International Journal of Automation and Computing 18(5), October 2021, 718-730

www.ijac.net DOI: 10.1007/s11633-021-1289-9

STRNet: Triple-stream Spatiotemporal Relation Network

for Action Recognition

Zhi-Wei Xul2 Xiao-Jun Wul:2 Josef Kittler3

1School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China
2 Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence, Wuxi 214122, China

3 Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH, UK

Abstract: Learning comprehensive spatiotemporal features is crucial for human action recognition. Existing methods tend to model
the spatiotemporal feature blocks in an integrate-separate-integrate form, such as appearance-and-relation network (ARTNet) and spa-
tiotemporal and motion network (STM). However, with blocks stacking up, the rear part of the network has poor interpretability. To
avoid this problem, we propose a novel architecture called spatial temporal relation network (STRNet), which can learn explicit inform-
ation of appearance, motion and especially the temporal relation information. Specifically, our STRNet is constructed by three branches,
which separates the features into 1) appearance pathway, to obtain spatial semantics, 2) motion pathway, to reinforce the spatiotempor-
al feature representation, and 3) relation pathway, to focus on capturing temporal relation details of successive frames and to explore
long-term representation dependency. In addition, our STRNet does not just simply merge the multi-branch information, but we apply a
flexible and effective strategy to fuse the complementary information from multiple pathways. We evaluate our network on four major
action recognition benchmarks: Kinetics-400, UCF-101, HMDB-51, and Something-Something v1, demonstrating that the performance
of our STRNet achieves the state-of-the-art result on the UCF-101 and HMDB-51 datasets, as well as a comparable accuracy with the
state-of-the-art method on Something-Something v1 and Kinetics-400.
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1 Introduction

Pattern recognition!l has been attracting a lot of in-
terest since the advent of the computer. The booming de-
velopment of machine learningl?l and deep learningl has
injected new vitality to this subject. In the field of com-
puter vision, deep learning methods play an indispens-
able role in most visual tasks, such as image
classification-6], object detection[” 8l semantic segmenta-
tionl® 101 video classification(l1"22] etc. Along with the
emergence of diverse deep architectures, AlexNet4],
visual geometry group (VGG)R23, residual network (Res-
Net) Pl
(DenseNet)[24 the accuracy of recognition tasks is con-

densely  connected convolutional network

tinually pushed to new heights. However, for video-based
action recognition tasks, it is different from a single stat-

ic picture that contains only spatial information. The
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temporal relation(!®] provided by a video is even more sig-
nificant for recognition. To exploit the information in the
time dimension, the traditional method with hand-craf-
ted featuresl?> 27l achieved a considerable accuracy in
early years, at the expense of consuming a lot of effort in
video data processing. More recent approaches focus on
deep networks, which can be grouped into four categories:
1) two-stream convolutional neural networks (CNN)[5, 28],
2) 3D CNN[7 29 3) 2D CNN with temporal models such
as long short-term memory (LSTM)BO 31 4) skeleton-
based architecturel32-34. Two-stream CNN is a popular
method which can make full use of both appearance and
motion information. It performs well on action recogni-
tion tasks.

However, this method requires additional processing
to extract optical-flow3% information in advance. The two
data streams are trained separately resulting in the train-
ing process taking at least twice as long compared to sys-
tems without optical-flow computation. To avoid this
drawback, 3D CNN architectures have been proposed to
obtain spatiotemporal features directly from sequential
RGB frames. But they are computationally expensive,
and their performance is worse than the two-stream net-
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works. Some researchers find that 2D CNNs already per-
form well on learning spatial features, so they attempt to
develop other methods to capture temporal information.
For example, recurrent neural network (RNN) is typic-
ally applied to LSTMIB36, which can remember and learn a
long span on temporal feature representation over sever-
al input frames. Skeleton-based methods have gradually
become more prominent in recent years. They focus at-
tention on specific human action, posture and gesture,
but these approaches lack the capacity of learning ap-
pearance information and the interaction between human
and object. Meanwhile, the video datasets for action re-
cognition, such as Kinetics[!ll, atomic visual actions data-
set (AVA)B7 and Something-Something®®l, are becoming
larger and larger. All of them contain complex scenes and
action information.

It is notable that the architectures of most state-of-
the-art methods consist of building blocks in which the
spatial and temporal features can be learned simultan-
eously, such as ARTNetB9 and STM[2U. However, with
the block stacking up, the latter blocks cannot learn the
spatiotemporal and motion features explicitly. For one
thing, the pixel-level addition and 1x1 convolution opera-
tion make the information abundant but tangled. For an-
other, with the iteration of the integrate-separate-integ-
rate form, the rear part of the network has a low inter-
pretability for the spatiotemporal or motion relation fea-
ture representation. Based on this observation, we pro-
pose a straightforward end-to-end architecture named the
spatiotemporal relation Network (STRNet), to learn more
elaborate spatial temporal and motion details in an expli-
cit way. As shown in Fig. 1, this triple branch architec-
ture consists of an appearance branch, an enhanced mo-
tion branch and a temporal relation branch. The appear-
ance branch is aimed at learning spatial features using 2D
ConvNet. The motion branch is designed to learn refin-
ing spatiotemporal features, and the relation branch fo-

Fig. 2 Feature visualization of STRNet. The first column is the
input frames. The second column is the feature maps of Stem.
The third column is the fusion feature maps of stage 3. The last
column is the output of spatiotemporal with relation feature
maps of stage 5. We rescale the feature maps into original size for
good comparison.

cuses on understanding the temporal relation from mul-
tiple frames. Furthermore, we conduct an artful fusion
strategy to integrate multi-branch feature representa-
tions for the final classification.

Our STRNet is generalized and functional to cope
with all kinds of video-based action recognition, includ-
ing scene-related or temporal-related videos. Although we
just use RGB frames as input, we achieve a similar or fa-
vorable score compared to state-of-the-art methods on
most datasets. Furthermore, our STRNet can adapt to
diverse short-term or long-term videos and performs well.
As shown in Fig.2, we visualize feature maps of our STR-
Net.

Our main contribution can be summarized as follows:
1) We propose STRNet, which is designed to learn com-
prehensive spatial-temporal representations especially en-
hancing the motion information in an explicit way. 2) We
develop an efficient way to model temporal relations
between the sequential frames and it brings about a con-
siderable improvement on temporal-related tasks. 3) We
optimize the network architecture in an expressive and
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Fig. 1 Architecture overview of STRNet. Our STRNet consists of three individual branches that focus on learning appearance, motion
and temporal relation information, respectively. For comprehensively representing the information of the whole video, we apply two-
stage fusion and separable (2+1)D convolution to reinforce the feature learning. Finally, we apply a decision level weight assignment to
adjust the classification performance.
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interpretable manner.

2 Related work

Action recognition with deep learning. Since the
emergence of CNNMI in the task of image classification,
many researchers have tried to design effective architec-
tures for action recognition and video -classification.
Karpathy et al.l'8] first applied deep networks with differ-
ent temporal fusion strategies in a large-scale and
noisily-labeled dataset (Sports-1M[#]). Simenyan and Zis-
serman/!® designed a pioneering two-stream architecture
containing two parts of ConvNet: spatial stream Con-
vNet and temporal stream ConvNet. It sets up a bench-
marking flag in the direction of separately modeling spa-
tial and temporal features. Wang et al.lll proposed a
temporal segment network (TSN). It samples video
frames sparsely in order to capture long range depend-
ence, and identifies the best score when simultaneously
using RGB frames, optical flow and warped flow as the
input. 3D convolutional neural networks firstly proposed
by Baccouche et al.[ll Tran et al.ll7 investigated 3D CNN
on learning spatiotemporal features further. Thereafter,
several variants of 3D models were put forward. Carreira
et al.l'!l proposed a new two-stream inflated 3D CNN by
expanding 2D CNNs. Sun et al.[#d attempted factorizing
3D ConvNet into spatial (2D) and temporal (1D) direc-
tion. The P3DM3] and R(2+1)D[2Y models are similar in
nature. Wang et al.B9 explored the stream relationship
on the basis of multiplicative interaction theory4, and
used 3D convolution to explicitly model the structure like
two-stream.

Our work basically focuses on designing a strong fea-
ture learning architecture to capture motion information
and temporal relation information. We combine the previ-
ous outstanding works and propose novel strategies to
achieve better performance.

Long-term video representation and learning
relations. To deal with the problem of partial observa-
tion, some approaches expanded the temporal receptive
field of the sampling window. However, increasing the
temporal length of the input has two major drawbacks:
1) It requires expensive computational resource. 2) For a
long-range video, it is hard to capture the whole visual
information of the video. TSN[IS proposed a smart
sampling strategy which can cover the whole video by
randomly sampling one frame in each segment. Although
the samples spread over a long span of the video, the net-
work deals with the sampled frames independently.

Modeling or learning correspondence of frames is also
an important mission in computer vision. For action re-
cognition tasks, motion relation tends to be an indispens-
able factor to the recognition. Early approaches to model
relations between two images would involve concatena-
tion, 3D convolution, multiplicative interactions and so
on. Recently, some action recognition methods, such as
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temporal relational reasoning network (TRN)M5 graph
convolutional network (GCN)H46l, have focused on a tem-
poral relation of the video. But none of them are able to
satisfy the requirements of long-term video action recog-
nition as well as the motion relation characteristics simul-
taneously. We explore an efficient way to solve the prob-
lem of motion consistency over a long temporal span.

Attention mechanism. In the past several years, at-
tention models4749 have been widely used in various
types of deep learning tasks, such as natural language
processing, image recognition and voice recognition. It is
one of the core technologies of deep learning technology
that deserves the most attention and in-depth under-
standing. Attention for videos may take different forms,
including gating, second order poolingl%, cross-model at-
tentionl5l, self-attentionl2. We propose a brand-new at-
tention method called joint attention, which is applied
after a multi-branch output to enhance the classification
score.

Our work incorporates three main improvements com-
pared to the previous methods: 1) We propose an expli-
cit way to enhance the motion relation only using RGB
frame representation. 2) We propose a novel method to
model relations of consecutive frames with a weight ad-
justment mechanism. As an auxiliary branch, it shows a
good combination with motion branch to model spati-
otemporal action features. 3) Additionally, to represent
the spatiotemporal features more concretely and robustly,
we artfully use separated (241)D convolution to optim-
ize the primary 3D CNN.

3 Method

In this section, we will introduce our STRNet and the
difference from the previous spatial-temporal feature
learning networks. For the following triple-branch struc-
ture, we will discuss the effect of each branch, and ana-
lyze the performance of different combinations.

3.1 Spatial temporal relation network

Our STRNet is designed for efficient spatiotemporal
and relation modeling. As shown in Fig.1, the STRNet
consists of three branches to learn appearance, enhanced
motion and temporal relation information respectively.
After sampling the video, the data is firstly fed into the
Inception V4 network(53 to extract the essential feature
maps. These feature maps would comprehensively repres-
ent image features according to channels.

Appearance branch. For the most scene-related ac-
tion recognition task, the final classification result de-
pends on the appearance representation to a great extent.
Hence, we apply a robust 2D convolutional network to
exploit visual semantic characteristics of individual
frames. Specifically, we use the Inception V4 architecture
for this purpose, due to its multi-scale property as well as
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the efficient propagation.

Enhanced motion branch. Empirically, the per-
formance of the 3D convolution network is superior to 2D
convolution networks in the aspect of extracting motion
information from sequential feature maps, such as convo-
lutional 3D (C3D)I7), inflated 3D convolutional network
(I3D)[1. Inspired by the R(2+1)D network2%, we opt for
decomposing spatial and temporal modeling into two sep-
arate tasks. By increasing the optimization efficiency, our
motion branches can extract rich spatiotemporal features.
A separable (24+1)D ResBlock is incorporated to enhance
the spatiotemporal feature learning, which consists of 2D
convolution filters of size 1xdxd and temporal convolu-
tional filters of size tx1x1 along with ReLU and batch
normalization layers. Specifically, we organize the motion
branch into two sections. Based on experience and prob-
abilistic analysis(4, the former part of motion branch,
which is before branch fusion (mentioned in Section 3.2),
is conducted by (24+1)D ResBlocks. And the latter con-
sists of 3D ResBlocks. It is explicable that in early layers,
our network learns the appearance and edge information
as well as short time scale motion information using the
(24+1)D ResBlocks. Furthermore, the operation of multi-
branch fusion assembles both appearance and temporal
relation information which is crucial for modeling motion
characteristics. With these basics, we employ the 3D con-
volution operation in the latter part of our motion
branch. Because the 3D convolution network is well
equipped to model spatiotemporal features and in the
deep layers it is more beneficial to learn abstract semant-
ic features of action4.

Compared to the original 3D convolution networks,
our newly combined branch reveals two advantages.
Firstly, although keeping the same number of parameters
as the 3D networks, we bring in two nonlinear operations
i.e. spatial 2D convolution and temporal 1D convolution
with a ReLU activation layer. These measures improve
the spatial and temporal expressiveness of the network.
Secondly, the (2+1)D blocks increase the complexity of
the network but relax the interaction of layers so that the
network turns out to be more flexible and easier to op-
timize.

Relation Branch. For our STRNet, the relation
branch is the newly proposed scheme and the key part to
model comprehensive spatiotemporal characteristics. A
key problem in video-based action recognition is how to
master the continuously changed motion information.
Firstly, we evaluate four tentative approaches to model
the relationship between two sequential images: 1) ele-
ment-wise subtraction, 2) element-wise addition, 3) ele-
ment-wise product, 4) matrix-multiplication. The reasons
why we choose these four methods are shown as follows.
1) Element-wise subtraction: In an intuitive sense, the in-
stantaneous motion lies in the difference between two ad-
jacent frames. Recently, some experiments and papers!6
21, 53] show that pixel-wise subtraction can obtain high fre-

quency information which can indicate the position of the
motion in one frame. So, it is a candidate for represent-
ing the temporal relationship. 2) Element-wise addition:
As opposed to subtraction, addition operation keeps the
low frequency information®, it is good for the scene and
object recognition. And it can capture the static relation
between frames. 3) Element-wise product: That is
Hadamard product, it can reflect the geometric distance
of the matrix. So, we also take it as an experimental
item. 4) Matrix-multiplication: It can be regarded as com-
puting the correlation of the output image with a trans-
formed version of the input image. Furthermore, the sim-
ilarity of adjacent frames reflects the amplitude of the
motion. Matrix multiplication can be more convenient to
calculate the degree of similarity. Based on these assump-
tions, we test each of these four methods respectively.
After the experiment, we adopt the matrix-multiplica-
tion technique as the final option because of its inter-
pretability as well as the best performance. Specifically,
the relationship between the two frames is defined as (1).

577; = l'iTa?¢+1 (1)

where x; and x,+1 are adjacent feature maps and i is the
index of the time sequence, thus (i€{1, 2, ---, T 1}). In
addition, we define zp = ztar, ie., self-correlation. The
schema of an enhanced temporal relation unit is shown in
Fig. 3.

However, sparse sample may result in great vari-
ations between a pair of frames. For sequential frames,
the higher similarity score implies the smaller variation.
Enlightened by the optical flow theoryl3] one of the pos-
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Fig.3 The schema of building relation unit, where X denotes
the original inputs of the sequential feature maps, and X denotes
the calculated relation maps. The function Fsn,(*) is to calculate
the similarity measurement. And g denotes the similarity weight
vector and Y denotes the final relation response maps.
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tulated conditions is that the motion is tiny, so that the
relation characteristics between frames can be modeled
accurately. In other words, great variations imply weak
correlation. Hence, we should pay more attention to those
with strong relationship and consistency.

Based on this observation, we design an adaptive
method to adjust the weight of the representation of the
relation between sequential frames. Here, we induce a
similarity measurement calculation f which indicates the
similarity of two feature maps. Formally, a statistic
s € RTXHXW s generated by f, such that the i-th ele-
ment of s is calculated by (2).

si = f(wi,ir1) = 0(x:) p(wis1) (2)

where 0(z;) = Wyz; and ¢(ziy1) = Wexipr (1€{1,2, -,
T -1}) are two embeddings. Refer to (3), the similarity
weight vector g € RT*1x!

Fom.

can be deduced by function

9= Fan(X, W) = o(GAP(f(z,W))) ()

where GAP denotes global average pooling and o denotes
softmax activation function, which are used to squeeze
and normalize the similarity measurement. As a
consequence, the final output Z of our relation block can
be written as (4).

Z=X+Y =X+ Xg. (4)

The detailed flowchart is shown in Fig. 3. As such, our
work provides a new insight into temporal attention in
the space-time video, induced by an action recognition
task in computer vision.

3.2 Fusion and optimization

How to effectively and rationally utilize the learned
appearance and temporal relation information is also a
key issue for our task. This demands us to explore the po-
tential value of spatiotemporal features. We propose a 2-
stage fusion strategy to combine the two information
modalities.  Specifically, we apply two lateral
connections®¥ in the middle and the end of network to
fuse the appearance and relation information into motion
branch as shown in Fig.1. In other words, the spatial fea-
tures and the temporal relation features are merged into
a spatiotemporal feature map. We make full use of the
mid-level detailed information and high-level semantic in-
formation. In this way, the network gains the comple-
mentary information conveyed by multi-branch fusion.

To enhance the feature expression as well as to optim-
ize the network propagation, we investigate the merits of
separable (241)D convolution in video-based action re-
cognition. Analyzing the specialties of our STRNet, we
apply (2+1)D blocks in the early step of motion branch
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before the first-stage fusion layer, because the separable
(241) D convolution is of high pertinence to model spati-
otemporal features in early layers. Moreover, this type ar-
chitecture facilitates the network optimization.

3.3 Joint attention

Thanks to our multi-branch structure, the network
can learn different types of video feature representation.
Different branches may produce different effects. For ex-
ample, if the task has explicit background and fore-
ground, the appearance branch will make a great differ-
ence to the final classification. In addition, for complex
human-human or human-object interactive actions, it
needs to explore the deeper motion and relation informa-
tion. So how to combine the most useful feature informa-
tion from the multi-branch processing is an important is-
sue. For this purpose, we propose a joint attention mech-
anism to focus on discriminative classification result from
each branch. In our model, we adopt a horizontal classi-
fication strategy. According to different contributions to
the final classification, we calculate the weight score of
each individual branch output. Thus, we define the final
loss function as (5).

L= Lall + OlLa + BLm + "YLT (5)

where L, L., and L, are appearance, motion and relation
branch loss respectively, «, (B, and -+ are hyper-
parameters. The experiment shows that it has a positive
effect on the final result. We define the loss function L+
with cross entropy as (6).

L. = —t;log(y;) (6)

where t; means the ground-truth of class j.
3.4 Backward-propagation

We collect three losses from the triple-stream forward-
propagation and combine them to obtain the final loss.
Then the final weighted loss acts on each branch to ad-
just the network parameters as backward-propagation.

3.5 Instantiation

Our STRNet is generic, and it can be instantiated
with different backbonesl® 23: 53], In this subsection, we de-
scribe our instantiations of the network architectures.

As shown in Table 1, we use 3D ResNet-34[57 to con-
struct the motion branch, and Inception V4053 to build
the appearance branch and the relation branch separ-
ately. We use temporally strided 3D units as a substitute
for 2D convolutional block in appearance and relation
branch. For the convenience of fusion, the size of input is
denoted as NxCxTx224x224. We strictly define the
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Table 1 An instantiation of our STRNet. The dimensions of kernels are denoted by [TX HX W, C] for spatial-temporal and channel
sizes. For computational efficiency, we reduce the number of channels of the motion branch. We only apply two temporal
down sampling to keep the integrated temporal feature.

Layer name Output size Motion branch Layer name Output size Appearance & relation branch
Stem T X 56 X 56 1x3x3,64 Stem T X 56 X 56 1x3x3,64
1x3x%x3,64 ]
Stage 2 T X 56 x 56 3x1x1,64 | x3 Convolution T x 56 X 56 1x3x3,192
| 1x1x 1,64 i
1x3x3,64 ]
s xln 1 64 1x1x1,96
Stage 3 T x 28 x 28 x x4 X 4 Inception-A T x 28 x 28 X 4
1x3x3,96
| 1x1x1,128 |
3% 33 198 1x1x1,128 ]
Stage 4 g x 14 x 14 |:1 1 17 256] X Inception-B g x 14 x 14 1x1x7,256 | x7
XX | 1x7x1,256 |
1x1x1,256 |
3x3x3,128 ’
Stage 5 g XT7Tx7 |:1 1x1 512:| X Inception-C % X7TxX7 1x1x3, 256 X 3
XX 1x3x1,256 |

Average pool, concatenate, dropout, fully connected layer

stride of Inception V4 Stem so that we can apply suit-
able fusion in every stage.

Specifically, concatenation is used as our fusion meth-
od after stage 3 and stage 5. Furthermore, to keep the in-
tegrated temporal feature, we only apply two temporal
down sampling operations in stage 4 and stage 5 corres-
ponding to Inception-B and Inception-C in Table 1. Fi-
nally, we adopt global average pooling and a fully connec-
ted layer to calculate the classification score of each
branch. Then we get the final loss through joint atten-
tion method.

4 Experiments

In this section we first introduce four popular and
challenging datasets in the field of action recognition. We
then present the details of the implementation and the
experimental results to show the generalization of our ap-
proach. We evaluate and compare our proposed method
with the baseline and state-of-the-art methods. We fur-
ther investigate the superiority of our method from differ-
ent aspects. The baseline method in our experiment is
ECO-Full (efficient convolutional network for online
video understanding) where we replace the backbone with
ResNet-34 for fair comparison.

4.1 Datasets

We evaluate the performance of our STRNet on four
action recognition benchmarks: Something-Something
v1B8 Kinetics-4001'1), UCF-10158], and HMDB-5159. Ac-
cording to their space-time properties, these datasets can
be divided into two categories: 1) Scene-related datasets
including UCF-101, HMDB-51, and Kinetics-400 & 600 in

which the appearance of objects and scenes are the most
discriminative information for estimating the label of the
action class. Meanwhile, the numbers of sampled frames
and the sequence of the context play a relatively weak
role in these datasets, because the temporal relation is
not so important for final action classification. 2) Tem-
poral-related datasets, including Something-Something v1
& v2, where there is a strong correlation between the
context frames. To acquire a high recognition accuracy,
we must take the temporal relationship into significant
consideration. In view of the above video characteristics,
our proposed method can simultaneously model the spa-
tial and temporal information in an efficient way.

The UCF-101 is a popular and representative dataset
in action recognition. It contains 101 pre-defined classes
and 13 320 video clips. The HMDB-51 is composed of 51
action categories including 6 766 video clips. The Kinet-
ics is a large and challenging dataset which has two re-
leased versions, i.e., Kinetics-400 and Kinetics-600. The
Kinetics-400 contains 400 action classes and each class
has at least 400 videos. The Something-Something v1 is a
large video collection with detailed description labels
which contain temporal relationships including even caus-
al relationship based on human-object interactions. The
dataset contains 174 classes including 108 499 videos.

4.2 Implementation details

Our approach is implemented in the Pytorch framework
and all networks are trained on 4 GEFORCE RTX 2 080
Ti GPUs. In the following, we will describe the imple-
mentation details of our method.

Training. We train our STRNet with the same
strategy as mentioned in ECO due to its efficiency. The
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video is split into 7T subsections written S;, where
3=1,2,---,T of the same interval. We randomly select one
frame as a sample in each subsection. We collect these T'
frames as input in order to cover a long-range temporal
sequence from all frames and strengthen the robustness of
video variations. For data augmentation, we apply ran-
domly fixed-corner cropping and scale-jittering to the
sampled frames. Then, we resize the processed frames in-
to 224x224 for convolutional convenience. The size of the
input is NxCxTx224x224, where N is the batch size, C
denotes the number of channels (usually 3 for the first
layer) and T is the number of sampled frames. For the
Kinetics-400 datasets, we train our STRNet from scratch.
We initialize the weight parameters with the Xavier
method®0 which is known to be effective in most net-
works. The initial learning rate is 0.01 and decreases by a
factor of 10 at 60th and 80th epoch. We fine-tune the
Kinetics pre-trained model on UCF-101, HMDB-51 and
Something-Something datasets. The learning rate starts
with 0.001 and is decayed by a factor of 10 at the 15th
and 30th epoch. We set the momentum of 0.9 and weight
decay to 1x107* for all training steps. We use the syn-
chronized SGD training. The default number of sampled
frames is 16. After experimental verification, the hyper-
parameters «, 3 and 7 are set to 0.5, 0.8 and 0.5 respect-
ively on scene-related datasets, i.e., UCF-101 and Kinet-
ics. While a, 8 and 7 are set to 0.5, 0.5 and 0.8 respect-
ively on temporal-related datasets. That is to say, we
magnify the impact of temporal relation branch on final
classification.

4.3 Ablation study

The construction of the network. To study our
STRNet's performance in all aspects, we choose two well-
performing models (ARTNet39 and STME1) as baselines.
For the purpose of fairness and efficiency, we train UCF-
101 from scratch as a control experiment. The ARTNet
and the STM network proposed independent blocks
which can learn appearance and relation information in
an integrated manner. However, with the blocks stacking
up, the latter blocks cannot extract the spatial-temporal
and motion features explicitly on account of their mix-
ture in an early stage. For this reason, we explore an ex-
plicit and relatively independent way to learn the appear-
ance, motion and relation information through three
branches. Meanwhile, imitating the STM block, we build
the STR block, which can model the appearance, motion
and relation information in a specific block. The experi-
mental results are shown in Table 2 that our STRNet
with three branches outperforms other models.

The proposed multiple branch complementary
fusion strategy. The challenging factors of the action
recognition task include scene, object and motion inform-
ation. For the most scene-related datasets, the model may
often acquire a high accuracy from the 2D appearance
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Table 2 Comparison with different constructions
of the network

Method Accuracy (%)
SMART block (ARTNet) 58.2
STM block 59.8
STR block 59.5
STR branch 62.8

features (i.e., scene and object). However, exploring the
motion and relation information improves recognition ac-
curacy as well. In this case, we experimentally evaluate
several complementary fusion strategies. Similar to
TSN[6 and SlowFast(56! networks, we attach a cross-
branch connection between each two branches for every
residual block. It is worth mentioning that we choose the
motion branch as the main branch, then we fuse the ap-
pearance and relation branch into the motion branch sim-
ultaneously. The two-stage fusion refers to the lateral
connection that locates in the middle and the end of the
motion branch, graphic representation is shown in Fig. 1.
Likewise, the full-stage fusion means that we apply later-
al connection at every stage of the convolution. The ex-
perimental results are shown in Table 3. The reason why
the full-stage fusion gets inferior performance is that the
superfluous fusion renders the multi-type features hetero-
geneous, so the pertinence of each individual branch goes
unrewarded. In contrast, our two-stage fusion not only
explicitly learns the characteristics of each branch, but
also integrates the appearance, motion and relation in-
formation effectively in a complementary manner.

Table 3 Results of different fusion strategies

in our STRNet
Method Accuracy (%)
Without fusion 62.8
Two-stage fusion 63.2
Full-stage fusion 62.0

Network optimization. Consider fusing the appear-
ance and the relation information in the motion branch.
In other words, it improves the ability of characteristic
expression, but aggravates the network optimization bur-
den. We design two variants of our main motion branch.
The first is (24+1)D and 3D combination form, the second
is a full (2+1)D form. Specifically, in the first scheme, we
replace only the stage 2 and stage 3 block of 3D ResNet-
34 with a separable (24+1)D block to process the feature
maps before the fusion step. In another scheme, we re-
place all 3D blocks with (2+1)D blocks. The experiment-
al results in Table 4 indicate that our improved (24+1)D
joint 3D performs better than the full (2+1)D or full 3D.
In theory, the optimization becomes easier by separating
the 3D convolution into spatial and temporal compon-
ents. The separable (24+1)D convolution has strong ad-
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aptive ability to constitute spatiotemporal feature repres-
entation. While after our fusion step, we apply 3D blocks
for subsequent feature extraction. Because the 3D convo-
lution network is well equipped to model spatiotemporal
features and in the deep layers, it is more beneficial to
learn abstract semantic feature of action.

Study on the contribution of individual branch.
In order to verify the effectiveness of our model, we sep-
arate our STRNet in pairs for experiment. The results are
shown in Table 5, it illustrates that our motion branch
makes a major contribution to the feature learning. That
is the reason why we choose motion branch as our main
branch. However, it seems like the relation branch has
little effect on the result. The reason is that the UCF-101
is a scene-related dataset, but our relation branch fo-
cuses more attentions on the temporal relation of the
video sequence. More result analyses will be argued for in
the next part.

Experiment on hyperparameters. Due to our
multi-branch structure, the network can learn various
types of video feature representations. Each branch actu-
ally has a different influence on classification. In addition,
the effect of each branch differs from different character-
istics datasets. Based on this assumption, we set three
weight hyperparameters for verification. Through the ex-
periment, we find that on scene-related datasets, such as
UCF-101 and HMDB-51, when we magnify the motion
loss and reduce temporal loss relatively, it is beneficial to
the final classification. Whereas, the performance goes the
best when we magnify the relation loss and reduce mo-
tion loss on temporal-related dataset, e.g., Something-
Something v1. This also demonstrates the validity of our
relation branch from the perspective of prior probability.
The detailed statistics are shown in Table 6. Moreover, to
make our model more universal, we consider the motion
branch as the main force, the relation and appearance
branch as support branch. Thus, the default values of hy-

Table 4 Results of different main branch structure
of the network

Method Accuracy (%)
3D ResNet 63.2
(24+1)D ResNet 63.9
3D&(2+1)D ResNet 64.3
(241)D&3D ResNet 64.7

perparameters «, 8 and 7 are set to 0.5, 0.8 and 0.5 re-
spectively.

Effectiveness of the relation branch. As dis-
cussed above, our STRNet comprehensively learns the
spatiotemporal and motion relation information. In this
part, we will discuss how the temporal relation branch
works and why it performs significantly. We compare the
result of the model with and without the relation branch
in Table 7 on the Something-Something v1 dataset. It
shows that the relation branch brings a significant im-
provement (44.0% VS. 40.7%).

4.4 Results on Kinetics dataset

Based on the above research work, we evaluate our
STRNet on the Kinetics-400 dataset. Table 8 shows the
result of STRNet and other competing methods on the
Kinetics-400 dataset. From the evaluation results, we find
that most actions of Kinetics can be recognized by scene
and objects even from one static frame of video. There-
fore, we can manually adjust the parameters to achieve
acceptable accuracy referred to in (5).

4.5 Results on UCF-101 and HMDB-51

We apply our STRNet on the UCF-101 and HMDB-51
datasets to compare its performance with the state-of-the-
art methods. Following the official evaluation metrics, we
test our methods over three splits and report the average
results in Table 9. In view of the experience of the previ-
ous best performing approaches, we apply transfer learn-
ing on these datasets. Specifically, we first pre-train our
model on Kinetics-400 for 40 epochs. Then, we finetune
the network on UCF-101 and HMDB-51 datasets. The
results indicate that the pre-trained model indeed signific-
antly improves the performance on the small dataset.
Compared to two-stream methods such as I3D and TSN,
although our method is slightly worse, two-stream meth-
ods need to extract optical-flow which induces redundant
computation, whereas our method only uses RGB frames
as input.

Table 6 Experiments on hyperparameters

Table 5 Results of different branching combinations
of the network

o 8 5 UCF-101 S-S v1(%)
0.8 0.5 0.5 63.8 43.2
0.5 0.8 0.5 64.7 43.5
0.5 0.5 0.8 64.0 44.0
0 0 0 63.1 42.8

Method Accuracy (%)
Appearance + Motion 63.2
Appearance + Relation 59.5
Motion + Relation 63.0
Full 64.7

Table 7 Demonstrating the effectiveness of the relation branch;
trained on Something-Something v1 from scratch.

Method Accuracy (%)
STRNet without Relation-branch 40.7
STRNet 44.0
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Table 8 Performance of our STRNet on Kinetics-400 dataset compared with state-of-the-art methods. For a fair comparison,
we only use RGB input and train from scratch on Kinetics.

Method Flow Backbone Frames FLOPs Top-1(%) Top-5(%)
Spatio-temporal channel correlation network (STC)[61] ResNet-101 16 - 68.7 88.5
TSN RGBI6] BNInception 16 80G 69.1 88.7
TSN two-stream v BNInception 16 - 73.9 91.1
13DMY Inception V1 64 359G 71.4 89.3
I3D two-stream v Inception V1 64 - 74.2 91.3
Spatiotemporal-separable 3D convolution (S3D)[62 Inception V1 64 - 72.2 90.6
ARTNet?39 3D ResNet-18 16 34G 69.2 88.3
SlowFast[56] 3D ResNet-101 16+8 234G 79.8 93.9
Temporal shift module (TSM)[63] ResNet-50 16 65G 74.7 90.7
STM21] RseNet-50 16 67G 73.7 91.6
ECOBT BNInception +3D ResNet-18 92 267G 70.7 89.4
STRNet(ours) Inception V443D ResNet-34 16 103G 75.0 92.1

Table 9 Comparison with state-of-the-art methods on the UCF-101 and HMDB-51 datasets. The accuracy is reported as average over
three splits. The model is pre-trained only on Kinetics and performs pretty well. And we only use RGB frames as input.

Method Flow Backbone Pre-train UCF-101(%) HMDB-51(%)
C3D7] 3D VGG-11 Sports-1M 82.3 51.6
TSN RGBI16] BNInception ImageNet + Kinetics 91.1 -
TSN two-stream \/ BNInception ImageNet + Kinetics 97.0 -
13DI[1] Inception V1 ImageNet 95.1 74.3
I3D two-stream \/ Inception V1 ImageNet 98.8 80.7
ARTNetB 3D ResNet-18 Kinetics 94.3 70.9
ECOB7] BNInception 43D ResNet-18 Kinetics 94.8 72.4
TSMI63] ResNet-50 ImageNet + Kinetics 94.5 70.7
STM21 RseNet-50 Kinetics 96.0 72.7
STRNet(ours) Inception V443D ResNet-34 Kinetics 96.7 73.1

4.6 Results on Something-Something

Something-Something v1 is a large and challenging
dataset with densely-labeled video clips. As a temporal-
related dataset, the video mainly consists of human-ob-
ject interactions whose sequential order is strictly direc-
tional. Meanwhile, some of the videos are confusing even
possessing a causal relationship, such as “Pretending to
pour something out of something, but something is
empty.” and “Putting something that cannot roll onto a
slanted surface, so it stays where it is.” As a consequence,
most action recognition methods cannot reach a very high
accuracy on this challenging dataset. Our STRNet is de-
signed to simultaneously model the spatial and temporal
relationship. Table 10 displays the results of our method
and state-of-the-art methods. Without the optical flow
stream, our method achieves a state-of-the-art result.
Compared to ECO method, our STRNet exhibits a 4.3%
improvement only with 16 frames inputs. Our approach
achieves the best performance on top-1 test and top-5
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validation sets.

4.7 Evaluation on COIN dataset

The COINI® dataset consists of 11 827 videos related
to 180 different tasks. It is currently the largest dataset
for comprehensive instructional video analysis. It also can
be applied for action recognition mission. The compre-
hensive instructional video analysis (COIN) dataset has a
hierarchical dictionary. We choose the second level
“Task” as the label to generalize on action recognition
mission. We analyze the COIN dataset and relevant ex-
periment. The length of the video ranges from 2min to
10min, and most videos have descriptive subtitles and
narrative frames which are the disturbance term for mo-
tion and relation modelling. In addition, these instruc-
tional videos contain lots of shot cuts of the camera.
Thus, we apply cluster sampling on a video rather than
random sampling in experiments to capture the effective
action. Table 11 shows the result of our STRNet and oth-
er competing methods on the COIN dataset which
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Table 10 Comparison with state-of-the-art methods on Something-Something v1 dataset. We pre-train our model on
Kinetics and we only use RGB frames as input.

Method Backbone Pre-train Frames Top-1val (%) Top-5val (%)  Top-1 test (%)
TRNM3] BNInception ImageNet 8 34.3 - 33.6
S3Dl62l Inception V1 ImageNet 64 48.2 78.7 42.0

13D RGB! Inception V1 ImageNet 4 Kinetics 32 41.6 72.2 -

TSN RGB! BNInception Kinetics 16 19.7 46.6 -
ECO7] BNInception +3D ResNet-18 Kinetics 92 46.4 - 42.3
STMI21] RseNet-50 ImageNet 16 50.7 80.4 43.1
TSMI63] ResNet-50 ImageNet + Kinetics 16 46.8 76.1 -

STRNet(ours) Inception V443D ResNet-34 Kinetics 16 50.7 80.6 43.5

Table 11 Results on the COIN dataset

Method Accuracy (%)
TSN 88.0
ECOPT 88.3
STRNet 89.1

demonstrates the advantage on accuracy of our network.

5 Conclusions

In this paper, we propose a novel architecture called
STRNet, which is designed to learn comprehensive spati-
otemporal and motion relation features from videos. One
of our key innovations is that we construct the relation
branch via utilizing the correlation and similarity of the
contexts. Compared to previous stacking-block based net-
works, our method has an intuitive sense of interpretabil-
ity. Besides, our STRNet takes advantage of the 1D, 2D
and 3D convolutional networks for spatiotemporal fea-
ture learning. The effectiveness of the proposed STRNet
is verified by experiment on several challenging bench-
mark datasets on action recognition. However, high ac-
curacy comes at the expense of large parameters, also our
network is of poor portability due to the specific multi-
branch architecture. For a future study, we plan to make
our STRNet more light-weight by knowledge distillation.
We also plan to apply our STRNet to other pattern re-
cognition tasks based on videos.
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