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Abstract: Non-parametric system identification with Gaussian processes for underwater vehicles is explored in this research with the
purpose of modelling autonomous underwater vehicle (AUV) dynamics with a low amount of data. Multi-output Gaussian processes and
their aptitude for modelling the dynamic system of an underactuated AUV without losing the relationships between tied outputs are
used. The simulation of a first-principle model of a Remus 100 AUV is employed to capture data for the training and validation of the
multi-output Gaussian processes. The metric and required procedure to carry out multi-output Gaussian processes for AUV with 6 de-
grees of freedom (DoF) is also shown in this paper. Multi-output Gaussian processes compared with the popular technique of recurrent
neural network show that multi-output Gaussian processes manage to surpass RNN for non-parametric dynamic system identification in
underwater vehicles with highly coupled DoF with the added benefit of providing the measurement of confidence.

Keywords: Dependent Gaussian processes, dynamic system identification, multi-output Gaussian processes, non-parametric
identification, autonomous underwater vehicle (AUV).

Citation: W. Ariza Ramirez, J. Kocijan, Z. Q. Leong, H. D. Nguyen, S. G. Jayasinghe. Dynamic system identification of underwater
vehicles using multi-output Gaussian processes. International Journal of Automation and Computing, vol.18, no.5, pp.681-693, 2021.

http://doi.org/10.1007/s11633-021-1308-x

1 Introduction

Dynamic modelling of unmanned underwater vehicles
(UUVs) has been a subject of interest among researchers
since the early days of underwater exploration.
Nowadays, UUVs are extensively employed in research,
Modelling  of
autonomous underwater vehicles (AUVs) is an important

industry, and military applications.
step for mission design, control and navigation systems.
Thus, accurate modelling and adaptability of such sys-
tems is an important issue due to such extensive applica-
tions. The most common methodologies use a mathemat-
ical model which is derived from Newtonian-Lagrange
mechanics. This mathematical model is composed of a
series of coefficients that need to be calculated to obtain
an accurate model. Similarly, a possibility is the use of
quaternion formulation for angular position description
and the Lagrange method to compute a mathematical
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model, this option also requires the calculation of model
coefficients but reduces the wuse of trigonometric
functionslll. The difference between the obtained model
and the reality is usually treated in the literature as noise
and, in most cases, is modelled as a Gaussian distribu-
tion. A Gaussian distribution can be extended to the cal-
culation of an approximation to a real model of a vehicle
with higher exactitude and adaptability than a mathem-
atical modell2.

Over the years, multiple methods for the calculation
of coefficients of underwater vehicles have been proposed.
One way to obtain the hydrodynamic coefficients is to
perform a series of captive model tests such as rotating
arm and planar motion mechanicsB-5. Allotta et al.ll pro-
posed a method with field test and using onboard tele-
metry to develop a simplified model of underwater
vehicles, despite the excellent results, the resultant mod-
el can only be applied to specific tasks as it lags the rigor
required for high precision control task as path following.
The most elaborated techniques presented by [7] include
modelling the effects produced by the propulsion to the
model coefficients. These techniques require even a larger
set of experiments. Another common technique for the
hydrodynamic coefficient calculation is the use of compu-
tational fluid dynamics (CFD)®. However, for the suc-
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cessful application, CFD still requires verification of re-
sults with experiments(9l.

Nevertheless, research has probed the variability of
mathematical models for AUVs as the vehicle operates in
proximity to objects[l% 11 near-surfacel!?, and most com-
mercially available underwater vehicles with a modular
architecture involving variable geometric and mass/!3.
Furthermore, in certain applications, the precision of
some coefficients is required to be within 5% of
accuracyll4. Therefore, the variability of coefficients and
the high precision required to make it cumbersome or
even impossible to acquire a single exact analytical sys-
tem model based on physical rules.

Another procedure to obtain coefficients from a mod-
el of an underwater vehicle is the use of observers. Com-
mon observers applied to obtain the hydrodynamic coeffi-
cients of AUVs from measured data are least-squares(!5: 16],
nonlinear Kalman filters such as extended (EKF), and
unscented Kalman filter (UKF)[7. The EKF requires the
linearization at each time step to approximate non-linear-
ities, which can be difficult to regulate and implement. A
method to overcome this is the use of UKF, which ap-
plies the unscented transform over a set of methodically
chosen samples to model the system’s nonlinearity[!s: 19
employed the extended Kalman particle filter (EKPF) to
improve the estimation of coefficients for underwater
vehicles for navigation. Other common methodologies are
frequency domain identification?’)] neural networks
(NN)21] and support vector machines (SVM)[22l. The lat-
ter two methodologies are machine learning algorithms
and are more commonly used in online learning of the
coefficients and provide system adaptability. The adapta-
tion of the mathematical model has inherent defects such
as the dependency of initial values, small quantity of coef-
ficients to be updated, ill-conditioned matrix, and drift.
The variability of the calculated model can be exacer-
bated if it is considered that modern vehicles are modu-
lar and new modules with different properties are added
or removed from the vehicle in dependence mission
goals(?3].

Machine learning algorithms are not limited to the
calculation of hydrodynamic coefficients as they can learn
to behave as part of the system or the complete system.
Multiple applications have taken advantage of this abil-
ity and used NN[24 and SVMP3 to learn the damping
model for the system, which is placed in parallel to a
well-known partial mathematical model. Other applica-
tions have used pure machine learning algorithms to
identify a complete underwater vehicle as a black-box
model with the use of a nonlinear autoregressive model
with exogenous (NARX) architecture. Kodogiannis et
al.26] have used multiple architectures of NN for the re-
gression of an AUV model in a NARX architecture and
used the learned model for model predictive control.
Their study shows that recurrent NN (RNN) provides
higher faithfulness to the plant. It can be considered that
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most of these applications are parametric machine learn-
ing algorithms as the algorithm has a fixed number of
parameters. This characteristic allow faster computation,
but makes stronger assumptions about the data and may
perform badly if the assumptions are wrong27.

Another option is the employment of non-parametric
machine learning algorithms. A non-parametric algori-
thm assumes that the data distribution cannot be defined
in terms of a finite set of parameters. The number of
parameters grows as it learns from more data. An ex-
ample of non-parametric machine learning algorithm is
GPP27. Non-parametric GPs applied to an underwater
vehicle can improve techniques that employ vehicle mod-
els as controll?8l and navigation[?9. In geostatistics, GP is
a well-established methodology, where the method is
called “kriging”3%). In GPs-based system identification,
the model is learned over input-output data, and a cov-
ariance function is employed to represent the vehicle be-
haviour. GPs are better suited to work with noisy data
and small quantities of data. The predicted results of a
GP consist of a mean and variance value that can be ex-
ploited for other purposes, such as navigation, control,
and model-based fault detection. It contains a measure of
confidence.

Recently, Wehbe et al.Bll compared different machine
learning algorithms for the system regression of underwa-
ter vehicles, i.e., NN, SVM, Gaussian process regression
(GPR), and Kernel ridge regression (KRR). Their results
show that the machine learning algorithms could model
an AUV from onboard sensor data compared to a least-
squares approach. Nevertheless, in their study, a struc-
ture for dynamic system identification has not been em-
ployed, and each degree of freedom was treated as a sep-
arate element. This can be problematic in AUVs as the
outputs are strongly coupled. In the specific case of mod-
elling with GPsl research shows that the dynamic re-
gression of a system with GPs can produce better results
than other methodologies. The most common methodo-
logy for multi-input-multi-output systems is to model
each DoF as a separate system[32l. Ariza Ramirez et al.[33]
used GPs modelling for the application of model-based re-
inforced learning to control underwater vehicles. In this
research, a single GPs model was employed for each DoF,
and the coupling between outputs was ignored. The res-
ult showed a rapid convergence from on board sensors.
More advanced methodologies for dynamic system identi-
fication have been proposed in [34, 35]. Specific methodo-
logies are introduced to identify multi-output GPs based
on the use of variation of dependent GPs.

Multi-output GP is one of the options for modelling
multi-output systems. Multi-output GPs have ability to
model the nonlinear behaviour and relation between out-
puts of a multi-output system[36l. Both characteristics are
important for AUV dynamics. In this study, a non-para-
metric dynamic system identification with multi-output
GPs architecture employed by the authors, for shipsi37 is
extended to AUVs. However, the dynamics of ships and
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AUV share some similarities; AUVs have more degrees of
freedom, higher coupling between outputs, and higher
nonlinearities. The differences between ships and AUV
force a different required architecture. The output from
the algorithm will be a predictive value and a measure of
confidence of the predictive value. The objective of the
study is the demonstration of the viability and robust-
ness of multi-output GPs in modelling AUVs. Multi-out-
put GPS can allow a new form of controllers and observ-
ers that can drastically improve navigation and control of
underwater vehicles. The current implementation was
made over data obtained from a non-conventional test
with a variable frequency of a nonlinear simulation mod-
el of a Remus 100 AUV. Multiple sample times and data
length were tested to find the best metric that can de-
scribe an AUV. RNN was employed as a comparison to
measure the effectiveness of the proposed method.

2 Nonlinear dynamic AUV model

The nonlinear dynamic equations of motion of an un-
derwater vehicle can be expressed as in [38]. A vector
defined by a state vector composed by the vector v of ve-
locities on the body frame of the form [u,v,w, p,q, T}T and
the vector 7 of position in the Earth fixed frame (Fig.1)
of the form [¢,n,(, ¢, 0, 1/J]T such that:

M+ C(w)v+D@wv+g(n)=r1 (1)

with the kinematic equation

n=4Jnwv (2)

where

n is the position and orientation of the vehicle in
Earth-fixed frame;

v is the linear and angular vehicle velocity in the
body-fixed frame;

v is the linear and angular vehicle acceleration in the
body-fixed frame;

M is the matrix of inertial terms;

C (v) is the matrix of Coriolis and centripetal terms;

D (v) is the matrix consisting of damping or drag terms;

g (n) is the vector of restoring forces and moments due
to gravity and buoyancy;

7 is the vector of control and external forces;

J (n) is the rotation matrix that converts velocity
from body-fixed frame v to an Earth fixed frame velocity 7.

Equation (1) can be expanded into a more general
equation of motion as has been shown in [39] and applied
in [40]. The result of the expansion will be a system of six
equations with 73 hydrodynamic coefficients. However,
the expansion of (1) does not include a model for the con-
trol surfaces (thrusters and fins). In a general case,
Fossenl38! demonstrated that the resulting forces and mo-
ments of a control surface can be expressed as

Fprop = —Kfprop [n| 10
Mprop = —Kmprop [n| 0 (3)

Lyin = K544, 8 finve
Myin = KM\éfinéfinv§~ (4)

A more accurate thruster model can be found in [41]
with the inclusion of the motor model and fluid dynamics.
However, in this study, a more conservative model is
used. Details of the Remus 100 AUV model used in this
study are given in Section 3.

3 Dynamic identification with multi-
output GPs

GPs can be defined as a generalization of a multivari-
ate Gaussian distribution. A multivariate Gaussian distri-
bution is defined by its mean and a covariance matrix. In
the case of GPs, they are a distribution over functions
rather than a distribution over vectors. GPs is one of the
methods based on kernel functions where the kernel func-
tion calculates the relationship between an input and an
output point, and generates the covariance between them.
The covariance determines how strongly linked (correl-
ated) these two points are. In the case of multi-output
GPs, this is extended by the convolution of kernels to
add not only the relationship between an input and an
output but also the relationship between the outputs.

Fig.1 AUV different reference frames, vehicle frame is equal to centre of buoyancy.
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The kernel is the key ingredient for the calculation of the
covariance matrix that correlates inputs and outputs of
training datal42],

The presented application of multi-output system
identification with GPs is based on the previous work by
Alvarez and Lawrencel36 that based on their workl?., Dy-
namic identification is defined as the search for the rela-
tionship between a vector formed by delayed samples
from the inputs commands u(k — 1), the last system state
y(k — 1), and the future output values. The relationship
can be expressed as

y(k+1) = f (z(k), ©) + v(k) ()

where f (x(k),©) is a function that maps the sample data
vector (k) to the output space based on the
hyperparameters ©; v(k) accounts for the error and noise
in the prediction of y(k). In dynamic system
identification, the discrete-time variable k is presented as
an embedded element in the regression process as it is
accounted for in the delayed samples. In this application,
the vector x(k) is composed of the vector of regressors
and the vector of commanded inputs.

Dynamic system identification of nonlinear systems re-
quires the selection of a nonlinear model structure such as
nonlinear autoregressive model with exogenous input
(NARX), nonlinear autoregressive (NAR), nonlinear out-
put-error (NOE), nonlinear finite-impulse response
(NFIR), and other structures. NARX is the simpler and
most popular structure to implement as it only requires
measurements of system output(s) and input(s). The dif-
ficulties of measuring AUV states makes NARX the most
practical structure since the data required can be ob-
tained by the on-board sensors/2.

3.1 Multi-output GPs

Equation (1) shows the level of connection between
the Newton-Lagrange equations that define the dynamic
system of an AUV. Nonlinearities and integration
between outputs can be better represented by multi-out-
put GPsB6l. Multi-output GPs are founded in the regres-
sion of data using the convolution of a smoothing kernel
function with white noise process(43l. Boyle and Frean/44
introduced the concept machine learning by assuming
multiple latent processes defined over a space R?. The
coupling between two related outputs is a model with a
common latent process and their independence with a lat-
ent function, which does not interact between outputs. If
a set of functions {f, (m)}?:1 is considered, where Q is
the output dimension for an N number of data points,
where each function is expressed as the convolution
between a latent function u(z) and a smoothing kernel
{kq (a:)}qul, the function can be expressed as

fu@) = [ " kg (@ — 2)u(z)dz (6)

—o0
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Equation (6) can be generalized for more than one lat-
ent function {u, (®)}7, and a corruption function (noise)
wq(x) independent to each of the outputs can be in-
cluded,

Yq (2) = fq (2) + wq ()

R oo
Yo (1) =3 / For (2 — 2)ur (2)dz +wg (@), (7)

The covariance between two different functions y, ()
and ys(x') is

cov [yq (@), ys(2')] =cov [fq (), fs(z)] +
cov [wg (x) , ws(z')] 6gs  (8)

where

R R oo
cov [fu (@), fo(&)] =33 / Fgr (@ — 2)%

r=1p=1Y"

/w kop(x' — 2")cov [ur (2),up(2")] d2'dz. (9)

If it is assumed that w,(z) is an independent white
noise, cov [ur (2) ,up(2’)] = 02,8:p6~. o Will become:

cov [fa (@), fo(a)] =3 o2, /jo Fogr (@ — 2oy (@ —2')d2.
- (10)

The mean y with variance o_ of a predictive distri-
y

bution at the point x’ given the hyperparameters @ can
be defined as

and variance

a%, =k(z',2') — k(z',2) k(z,z) ‘k(z,z). (12)

A comprehensive description and implementation of
the convolution process can be found in [36] and [45], re-
spectively. In this study, the convolution of two square
exponential kernels is used since the squared exponential
kernel is a universal kernel 6], provided that data is sta-
tionary and the function to be modelled is a smooth one.
Furthermore, squared exponential kernel has a small
number of hyperparameters to be established.

3.2 Learning hyperparameters

The main methods for learning the hyperparameters ©
of a GP are Bayesian model interference and marginal
likelihood. Bayesian inference is based on the concept
that prior data of the unknown function to be mapped
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are known, and a posterior distribution over the function
is refined by the addition of observations. The marginal
likelihood takes advantage that some hyperparameters
are going to be more recognizable. Based on this, a unim-
odal narrow Gaussian distribution can describe the hyper-
parameters posterior distribution.

The learning of GPs hyperparameters @ is usually
done with the maximization of the marginal likelihood.
The marginal likelihood can be expressed as

1 _1
pyle,®@)=—F—e 2
(2m) 2 |K|2

yTK 1y

(13)

where N is the number of input learning data points, K
is the covariance matrix, and y is a vector of learning
output data of the form [yi;y2;---;yn]. In order to
minimize the calculation complexity, the application of
the logarithmical marginal likelihood is preferred. For
(13), if logarithmic properties are applied, it can be
obtained:

1 1o 1 N
£(©) =~ log(IK|) - 5y K"y — - log(2m). (14)

The maximization of log-likelihood, can be done with
multiple methods such as genetic algorithms, particle
swarm optimization, or gradient descent. The computa-
tion of likelihood partial derivatives with respect to each
hyperparameter is required for deterministic optimiza-
tion methods. The log-likelihood derivatives for each hy-

perparameter can be calculated by [47]:

8[:(8) _ 1 —1 aK 1 T — 1} (9K —1
00, *_Qtr(K a@i>+2y K e, K - (15)

Equation (14) gives the computational complexity for
the learning process, for each cycle, the inverse of the co-
variance matrix of K must be calculated. The calcula-
tion has a complexity O(NM)3. After learning, the pre-
diction complexity is O (NM) and to predict the mean
value o(k+ 1) is O(NM)? for a value y(k + 1). The high-

Inputs
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er-order term O(NM)3 is the major disadvantage of us-
ing multi-output GPs. The complexity of learning the hy-
perparameters increases in a cubic form with the increase
in data points. For larger data sets, methods that do not
require partial derivatives such as genetic algorithms, dif-
ferential equations, and particle swarm optimization can
be applied to avoid a high computational cost by redu-
cing the number of total iterations need.

4 Experiment setup and results

4.1 Experiment setup

The implementation of a mathematical model of an
underactuated Remus 100 AUV was used to generate the
required identification data. The coefficients of [40] were
used and adapted for simulation on Simulink. As the ori-
ginal mathematical model produced by [40] has a con-
stant thrust force, the thruster model from [48] that is
based on [38] was added. The resultant model was tested
to mimic the original results obtained by Presterol4 at a
speed of 1.5m/s. The AUV details can be found in
Table 1. As shown in Fig.2, a simulation setup was de-
veloped in Matlab/Simulink to emulate the AUV beha-
viour. Fig.3 shows an example of input signals given for
the rudder angle, thruster revolution per minute (RPMs),
and elevator angle, respectively. A total of 8 sets of data
were produced by combining an initial chirp signal, and
after the first 1 000 seconds, the command signal change

Table 1 Remus 100 general characteristics

Parameter Value
Weight 299 (N)
Buoyancy 306 (N)
Vehicle total length 1.33 (m)
Diameter 0.191 (m)
Max. Depth 100 (m)

/

RPM

Rudder

%

Elevator

Measurement

%

/32
s+1

1
m/32 »
s+1

Remus
> [0,0,0,0,0,0,0,0,0,0,0,0] Ko

Initial conditions

O

m [m

State

Fig. 2 Remus 100 AUV simulink model
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U (RPM)
1 000
500
0
0 500 1000 1500 2 000
(s)
Rudder (rad)
0.5
o MV
0.5 :
0 500 1000 1500 2 000
1(s)
Elevator (rad)
0.5
o MR
—-0.5 '
0 500 1000 1500 2 000

t(s)

Fig.3 Remus 100 input signals example chirp + step for all
inputs

to a step function or ramp function. The simulation was
carried out for 2000 seconds. A list of simulation done
can be seen in Table 2. Standard test, such as the zigzag
test or turning circle test were not used as GPs require
rich data or large quantities of data. A sample data point
was captured for every 1.5 seconds over the input and
outputs. A total of 8 000 points were captured over the
six motion outputs and 4 000 points over the three input
signals (Propeller RPM, rudder angle, and elevator
angle). The data set was divided into two sets of points.
The first set of points is used for the model learning, this
training data is equivalent to the section of the chirp in-
put signal, and the second set of points is used for learn-
ing validation. The validation data is chosen to be out-
side of the training domain and very different fro the
training data to test the ability of the method to predict
beyond the training range.

4.2 Training and validation

A script was written to implement the NARX struc-
ture with multi-output GPs, and the implementation of

Table 2 Simulation description

Experiment number Experiment configuration

1 Chirp+ramp in propeller
2 Chirp+ramp in rudder

3 Chirp+ramp in stern

4 Chirp+ramp in all surfaces

Chirp+step in propeller
Chirp+step in rudder

Chirp+step in stern

o N o o«

Chirp—+step in all surfaces

@ Springer

multi-out GPs by [45] was employed. The multi-output
GPs regressors were defined as

= f(y,cr-1:3) (16)

where y is the vector of regressors [ux—1:3,Vk—1:3,
wk_l;s,pk_l;g,,q;c_l;g,'f‘k_lﬁ]T, the function f is a rela-
tion between the vector of regressors from the corres-
pondent vehicle speeds (u,v,w,p,q,r) or the full vehicle
state y, and the vector ¢ that content the regressors of
the commanded signals to the respective output of the
system. The input signals were normalized between -1
and 1 to give all the inputs and outputs the same weight
in the learning process. This normalization is required to
reduce the possibility of the minimization algorithm being
bias to one of the regressors.

For the training, a minimum search with the gradient
descent method, particularly the interior-point algorithm,
was used to minimize the negative logarithmical likeli-
hood.

Two nonlinear system identification models with neur-
al networks were also implemented for comparison. The
NN systems are recurrent neural networks (RNN), as
shown in Figs.4 and 5. The first MIMO RNN (RNN 1,
Fig.4) was setup with three terms of delays for the out-
put to be feedback to the network and three terms delay
of the inputs. The RNN 1 that was selected as relatively
optimal for the task at hand used two hidden layers with
logarithmic sigmoid functions for the hidden layer neur-
ons and was trained with Levenberg-Marquardt back-

Hidden 1

Hidden 2 Output

Fig.4 RNN 1 configuration for AUV identification

Hidden

Output (¢)

Fig.5 RNN 2 configuration for AUV identification
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Fig. 6 Multi-output GPs training velocity plots

propagation. This configuration and regressors were selec-
ted as they provide the best results for our system. RNN 2
(Fig.5) is a fully connected RNN with a single hidden
layer. RNN 2 use the same logarithmic sigmoid functions
for the hidden layer of neurons and was trained with
Levenberg-Marquardt backpropagation. The third step of
simulation was carried out with the combination of the
full length of the data and feeding back after each step
the delayed output from the model. The neural network
system was trained, validated, and tested with the same
data used for the multi-output GPs. The complete imple-
mentation code can be found at the GitHub Repository!.
Fig.6 presents the prediction results of GPs training com-
pared to the ground truth from the AUV simulator and

thttps://github.com/ArizaWilmerUTAS /System-indetification-
of-underwater-vehicles-with-Multi-Output-Gaussian-Processes

the error plots between the predicted and real systems. In
Figs.6-8, a 20 variance is plotted. The variance values of
the training data are in the expected value and encom-
pass the error results.

The validation data consisted of the second part of
the captured data in vector form and the real output
from the training data with the respective system delays.
The segments of the results from the validation with the
second set of data are depicted in Fig.7. The low valida-
tion errors show a good system prediction for all degrees

of freedom.

4.3 Simulation

With the objective to test the ability of the learning
system, a simulation stage was implemented for the
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Fig. 7 Multi-output GPs validation with unknown data

learned RNN and the multi-output Gaussian processes
over the total length of the simulated data. Navigation
applications as EKF, UKF, and control as model predict-
ive control require predicting the behaviour of the plant
in a number of steps ahead of the actual state to predict
the correct position or control signals. In the case of the
multi-output GPs, the simulation is done by feeding back
to the simulation the past inputs y;(k —n). The initial
position and control signals of rudder, elevator and for-
ward speed were used. The naive simulationl?! covers
training and validation data acquired from the original

simulation simulation

in a close loop setup. Naive
provides an approximation where variance is not exactly
the same as previous steps, but provides a general guid-
ance on uncertainty in the model deployment which is

sufficient for our study. Suppose the variance is to be em-

@ Springer

ployed, such as in a control system or a navigation prob-
lem. In that case, the uncertainty propagation can be in-
cluded with the use a simulation-based on Monte Carlo
numerical approximation?. Fig.8 shows the results from
the simulation of RNN 1, RNN 2, and the multi-output
GPs compared to the original system. RNN 1 compared
to RNN 2 shows better performance with ramp input sig-
nals, and RNN 2 shows better performance to simulate
step functions in our simulations. However, multi-output
GPs can identify the system correctly and predict the be-
haviour of the system with chirp+ramp and chirp+step
functions. The better capability of GPs to predict out-
side the training horizon from a number of different vari-
ations from the initial training data is confirmed by the
results of Tables 3—5. The mean value of the output root-
mean-square error (RMSE), the predicted residual error
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sum of squares (PRESS), and mean absolute error (MAE)
for GPs are smaller than the values of RNN 1 and RNN 2.

A secondary set of simulations were also carried out to
research the sensibility of multi-output GPs compared to
both RNNSs in respect to the increase in training data. A
series of simulations at 500, 1 000, 1 500, 2 000, and 4 000
seconds were carried out with commands signals com-
posed of a chirp signal for half of the time and a ramp
signal for the other half of the simulation. The first half
of each data set was employed for training, and the test
simulation of the learned model was done over the com-
plete extension of data. The RMSE, PRESS, and MAE
were also measured for all the simulation results. The res-
ult of the sensitivity analysis can be seen in Figs.9 and
10. All the measurements of the sensitivity analysis show

t
Yaw angular velocity

®

Multi-output GPs simulation compared with RNN 1, RNN 2 and real system with chirp4+ramp in all inputs

the same trend for each measured variable. The simula-
tions with 1500 seconds of capture data for RNN 1 and
GPs show similar average results, and RNN 1 over 4 000
seconds of simulation can overpass the ability of GPs to
simulate the system with a chirp4ramp signal for all in-
puts. RNN 2 and RNN 1 require a higher quantity of
data of rich data to be effective in the simulation of AUV
outside of the learning horizon compared to multi-output
GPs.

5 Conclusions

In this work, the use of multi-output GPs for the sys-
tem identification of AUV dynamics was tested on a Remus
100 AUV. It was demonstrated that the non-parametric

@ Springer
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Table 3 RMSE results for all simulations, average and
standard deviation

Simulation number GP RNN 1 RNN 2
1 1.85E-02 5.27E-02 6.34E-02
2 1.48E-02 1.76 E-02 6.96E-02
3 1.69E-02 1.34E-02 3.83E-02
4 2.31E-02 5.12E-02 5.12E-02
5 2.88E-02 3.59E-02 4.07E-02
6 1.18E-02 1.68E-02 2.60E-02
7 1.46E-02 3.09E-02 2.70E-02
8 2.64E-02 2.02E-02 3.45E-02
Average 1.94E-02 2.98E-02 4.38E-02

Standard deviation 3.71E-05 2.43E-04 2.61E-04

Table 4 MAE results for all simulations, average and standard

deviation

Simulation number GP RNN 1 RNN 2
1 1.19E-02 2.04E-02 3.51E-02
2 9.51E-03 1.00E-02 4.02E-02
3 1.20E-02 8.87E-03 2.07E-02
4 1.59E-02 3.32E-02 3.03E-02
5 1.78E-02 2.08E-02 2.36E-02
6 8.43E-03 9.67E-03 1.48E-02
7 9.92E-03 1.82E-02 1.45E-02
8 2.21E-02 3.19E-01 1.60E-02
Average 1.35E-02 5.50E-02 2.44E-02
Standard deviation 2.27E-05 1.14E-02 9.58E-05

Table 5 PRESS results for all simulations, average and
standard deviation

Simulation number GP RNN 1 RNN 2
1 4.69E-01 7.89E+00 4.33E+00
2 2.61E-01 5.41E-01 9.96E+00
3 4.54E-01 2.14E-01 1.68E4-00
4 9.58E-01 4.15E400 2.91E+00
5 1.10E+00 2.03E+00 2.22E+00
6 1.54E-01 4.78E-01 8.60E-01
7 2.48E-01 2.12E4-00 1.00E+00
8 1.18E4-00 6.67E-01 1.50E4-00
Average 6.03E-01 2.26E+4-00 3.06E+00

Standard deviation 1.70E-01 6.89E+00 9.05E+00

multi-output GPs can model an AUV as well as RNN
with the added value of a confidence measurement. In the
simulations, GPs show a better ability than RNN to pre-
dict and simulate the behaviour of an AUV. In some
cases, GPs performed better than RNN outside of the

@ Springer
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training horizons, with the error between the GPs and
the real system being relatively low as the convolution
process is equivalent to representing the system through a
differential equation. The GPs model obtained also has a
smaller number of hyperparameters compared to a large
number of coefficients in a mathematical model. The res-
ults of the sensitivity analysis show that multi-output
GPs perform better than RNN with low quantities of
data. RNN required a higher spectrum of data to be able
to approximate the behaviour of the vehicle outside of the
training horizon. The research demonstrated the viability
and robustness of multi-output GPs in modelling AUVs.
The non-parametric form and capability of modelling re-
lation between outputs can allow new control methodolo-
gies for underwater vehicles.

To improve further the capability of prediction of the
system, more recent suggested techniques for GPs such as
recurrent GPs can be used. The simulation of GPs can be
also improved if techniques such as Monte Carlo and
Taylor series can take advantage of the variance to in-
crease the horizon of cover maneuvers and the prediction
accuracy. The subsequent work will be devoted to the de-
velopment of model-based reinforced learning using the
obtained model. Furthermore, the real world is a noisy
environment that can be better described with Gaussian
distributions that include coupling between DoF's.
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