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Adaptive Fuzzy Backstepping Tracking Control for
Flexible Robotic Manipulator

Wanmin Chang, Yongming Li, and Shaocheng Tong, Senior Member, IEEE

Abstract—In this paper, an adaptive fuzzy state feedback
control method is proposed for the single-link robotic manipula-
tor system. The considered system contains unknown nonlinear
function and actuator saturation. Fuzzy logic systems (FLSs)
and a smooth function are used to approximate the unknown
nonlinearities and the actuator saturation, respectively. By com-
bining the command-filter technique with the backstepping
design algorithm, a novel adaptive fuzzy tracking backstepping
control method is developed. It is proved that the adaptive fuzzy
control scheme can guarantee that all the variables in the closed-
loop system are bounded, and the system output can track the
given reference signal as close as possible. Simulation results are
provided to illustrate the effectiveness of the proposed approach.

Index Terms—Actuator saturation, backstepping design,
command-filter technique, flexible robotic manipulator, fuzzy
adaptive control.

I. INTRODUCTION

W ITH the development of industrial processes automa-
tion in recent years, some of the work that based on

human labor was replaced by robots in fields like medical,
industrial production, military, aerospace etc. Therefore, the
modeling and control design problems for the flexible robotic
manipulators are of essential importance, and receiving con-
siderable attentions. Some effective control methods concern-
ing this issue are adaptive sliding mode technique [1], the
feedback linearization method [2], the passivity approach [3],
the proportional-derivative control approach [4] and so on.
However, the exact dynamic model of the complex flexible
joint manipulator is difficult to obtain due to the existence of
the uncertainties and nonlinear terms. Thus, the fuzzy logic
systems (FLSs) [5]−[10] are introduced in this paper to solve
the aforementioned problem of nonlinear terms.

In recent years, some adaptive fuzzy backstepping control
schemes have been developed for the robotic manipulator sys-
tems [11]−[12]. However, the adaptive fuzzy control strategies
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in [11]−[12] are based on the traditional backstepping design
technique that is subject to the so called ”explosion of com-
plexity” problem, which is caused by repeated differentiations
of virtual signals. To cope with this problem, a command-
filtered-based fuzzy adaptive backstepping control scheme is
proposed in [13]−[17] for a class of nonlinear systems by
introducing error compensation signals.

It is noted that many engineering systems are often driven by
the actuator. Because of the physical limitations of the actuator,
the actuator’s output cannot be arbitrarily large, which results
in the saturation nonlinearity in the actuator. The physical
plants may even experience catastrophic accidents when the
actuator’s saturation is not well addressed [18]−[24]. Although
many adaptive intelligent control methods for the single-link
robotic manipulator system have been proposed, there are no
results on fuzzy adaptive backstepping control of the flexible
robotic manipulator with actuator saturation, which motivates
the current study.

In this paper, a command-filter-based adaptive fuzzy back-
stepping control scheme is designed to achieve accurate
trajectory tracking for a single-link flexible manipulator in
presence of actuator saturation. The proposed adaptive fuzzy
backstepping control approach can guarantee that all the
signals in the closed-loop system are bounded, but also the
system output can track a given reference signal as close as
possible. Simulation results are given to further validate the
effectiveness of the proposed control method.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. System Descriptions

The dynamic equation of single-link robotic manipulator
coupled with a brushed direct current motor based on a
nonrigid joint (Fig. 1) is expressed as follows

J1q̈1 + F1q̇1 + K(q1 − q2
N ) + mgd cos q1 = 0

J2q̈2 + F2q̇2 − K
N (q1 − q2

N ) = Kti

Li̇ + Ri + Kbq̇2 = u

(1)

where J1 and J2 are the inertias, q1 is the angular positions
of the link, q2 is the motor shaft, R and L are the armature
resistance and inductance respectively. i is the armature cur-
rent, K is the spring constant, Kt is the torque constant, u(v)
is the armature voltage, g is the acceleration of gravity, d is
the position of the link’s center of gravity, F1 and F2 are the
viscous friction constants, Kb is the back-emf constant, M is
the link mass, and N is the gear ratio.
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Fig. 1. Single link flexible joint robot.

By introducing the state variables, x1 = q1, x2 = q̇1, x3 =
q2, x4 = q̇2, x5 = i, and defining KtK = J1J2NL, the
dynamic equation of system (1) becomes

ẋ1 = x2

ẋ2 = −mgd
J1

cos x1 − F1
J1

x2 − K
J1

(x1 − x3
N )

ẋ3 = x4

ẋ4 = K
J2N (x1 − x3

N )− F2
J2

x4 + Kt

J2
x5

ẋ5 = −R
L x5 − Kb

L x4 − 1
Lu

y = x1.

(2)

System (2) is equivalent to the following pure-feedback form




ẋ1 = x2

ẋ2 = δ2(x1, x2, x3) + x3

ẋ3 = x4

ẋ4 = δ4(x1, x2, x3, x4, x5) + x5

ẋ5 = δ5(x1, x2, x3, x4, x5, u) + u
y = x1

(3)

where δ2(x1, x2, x3) = −mgd
J1

cos x1− F1
J1

x2− K
J1

(x1− x3
N )−

x3, δ4(x1, x2, x3, x4, x5) = K
J2N (x1− x3

N )− F2
J2

x4+ Kt

J2
x5−x5,

δ5(x1, x2, x3, x4, x5, u) = −R
L x5 − Kb

L x4 − 1
Lu− u.

Note that system (3) is of pure-feedback nonlinear form,
we introduce the butterworth low-pass filter (LPF) [24] to
transform system (3) to





ẋ1 = x2

ẋ2 = δ2(x1, x2, x3,f ) + x3

ẋ3 = x4

ẋ4 = δ4(x1, x2, x3, x4, x5,f ) + x5

ẋ5 = δ5(x1, x2, x3, x4, x5, uf ) + u(v)
y = x1

(4)

where x3,f = HL(s)x3 ≈ x3, x5,f = HL(s)x5 ≈ x5, uf =
HL(s)u ≈ u, HL(s) is a butterworth low-pass filter (LPF).
The corresponding filter parameters of Butterworth filters with
the cut off frequency wc = 1 rad/s for different values of n
can be obtained as in [24].

It should be mentioned that most actuators have low-
pass properties, and the Butterworth low-pass filter (LPF) is
used to eliminate the interference of high frequency signals.
Furthermore, owing to the physical limitations of a DC motor,
the armature voltage will no longer change when the voltage
increases to a certain extent, namely the DC motor rotor
voltage u(v(t)) reaches saturation.

According to [25]−[27], u(v(t)) denotes the plant input
subject to saturation type nonlinearly, which is described as
follows:

u(v(t)) = sat(v(t)) =
{

sign(v(t))uN , |v(t)| ≥ uN

v(t), |v(t)| < uN
(5)

where uN is the bound of u(v(t)). Clearly, the relationship
between the applied control u(v(t)) and the control input v(t)
has a sharp corner when |v(t)| = uN . Thus backstepping
technique cannot be directly applied. Therefore, the satura-
tion sat(v(t)) can be approximated by the following smooth
function.

τ(v) = uN × tanh(
v

uN
) = uN

ev/uN − e−v/uN

ev/uN + e−v/uN
(6)

Then, saturation u(v(t)) in (5) becomes

sat(v) = τ(v) + β(v) = uN × tanh(
v

uN
) + β(v) (7)

where β(v) = sat(v) − τ(v) is a bounded function in time
and its bound can be obtained as

|β(v)| ≤ uN (1− tanh(v/uN )) = D1. (8)

In this section, 0 ≤ |v(t)| ≤ uN the bound β(v) increases
from 0 to D1 as |v(t)| changes from 0 to uN , and outside this
range, the bound β(v) decreases from D1 to 0.

The control objective of this study is to design an adaptive
fuzzy controller such that the system output angular position
y can track the reference signal yr as close as possible.
Moreover, all the signals that are involved in the resulting
closed-loop system are bounded.

Before further proceeding, the following Lemma is first
introduced.

Lemma 1 [13], [14]: The command filter is defined as

κ̇1 = ωnκ2 (9)

κ̇2 = −2ςωnκ2 − ωn(κ1 − α1). (10)

If the input signal α1 satisfies |α̇1| ≤ p1 and |α̈1| ≤ p2

for all t ≥ 0 , where p1 and p2 are positive constants and
κ1(0) = α1(0), κ2(0) = 0. Then, for any δ > 0, there exist
ωn > 0 and ς ∈ (0, 1], such that |κ1 − α1| ≤ δ, |κ̇1|, |κ̈1| and
|κ̈1| are bounded.

B. Fuzzy Logic Systems

A fuzzy logic system (FLS) consists of four parts: the
knowledge base, the fuzzifier, the fuzzy inference engine
working on fuzzy rules, and the defuzzifier. The knowledge
base for FLS comprises a collection of fuzzy If-then rules of
the following form:
Rl : If x1 is F l

1 and x2 is F l
2 and . . . andxn is F l

n,
Then y is Gl, l = 1, 2, . . . , N
where x = (x1, . . . , xn)T and y are the fuzzy logic sys-
tem input and output, respectively. F l

i and Gl are fuzzy
sets, associating with the membership functions µF l

i
(xi) and

µGl(y), respectively. N is the number of rules. Through
singleton function, center average defuzzification and product
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inference[28], [29], the fuzzy logic system can be expressed
as

y(x) =

∑N
l=1 ȳl

∏n
i=1 µF l

i
(xi)∑N

l=1 [
∏n

i=1 µF l
i
(xi)]

(11)

where ȳl = max
y∈R

µGl(y). Define the fuzzy basis functions as

φl =

∏n
i=1 µF l

i
(xi)

N∑
l=1

(
∏n

i=1 µF l
i
(xi))

. (12)

Denote θT = [ȳ1, ȳ2, . . . , ȳN ] = [θ1, θ2, . . . , θN ] and
ϕ(x) = [ϕ1(x), . . . , ϕN (x)]T .

The common form of fuzzy logic systems is described as
y(x) = θT ϕ(x).

Lemma 2 [28]−[30]: Let δ(x) be a real smooth function
defined on a compact set Ω ⊆ RN , and for a positive constant
ε, there exists a FLS y(x) = θT ϕ(x) such that

sup
x∈Ω

∣∣δ(x)− θT ϕ(x)
∣∣ ≤ ε. (13)

According to [28], [29], we define the optimal parameter as

θ∗ = arg min
θ∈RN

{sup
x∈Ω

∣∣δ(x)− θT ϕ(x)
∣∣}. (14)

Then, one has
δ(x) = θ∗T ϕ(x) + ε (15)

where ε is the fuzzy minimum approximation error satisfying
|ε| ≤ ε∗.

III. ADAPTIVE FUZZY CONTROL DESIGN AND STABILITY
ANALYSIS

In this section, an adaptive fuzzy state-feedback controller,
compensating signals and parameter adaptive laws are ob-
tained by utilizing command filter backstepping technique.
The stability of the closed-loop system is proved by Lyapunov
function stability theory [31]−[33].

The 5-step adaptive fuzzy backstepping state feedback con-
trol design is based on the following changes of coordinates:

λ1 = x1 − yr

λi = xi − xi,c

λ5 = x5 − x5,c − λ̄
(16)

v1 = λ1 − r1

vi = λi − ri, i = 2, . . . , 4
v5 = λ5 − r5

(17)

where λi ( i = 1, . . . , 5) are the tracking errors for command
filter, xi,c are the outputs of command filter, αi−1 are the
inputs of command filter. The purpose of the compensating
signals ri is to reduce the effect of the errors (xi+1,c − αi),
which is caused by the command filter. yr is the desired
trajectory, vi are the compensating tracking error signals and
λ̄ is an auxiliary function, which will be given in Step 5. The
command filter is defined as:

κ̇1 = ωκ2 (18)

κ̇2 = −2ςωκ2 − ω(κ1 − αi) (19)

where ω > 0 and ς ∈ (0, 1] are parameters to be designed,
xi,c(t) = κ1(t) is the output of each filter, and the initial
conditions are κ1(0) = αi(0) and κ2(0) = 0.

Step 1: The time derivative of v1 is

v̇1 = λ̇1 − ṙ1 = λ2 + x2,c − ẏr − ṙ1. (20)

Consider the following Lyapunov function candidate:

V1 =
1
2
v2
1 (21)

The time derivative of V1 is

V̇1 = v1(v2 + r2 + α1 − α1 + x2,c − ẏr − ṙ1). (22)

Choose the first intermediate control function α1 and the
compensating signal ṙ1 as

α1 = −c1λ1 + ẏr (23)

ṙ1 = −c1r1 + r2 + (x2,c − α1) (24)

where c1 > 0 is a parameter to be designed.
By substituting (23)−(24) into (22), we have

V̇1 ≤ −c1v
2
1 + v1v2. (25)

Step 2: From (16)−(17), the time derivative of v2 is

v̇2 = λ̇2 − ṙ2 = ẋ2 − ẋ2,c − ṙ2

= θ∗
T

2 ϕ2(x̄2) + x3 − ẋ2,c − ṙ2 + ε2

= (θT
2 + θ̃T

2 )ϕ2(x̄2) + α2 − α2

+x3 − ẋ2,c − ṙ2 + ε2.

(26)

Consider the following Lyapunov function candidate:

V2 = V1 +
1
2
v2
2 +

1
2η2

θ̃T
2 θ̃2 (27)

where η2 > 0 is a parameter to be designed.
The time derivative of V2 is

V̇2 = V̇1 + v2((θ
T
2 + θ̃T

2 )ϕ2(x̄2) + α2

−α2 + x3 − ẋ2,c − ṙ2 + ε2)− 1
η2

θ̃T
2 θ̇2

≤ −c1v
2
1 + v1v2 + v2((θ

T
2 + θ̃T

2 )ϕ2(x̄2) + α2

−α2 + x3 − ẋ2,c − ṙ2 + ε2)− 1
η2

θ̃T
2 θ̇2.

(28)

By applying Young’s inequality, we have

v2ε2 ≤ 1
2
v2
2 +

1
2
ε∗

2

2 . (29)

Substituting (29) into (28) results in

V̇2 ≤ −c1v
2
1 + v2(θT

2 ϕ2(x̄2) + α2 − α2 + v3

+r3 + x3,c − ẋ2,c − ṙ2 + 1
2v2 + v1)

+(v2θ̃
T
2 ϕ2(x̄2)− 1

η2
θ̃T
2 θ̇2) + 1

2ε∗
2

2 .

(30)

Choose the intermediate control function α2, the compen-
sating signal ṙ2 and the parameter adaptation law θ̇2 as

α2 = −c2λ2 − θT
2 ϕ2(x̄2)− 1

2
v2 − v1 + ẋ2,c (31)

ṙ2 = −c2r2 + r3 + (x3,c − α2) (32)
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θ̇2 = v2η2ϕ2(x̄2)− σ2θ2 (33)

where c2 > 0 and σ2 > 0 are design parameters.
By substituting (31)−(33) into (30), we have

V̇2 ≤ −c1v
2
1 − c2v

2
2 + +v2v3 +

σ2

η2
θ̃T
2 θ2 +

1
2
ε∗

2

2 . (34)

Step 3: Similar to step 2, from (16)−(17), the time derivative
of v3 is

v̇3 = λ̇3 − ṙ3 = ẋ3 − ẋ3,c − ṙ3 = x4 − ẋ3,c − ṙ3. (35)

Consider the following Lyapunov function candidate:

V3 = V2 +
1
2
v2
3 . (36)

The time derivative of V3 is

V̇3 = V̇2 + v3(x4 − ẋ3,c − ṙ3)

≤ −c1v
2
1 − c2v

2
2 + +v2v3 + σ2

η2
θ̃T
2 θ2 + 1

2ε∗
2

2

+v3(v4 + r4 + x4,c + α3 − α3 − ẋ3,c − ṙ3).

(37)

Choose the intermediate control function α3 and the com-
pensating signal ṙ3

α3 = −c3λ3 − v2 + ẋ3,c (38)

ṙ3 = −c3r3 + r4 + (x4,c − α3). (39)

Substituting (38)−(39) into (37) results in

V̇3 ≤ −c1v
2
1 − c2v

2
2 +

σ2

η2
θ̃T
2 θ2 +

1
2
ε∗

2

2 + v3v4 − c3v
2
3 (40)

Step 4: From (16)−(17), the time derivative of v4 is

v̇4 = λ̇4 − ṙ4 = ẋ4 − ẋ4,c − ṙ4

= θ∗
T

4 ϕ4(x̄4) + x5 + ε4 − ẋ4,c − ṙ4

= (θT
4 + θ̃T

4 )ϕ4(x̄4) + ε4 + x5 − ẋ4,c − ṙ4.

(41)

Consider the following Lyapunov function candidate:

V4 = V3 +
1
2
v2
4 +

1
2η4

θ̃T
4 θ̃4. (42)

From (41)−(42), the time derivative of V4 is

V̇4 = V̇3 + v4((θ
T
4 + θ̃T

4 )φ4(x̄4) + ε4

+x5 − ẋ4,c − ṙ4)− 1
η4

θ̃T
4 θ̇4

≤ −c1v
2
1 − c2v

2
2 + σ2

η2
θ̃T
2 θ2 + 1

2ε∗
2

2 − c3v
2
3 + v4(v3

+θT
4 φ4(x̄4) + ε4 + v5 + r5 + x5,c + α4 − α4

−ẋ4,c − ṙ4) + (v4θ̃
T
4 φ4(x̄4)− 1

η4
θ̃T
4 θ̇4).

(43)

By using Young’s inequality, we have

v4ε4 <
1
2
v2
4 +

1
2
ε∗

2

4 . (44)

Substituting (44) into (43) results in

V̇4 ≤ −c1v
2
1 − c2v

2
2 + σ2

η2
θ̃T
2 θ2 + 1

2ε∗
2

2 − c3v
2
3 + v4(v3

+θT
4 φ4(x̄4) + 1

2v4 + v5 + r5 + x5,c + α4 − α4

−ẋ4,c − ṙ4) + 1
2ε∗

2

4 + (v4θ̃
T
4 φ4(x̄4)− 1

η4
θ̃T
4 θ̇4).

(45)

Choose the intermediate control function α4 , the compen-
sating signal ṙ4 and parameter adaptation law θ̇4 as

α4 = −c4λ4 − v3 − 1
2
v4 − θT

4 ϕ4(x̄4) + ẋ4,c (46)

ṙ4 = −c4r4 + r5 + (x5,c − α4) (47)

θ̇4 = v4η4ϕ4(x̄4)− σ4θ4. (48)

Substituting (46)−(48) into (45) results in

V̇4 ≤ −c1v
2
1 − c2v

2
2 + σ2

η2
θ̃T
2 θ2 + 1

2ε∗
2

2

−c3v
2
3 − c4v

2
4 + v4v

2
5 + 1

2ε∗
2

4 + σ4
η4

θ̃T
4 θ4

(49)

Step 5: The time derivative of v5 is

v̇5 = ẋ5 − ẋ5,c − ṙ5 − ˙̄λ

= θ∗
T

5 ϕ5(x̄5) + u + ε5 − ẋ5,c − ṙ5 − ˙̄λ

= (θT
5 + θ̃T

5 )ϕ5(x̄5) + ε5 + u− ẋ5,c − ṙ5 − ˙̄λ

(50)

where auxiliary function λ̄ is defined as ˙̄λ = −λ̄+(τ(v)− v),
which is used to solve actuator saturation problem.

Consider the following Lyapunov function candidate:

V5 = V4 +
1
2
v2
5 +

1
2η5

θ̃T
5 θ̃5. (51)

From (50)−(51), the time derivative of V4 is

V̇5 = V̇4 + v5((θ
T
5 + θ̃T

5 )ϕ5(x̄5) + ε5

+τ(v) + β(v)− ẋ5,c − ṙ5 − ˙̄λ)− 1
η5

θ̃T
5 θ̇5

≤ −c1v
2
1 − c2v

2
2 + σ2

η2
θ̃T
2 θ2 + 1

2ε∗
2

2 − c3v
2
3 − c4v

2
4

+v4v5 + 1
2ε∗

2

4 + σ4
η4

θ̃T
4 θ4 + v5(θT

5 ϕ5(x̄5) + ε5

+β(v)− ẋ5,c − ṙ5 + λ̄ + v) + (v5θ̃
T
5 ϕ5(x̄5)

− 1
η5

θ̃T
5 θ̇5).

(52)

By using Young’s inequality, we have

v5β(v) ≤ 1
2
v2
5 +

1
2
D2

1 (53)

v5ε5 ≤ 1
2
v2
5 +

1
2
ε∗

2

5 . (54)

Choose the controller v, the compensating signal ṙ5 and
parameter adaptive law θ̇5 as

v = −c5λ5 − v4 − θT
5 ϕ5(x̄5)− v5 − λ̄ + ẋ5,c (55)

ṙ5 = −c5r5 (56)

θ̇5 = v5η5ϕ5(x̄5)− σ5θ5. (57)

By substituting (53)−(57) into (52), we have

V̇5 ≤ −c1v
2
1 − c2v

2
2 + σ2

η2
θ̃T
2 θ2 + 1

2ε∗
2

2

−c3v
2
3 − c4v

2
4 + 1

2ε∗
2

4 + σ4
η4

θ̃T
4 θ4

−c5v
2
5 + σ5

η5
θ̃T
5 θ5 + 1

2ε∗
2

4 + 1
2D2

1

≤ −
5∑

i=1

civ
2
i +

∑
j=2,4,5

σj

ηj
θ̃T

j θj

+ 1
2

∑
j=2,4,5

ε∗
2

j + 1
2D2

1.

(58)

Then, (58) can be rewritten as
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Fig. 2. Adaptive fuzzy backstepping control scheme.

V̇5 ≤ −CV5 + D (59)

where C = min{2ci, 2σj}, i = 1, . . . , 5, j = 2, 4, 5.
By integrating (59) over [0, t] , we can get the solution of

the above inequality

0 ≤ V5(t) ≤ e−CtV5(0) + µ(1− e−Ct) (60)

where µ = D/C.
According to (60), it can be shown that all the signals in

the closed-loop system are bounded. Meanwhile, we have:

|z1(t)| ≤
√

2(V5(0) exp(−Ct) + D/C). (61)

Since as t → ∞, lim
t→∞

exp(−Ct) = 0, it follows that

lim
t→∞

|z1(t)| ≤
√

2D/C.
Hence, according to (61), we conclude that the tracking

error can be made small by increasing the values of design
parameters ci , σj or decreasing ηj and (i = 1, . . . , 5, j =
2, 4, 5).

From above analysis and design, we can summarize the
following Theorem.

Theorem 1. For the single-link flexible robotic manipulator
system (1), the proposed adaptive fuzzy backstepping control
design scheme can guarantee that the tracking errors converge
to a small neighborhood of the origin and all variables in the
closed-loop system are bounded.

The configuration of the aforementioned adaptive fuzzy
control scheme is shown in Fig. 2.

IV. SIMULATION

The parameters for the flexible robotic manipulator with
the parameters[2] are given as J1 = J2 = 40 kgm2, Kt =
10Nm/A, Kb = 0.976Nm/A, g = 9.8N/Kg, m = 0.102kg,
F1 = F2 = 0.05Nms/rad, R = 4.5Ω, K = 30, L = 300H,
N = 1, d = 0.4m.
The reference signal is chosen as yr = sin(t− 1).
The input u(v(t)) is described by

u(v(t)) = sat(v(t)) =
{

sign(v(t))uN , |v(t)| ≥ uN

v(t), |v(t)| < uN

with uN = 10.
In the simulation, fuzzy If-then rules are chosen as:
R1: If x1 is F 1

1 · · · and uf is F 1
6 , then y is G1;

R2: If x1 is F 2
1 · · · and uf is F 2

6 , then y is G2;
R3: If x1 is F 3

1 · · · and uf is F 3
6 , then y is G3;

R4: If x1 is F 4
1 · · · and uf is F 4

6 , then y is G4;
R5: If x1 is F 5

1 · · · and uf is F 5
6 , then y is G5;

where fuzzy sets are chosen as F 1
i = (NL), F 2

i = (NS),
F 3

i = (ZE, F 4
i = (PS), F 5

i = (PL) , which are defined
over the intervals [−2, 2] for each variable. By choosing the
partitioning points as −2, −1, 0, 1, 2, and the corresponding
fuzzy membership functions (shown by Fig. 3) are given by
µF l

2
(x1, x2, x3,f ) = exp[ (x1+3−l)2

2 ]× exp[− (x2+3−l)2

2 ]

× exp[− (x3,f +3−l)2

2 ],
µF l

4
(x1, x2, x3, x4, x5,f ) = exp[− (x1+3−l)2

2 ]

× exp[− (x2+3−l)2

2 ]× exp[− (x3+3−l)2

2 ]
× exp[− (x4+3−l)2

2 ]× exp[− (x5,f +3−l)2

2 ],
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µF l
5
(x1, x2, x3, x4, x5, uf ) = exp[− (x1+3−l)2

2 ]

× exp[− (x2+3−l)2

2 ]× exp[− (x3+3−l)2

2 ]
× exp[− (x4+3−l)2

2 ]× exp[− (x5+3−l)2

2 ]
× exp[− (uf +3−l)2

2 ],
l = 1, . . . , 5

Fig. 3. The fuzzy rules.

Design the command filter as:

κ̇1 = 200κ2 (62)

κ̇2 = −2× 0.9ωnκ2 − 200(κ1 − α1). (63)

The compensating signals ṙj , j = 2, 4, 5 are designed in the
following:

ṙ2 = −13r2 + r3 + (x3,c − α2) (64)

ṙ4 = −10r4 + r5 + (x5,c − α4) (65)

ṙ5 = −10r5. (66)

The virtual control function αi, i = 1, . . . , 4, the controller
v are chosen as follows:

α1 = −100λ1 + ẏr (67)

α2 = −13λ2 − θT
2 ϕ2(x̄2)− 1

2
v2 − v1 + ẋ2,c (68)

α3 = −100λ3 − v2 + ẋ3,c (69)

α4 = −10λ4 − v3 − 1
2
v4 − θT

4 ϕ4(x̄4) + ẋ4,c (70)

v = −10λ5 − v4 − θT
5 ϕ5(x̄5)− v5 − λ̄ + ẋ5,c. (71)

The parameter adaptation laws θ̇j , j = 2, 4, 5 are chosen as
follows:

θ̇2 = 2v2ϕ2(x̄2)− 50θ2 (72)

θ̇4 = v4ϕ4(x̄4)− 50θ4 (73)

θ̇5 = v5ϕ5(x̄5)− 50θ5. (74)

The initial conditions of the states are chosen as x1(0) =
0.03, x2(0) = 0.01 and the other initial values are chosen
as zero. Choose the Butterworth low-pass filter as HL(s) =
1/(s2 + 1.414s + 1).

Simulation results in Figs. 4−9 are obtained by the proposed
scheme, where Fig. 4 expresses the tracking trajectories of

the output and the given reference signal. It is shown that
under the actions of controller (55), the system output follows
the desired reference signal well; Figs. 5−6 show the states
xi, i = 1, . . . , 5; Fig. 7 shows the trajectory of u(v); From
Figs. 4−7, it can be seen that boundedness of xi, i = 1, . . . , 5,
u(v) is verified. Furthermore, to demonstrate the adaptive
learning performance, the norms of the system adaptive laws
are demonstrated in Figs. 8−10.

Remark 1: It should be mentioned that [11], [12] pro-
posed different adaptive fuzzy control methods for a single-
link robotic manipulator system. However, [11], [12] did not
consider the problem of actuator saturation. In addition, the
references [11], [12] did not solve the so-called “explosion
of complexity” problem which is caused by repeating differ-
entiations of virtual control. In this paper, the problems of
“explosion of complexity” and actuator saturation have been
solved for the single-link robotic manipulator system.

Fig. 4. The trajectories of y (solid) and yr (dashed).

Fig. 5. The trajectories of xi, i = 1, 2, 3.

Fig. 6. The trajectories of xi, i = 4, 5.
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Fig. 7. The trajectory of u(v).

Fig. 8. Norm of θ2.

Fig. 9. Norm of θ4.

Fig. 10. Norm of θ5.

To further demonstrate the effectiveness of the proposed
control method, we apply the adaptive fuzzy tracking control
scheme in [11] to the system (2). The simulation results are
also depicted in Figs. 11−12, where Fig. 11 expresses the
tracking trajectories of the output and the given reference sig-
nal, Fig. 12 shows the trajectory of u(v) . From Figs. 11−12,
it can be seen that the control method in [11] cannot obtain
a better control performances, since there exists the actuator
saturation.

Fig. 11. The trajectories of y (solid) and yr (dashed).

Fig. 12. The trajectory of u(v).

V. CONCLUSION

In this paper, an adaptive fuzzy backstepping control design
method has been presented for a single-link robotic manipu-
lator in the presence of actuator saturation. By combining the
command filtered technique and FLSs, an effective adaptive
fuzzy backstepping control approach is developed and the
stability of the closed-loop system is proved. The main features
of the proposed method are as follows. 1) It solved the problem
of actuator saturation by introducing the auxiliary design
signal. 2) By incorporating the command filter technique
into the adaptive fuzzy backstepping design technique, the
proposed control scheme solved the problem of ”explosion
of complexity” inherent in the traditional backsteping control
algorithms. Future research works will concentrate on the
adaptive fuzzy output feedback control for the two-link flexible
manipulator system on the basis of this study.
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