 engines, the FOM  can be
assumed  to  follow  a  normal  distribution, .  The
PDF is then written as
 

f (τi;θτ) =
1

√
2πστ

exp
(

(τi−uτ)2

2στ2

)
. (40)

l∗i (θτ) l∗∗i, j,k
(
θp

)
Then,  and  in (20) and (21) can be written as

 

l∗i (θτ) =
(
− ln
√

2πστ−
σ2
τ

2στ2

)
+

uτ×τi
στ2

−
τ2i

2στ2
(41)

 

l∗∗i, j,k
(
θp

)
=


ai, j, k = 1
bi, j+ ci, j×τi+di, j×τ2i , k = 2
ei, j, k = 3

(42)

 

ai, j = − ln
√

2π∆ti, jσ2−
(∆Xi, j−λ1∆ti, j)2

2σ2∆ti, j
 

bi, j = − ln
√

2π∆ti, jσ2−
(∆Xi, j−λ2∆ti, j+1+λ1∆ti, j)2

2σ2∆ti, j
 

ci, j =
2(∆Xi, j−λ2∆ti, j+1+λ1∆ti, j)(λ1−λ2)

2σ2∆ti, j
 

di, j =
−(λ1−λ2)2

2σ2∆ti, j
 

ei, j = − ln
√

2π∆ti, jσ2−
(∆Xi, j−λ2∆ti, j)2

2σ2∆ti, j
.

l∗i (θτ) l∗∗i, j
(
θp, θτ

)
Because the EM algorithm is effective only for the case that

the complete-data likelihood is linearly separable in the set of
missing-data statistics, the conditional expectation needs to be
linearly separated, so  and  are expressed as
 

l∗i (θτ) = V∗i
T×m∗i

=
[
1, τi, τ2i

]T×
[
− ln

√
2πσ2− u2

τ

2στ2
,

uτ
στ2
,− 1

2στ2

]
 

l∗∗i, j
(
θp, θτ

)
=

[
V∗∗i, j,1, V∗∗i, j,2, V∗∗i, j,3

]T ×
[
m∗∗i, j,1, m∗∗i, j,2, m∗∗i, j,3

]
= [1,1, τi, τ2i ,1][ai, j,bi, j,ci, j,di, j,ei, j]

T
.

τi

Q1 Q2
θp = {uτ,στ} θp = {λ1,λ2,σ}

Therefore,  when  we  assume  that  fault  point  is  normally
distributed,  the  complete-data  log-likelihood  function  is
separable. Then, the conditional expectation can be evaluated
by  (28)–(31),  for  and ,  the  maximum  likelihood
estimators for ,  can be updated by
(32),  (33).  Finally,  the  unknow  parameters  can  be  obtained,
when the iteration is terminated.

uτ = 143.1
σ2
τ = 58.2

The dataset is given min-max normalized treatment, and the
failure  threshold  of  each  engine  is  the  value  at  the  end  of
trajectory, so the failure threshold of each unit is 1. Then, the
unknown  parameters  of  the  degradation  model  for  each  PCs
can  be  estimated  by  EM  algorithm,  and  the  distribution
parameters  of  the  FOM  are  also  estimated ,

,  the  parameters  of  degradation  model  for  two  PCs
are presented in Table III. Finally, each PC’s RUL distribution
considering  fault  effects  can  be  calculated  by  (12).  For
comparative purposes, the Wiener process based conventional

 

TABLE II 

The Trendability Values of 21 Sensors

Sensors (n) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Trendability values (ρ) 0 0.63 0.62 0.84 0 0.93 0.84 0.90 0.93 0 0.88 0.87 0.90 0.94 0.76 0 0.64 0 0 0.77 0.73
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Fig. 2.     The denoising results of two degradation features in Engine 3 for (a) PC1 and (b) PC2; (c) Histogram of FOM for 100 engines.
 

 

TABLE III 

Parameter Specification

Situation λ1 λ2 σ2

Proposed model for PC1 0.0014 0.0141 1.1144E–04

Proposed model for PC2 0.0016 0.0136 1.1173E–04

Conventional method 0.0055 0.0055 1.1234E–04
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method  without  considering  fault  effects  is  used  to  predict
engine’s  RUL,  where  the  unknown  parameters  are  estimated
by  maximum likelihood  estimation  (shown in Table III),  and
the existing machine learning algorithms: convolutional neural
network  (CNN)  and  multilayer  perceptron  (MLP)  are
employed to compare the proposed methods in this paper [37].

The  prediction  results  of  three  methods  are  shown  in
Figs. 3(a)–3(c), and the comparison results of three models at
different  observed  time  are  shown  in Table IV.  The  mean
absolute  error  (MAE)  and  root  mean  square  error  (RMSE)
average error percentage are used to evaluate the accuracy of
the  prediction  results.  When  the  values  of  MAE  and  RMSE
are smaller, the accuracy of prediction is higher.
 

MAE =
1
n

n∑
i=1

|P∗i −Pi|

 

RMS E =

√√
1
n

n∑
i=1

(
P∗i −Pi

)2

P∗i Pi iwhere  is  the  actual  life  and  is  predicted  life  at  the th
prediction moment.
 

TABLE IV 

Comparison of RUL Prediction

Actual value (cycles) 52 47 42 37 32

Conventional method 126.63 120.12 115.62 113.76 100.54

Proposed model for PC1 55.03 52.06 50.06 48.34 42.38

Proposed model for PC2 57.01 54.10 53.42 47.91 45.54

Independent 54.01 50.50 48.03 45.12 40.73

 
 

Table V shows  the  accuracy  analysis  from  the  prediction
results  of  conventional  method  and  proposed  method  for
single PC, the maximum error is 76.76 cycles for conventional
method,  proposed  method  for  PC1  and  PC2  is  11.34  cycles
and  13.91  cycles,  respectively.  Moreover,  compared  to  con-
ventional  method,  MAE  and  RMSE  of  the  proposed  method
for  single  PC  are  reduced  significantly,  which  demonstrates
that  the  proposed  model  will  be  quite  useful  for  the
observations  with  the  fault  effects.  However,  compared  to
CNN and MLP, MAE and RMSE of the proposed method for
single PC are higher, it shows that the accuracy of prediction
for proposed method for single PC is not the highest.  

B.  The Experiment for Multiple PCs Considering Fault Effects
As  above  analysis,  multiple  PCs’ degradation  trajectories

will be changed by the FOM, and PCs may be independent or
dependent during the degradation process. When the two PCs
are  considered  being  independent  firstly,  it  can  be  calculated
by  (34),  the  prediction  results  are  shown  in Fig. 4,  and  the
expectation  value  is  calculated  in Table IV.  Meanwhile,  as
shown in Table V, MAE and RMSE of the prediction method
with  multi-PC  independent  considering  fault  effects  have
reduced  to  a  certain  extent,  which  shows  that  the  prediction
accuracy of remaining life considering multiple parameters is
higher.
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Fig. 4.     The prediction results of proposed model of PC1, PC2, Independent.
 

However, PCs are usually dependent during the degradation
process.  The  Copula  function  is  employed  to  describe  their
dependence and obtain the joint PDF of RUL distribution. As
shown  in Table II,  there  are  five  commonly  used  Copula
functions. The AIC of different Copula functions is calculated
by  (38),  and  the  AIC  of  Clayton  function  is  smaller  among
these  five  Copula  functions.  Therefore,  Clayton  function  is
selected  to  link  the  marginal  distribution  function,  where  the
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Fig. 3.     The prediction results of proposed model: (a) PC1; (b) PC2; (c) Conventional model.
 

 

TABLE V 

Accuracy Analysis of the Prediction Results

Method Maximum error (cycles) MAE RMSE

Conventional method 76.76 73.33 73.38

Proposed model for PC1 11.34 7.57 8.20

Proposed model for PC2 13.91 9.60 10.08

Independent 8.73 5.68 6.24

CNN 7.72 4.12 5.42

MLP 9.46 5.46 6.81
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αcorresponding  Copula  parameter  can  be  calculated  by
Kendall’s  tau.  Therefore,  the  product’s  joint  PDF of  RUL of
the  3rd  engine  can  be  calculated  by  (37),  and  the
corresponding expectation value is  calculated in Table VI.  In
order to compare and analyze the prediction results better, the
RUL  distributions  of  the  three  prediction  times  of  the
proposed  method  under  three  different  situations  (only  one
PC, independent, dependent) are selected to be depicted on the
two-dimensional plane, shown in Figs. 5(a)–5(c).

From Table V and Table VI,  compared  with  CNN  and
MLP,  it  is  clearly  to  see  that  the  MAE  and  RMSE  of  the
remaining  life  prediction  method  under  the  multi-parameter
dependent  considering  fault  effects  are  minimum,  it  proves
that the prediction accuracy of this method is the highest, and
the stability of the prediction is also the best. In other words,
compared to considering fault effects with single-PC or multi-
PC  independent,  considering  fault  effects  with  multi-PC  is
more reasonable. In addition, in order to reflect the generality,
the RUL prediction method under multi-parameter dependent
considering fault effects is applied to Engine 4, Engine 11 and
Engine  17,  respectively,  and  predicted  RUL  distribution
curves  are  shown in Figs. 6(b)–6(d),  the  predicted results  are
shown  in Table VI.  It  can  be  obtained  that  the  MAE  and

RMSE of each engine RUL prediction results are very small,
and  they  are  about  same  as  Engine  3,  which  proves  the
effectiveness of the method.  

VII.  Conclusions and Discussions

This  paper  concerns  a  problem  of  predicting  RUL
considering  fault  effects.  Wiener  process  is  employed  to
construct  the  degradation  model  of  single  PC  with  the  fault
effects.  The  RUL  distribution  is  discussed  based  on  the
definition of first passage time, where the FOM is considered
as  a  random  variable.  EM  algorithm  for  the  problem  of
parameter  estimation  is  presented.  Copula  function  is
employed to describe the dependence between PCs and obtain
the joint RUL distribution. The effectiveness of the proposed
approach is demonstrated with experimental results.

The  current  study  only  considers  single  fault  occurring  in
the  product  degradation  process,  but  there  may  be  multiple
faults  occurring  in  the  degradation  process.  Therefore,  the
proposed  approach  may  be  extended  to  accurately  predict
product  RUL  where  multiple  faults  may  occur  in  the
degradation  process.  Moreover,  the  degradation  process  with
the  fault  effects  of  this  paper  is  established  by  the  linear
Wiener  process.  In  practice,  the  product  degradation  process

 

TABLE VI 

Accuracy Analysis of the Prediction Results

Engine 3

Actual value (cycles) 52 47 42 37 32 MAE RMSE

Conventional method 49.52 44.48 44.31 38.26 30.74

The observed time 127 132 137 142 147 1.97 2.05

α 0.4821 0.4834 0.4163 0.4426 0.4698

Engine 4

Actual value (cycles) 49 44 39 34 29 MAE RMSE

Predicted RUL 48.25 44.97 41.71 37.48 32.61

The observed time 140 145 150 155 160 2.30 2.61

α 0.3435 0.3775 0.4118 0.4457 0.4852

Engine 11

Actual value (cycles) 60 55 50 45 40 MAE RMSE

Predicted RUL 59.15 55.72 52.04 48.58 41.91

The observed time 180 185 190 195 200 1.82 2.09

α 0.3610 0.3497 0.3160 0.3165 0.2546

Engine 17

Actual value (cycles) 210 215 220 225 230 MAE RMSE

Conventional method 67.14 62.35 58.30 52.82 48.64

The observed time 66 61 56 51 46 1.85 1.93

α 0.3574 0.3510 0.3564 0.3575 0.3592
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often  exhibits  nonlinear  characteristics,  which  limits  the
application  of  the  linear  model,  degradation  model  with  the
fault effects based on the nonlinear Wiener process is worthy
of further exploration.
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