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Abstract:   The conventional troubleshooting methods for high-speed railway on-board equipment, with over-reliance on personnel ex-
perience,  is  characterized by one-sidedness and  low  efficiency.  In  the process of high-speed  train operation, numerous  text-based on-
board logs are recorded by on-board computers. Machine learning methods can help technicians make a correct judgment of fault types
using the on-board log reasonably. Therefore, a fault classification model of on-board equipment based on attention capsule networks is
proposed. This paper presents an empirical exploration of the application of a capsule network with dynamic routing in fault classifica-
tion. A capsule network can encode the internal spatial part-whole relationship between various entities to identify the fault types. As
the importance of each word in the on-board log and the dependencies between them have a significant impact on fault classification, an
attention mechanism is incorporated into the capsule network to distill important information. Considering the imbalanced distribution
of normal data and fault data in the on-board log, the focal loss function is introduced into the model to adjust the imbalanced data. The
experiments are conducted on the on-board log of a railway bureau and compared with other baseline models. The experimental results
demonstrate that our model outperforms the compared baseline methods, proving the superiority and competitiveness of our model.
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1   Introduction

Chinese  train  control  system  level  3  (CTCS-3)  is

widely used in the 300 km/h high-speed railway. It is the

key technical  equipment  for  the  Chinese  railway to  con-

trol  electric  multiple  unit  (EMU)  trains,  ensure  traffic

safety  and  improve  transportation  efficiency.  On-board

equipment is an important train operation control equip-

ment in  CTCS-3.  On-board  equipment  has  high  reliabil-

ity, but  failures  often  occur  due  to  uninterrupted opera-

tion in a complex and changeable environment for a long

time.  The  large-scale  equipment  system  is  composed  of

various working  modules,  and each module  is  closely  re-

lated.  The  failure  of  some  modules  will  often  produce  a

chain  reaction,  and  in  serious  cases,  it  will  lead  to  the

failure of the whole production process[1]. Timely and ac-

curate fault location of on-board equipment is an import-

ant  link  to  ensure  train  operation  safety  and  equipment

health  maintenance.  When  the  on-board  equipment  is

working, operation  status  information  of  each  unit  mod-

ule is stored in the on-board safety computer in the form

of  a  text  log.  After  the  end  of  the  train  operation,  the

status  of  each  unit  module  is  analyzed  by  downloading

the  on-board  log.  At  present,  the  on-board  equipment

diagnosis  is  mainly  through  the  technical  staff  to  check

the on-board log to identify the fault type. This way in-

creases the labor cost and operation difficulty and has the

possibility of misjudgment and omission.

For  years,  many  scholars  have  researched  intelligent

fault classification and diagnosis, including Bayesian net-

work[2, 3],  support  vector  machine (SVM)[4], backpropaga-

tion  neural  network[5],  etc.,  which  have  been  applied  in

the fault  classification of  on-board equipment effectively.

The quantities of data in the on-board log are great, and

the  relationship  between  the  operation  status  of  the

equipment is  complex.  The  probability  of  normal  opera-

tion of on-board equipment is much greater than that of

failure probability, so there is an imbalance between nor-

mal and fault samples. There are two problems in the ex-

isting  research  methods  of  the  on-board  equipment  fault

classification.  First,  the  traditional  feature  extraction

methods of the on-board log, such as the topic model[2, 4]

and  vector  space  model  (VSM)[3, 5], ignore  the  relation-

ship  between  contexts,  and  it  is  not  easy  to  extract  the

deep structure and semantic features of the on-board log.
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Second, most classifiers are based on the class balance hy-

pothesis and aim to maximize the classification accuracy,

which  cannot  scientifically  evaluate  imbalanced  samples′
classification effect.

The artificial neural network has been widely used in

fault  classification  because  of  its  good  nonlinear  fitting

ability[6]. With the development of deep learning techno-

logy, convolutional neural networks (CNN) based on deep

learning  have  gradually  become  the  research  trend  in

classification tasks because of their ability to extract loc-

al  deep  features  of  samples[7, 8]. CNN  uses  the  convolu-

tion operation to extract the low-level features and pool-

ing operation to retain significant features. However, the

pooling operation can filter out the local position informa-

tion and overall sequence structure of the text when mod-

eling a text sequence such as the on-board log[9]. Capsule

network  (CapsNet)  was  proposed  by  Sabour  et  al.[10] to

address  the  limitations  of  deep  neural  networks.  The

CapsNet uses  vector-output  capsules  to  replace  the  scal-

ar-output feature extractors used in CNN and uses a dy-

namic routing mechanism to solve information loss caused

by pooling operations. Yang et al.[11] proposed a text clas-

sification model based on CapsNet. This work proves that

the classification effect of CapsNet is better than that of

CNN  and  long  short-term  memory  (LSTM)  models.

However, CapsNet cannot selectively pay attention to the

key contents of the text. Different words in the on-board

log have different effects on the fault classification results.

Effective feature extraction of key content helps make the

network pay close attention to the key information in the

training  stage  of  the  classification  model.  The  attention

mechanism[12] can  better  solve  this  problem.  In  natural

language processing,  an  attention  mechanism  can  effect-

ively improve  the  effectiveness  of  tasks  such  as  generat-

ive dialog[13] and target-based sentiment analysis[14].  Kim

et al.[15] proposed a text classification model based on at-

tention  and  CNN,  but  the  low-efficiency  of  CNN coding

limits this model.

This  paper  proposes  a  fault  classification  model  for

high-speed railway  on-board  equipment  based  on  atten-

tion  capsule  networks  to  better  distill  the  information

from the on-board log and deal with class imbalance. The

primary contributions of this study can be summarized as

follows:

1) An attention mechanism of word embedding is  in-

corporated into the network to capture the most import-

ant information  in  the  on-board  operation  status  state-

ment.

2)  The  capsule  network  based  on  dynamic  routing  is

used to learn the part and whole association information

of  the  on-board  log  to  improve  the  feature  extraction

ability and classification effect of the model.

3)  In  the  presence  of  class  imbalance,  well-classified

samples  comprise  the  majority  of  the  loss  and  dominate

the  gradient.  Therefore,  based  on  the  cross-entropy  loss

function, a weighting factor and a dynamically modulat-

ing factor are introduced to construct a multi-class focal

loss  function  to  down-weight  the  loss  assigned  to  well-

classified samples.

To verify the correctness and effectiveness of the mod-

el, this  work  uses  the  on-board  data  provided  by  a  rail-

way  bureau  to  compare  this  model  with  several  other

baseline  models.  The  experimental  results  show that  the

model has a good effect on the fault classification of high-

speed railway on-board equipment. 

2   Background material

CTCS-3 is  composed  of  on-board  equipment  and  lin-

eside  equipment.  The  on-board  equipment  is  connected

with  external  equipment  such  as  EMU  and  monitoring

equipment  through  the  external  interface.  The  overall

structure  of  CTCS-3  is  shown  in Fig. 1[4, 16, 17].  The  on-

board equipment  of  CTCS-3  is  designed  with  a  distrib-

uted structure, and the functions of each module are rel-

atively  independent.  Each  module  is  connected  by  bus.

The main control unit of on-board equipment mainly in-

cludes  automatic  train protection control  unit  (ATPCU)

and  CTCS-2  control  unit  (C2CU),  which  are  the  core

computing control unit of CTCS-3 and CTCS-2, respect-

ively. The driver machine interface (DMI) is used to real-

ize  the  information  exchange  between  driver  and  on-

board equipment.  The train interface unit  (TIU) is  used

for the interface between on-board equipment and EMU.

The radio  transmission  module  (RTM)  is  used  to  con-

nect the on-board radio and global system for mobile-rail-

way (GSM-R) to realize the two-way transmission of in-

formation  between  on-board  equipment  and  lineside

equipment.  The  vital  digital  input/output  (VDX)  is  the

interface  between  the  on-board  equipment  and  the  TIU,

used for  the input and output of  relevant safety signals.

The balise transmission module (BTM) is used to receive

the balise information and feed it back to the main con-

trol unit. The track circuit receiver (TCR) is used to re-

ceive  track  circuit  information.  The  speed  and  distance

unit (SDU) is used to receive the pulse signal collected by

speed  sensors  and  radars  and  generate  speed,  distance,

and  direction  information.  The  juridical  recorder  unit

(JRU) is used to record the original information collected

by on-board equipment and the control  information out-

put by on-board equipment during train operation[4, 16, 17].

In the  research  of  fault  classification,  the  classifica-

tion  criterion  is  essential[18].  To  classify  the  types  of  on-

board  faults,  this  paper  refers  to  the  training  materials

for high-speed railway technicians[16] and the relevant lit-

erature[4, 17] on the fault  research of  on-board equipment

and combines the work experience of on-site technicians.

After the summary, it can be found that the modules of

CTCS-3  on-board  equipment  with  frequent  faults  are

mainly  concentrated  in  the  seven  parts:  ATPCU,  DMI,

TIU, RTM, VDX, BTM, and SDU. When each unit mod-

ule  fails,  it  will  produce  specific  fault  types.  Therefore,

aiming at  the  modules  with centralized fault  occurrence,

20  typical  fault  types  with  high  frequency  are  defined,
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covering most faults. The fault modules, fault types, and

some  operation  state  statements  of  on-board  equipment

are  shown in Table  1.  It  can be seen that  the operation

status  statements  are  mainly  described  in  a  short  text.

The fault descriptions of the same fault type are diverse,

and  the  same  description  will  appear  in  different  faults.

The probability  of  normal  operation  of  on-board  equip-

ment is much greater than failure, so the samples collec-

ted  in  the  normal  state  (majority  class)  are  many  more

than  the  fault  samples  (minority  class).  Therefore,  it  is

necessary  to  establish  a  model  suitable  for  imbalanced

text  classification  to  achieve  the  fault  classification  of

high-speed railway on-board equipment. 

3   Fault classification model of on-board
equipment based on attention capsule
network

To solve  this  problem  effectively,  an  attention  cap-

sule network  (ATT-Capsule)  model  for  fault  classifica-

tion of  high-speed  railway  on-board  equipment  is  pro-

posed,  which  is  illustrated  in Fig. 2.  It  consists  of  five

parts: an embedding layer, an attention layer, a convolu-

tional layer, a primary capsule layer, and a fully connec-

ted  capsule  layer.  The  embedding  layer  uses  the

word2vec[19] method to convert the operation status state-

ments of the on-board log into low-dimensional word em-

bedding. The attention layer focuses on the important in-

formation  by  calculating  the  correlation  score  between

words  and  creates  a  context  vector  for  each  word.  The

convolutional  layer  uses  convolution filters  to extract  N-

gram features from different positions of the text vectors

to  construct  feature  maps.  The  primary  capsule  layer

combines  the  N-gram  features  extracted  from  the  same

location. Finally, the fully connected capsule layer is used

to  synthesize  the  characteristic  information  of  the

primary capsule layer to generate the final fault type. 

3.1   Embedding layer

X ∈ Rn×d n

d

The word2vec method is used to convert each word in

the  operation  status  statements  into  a  low-dimensional

real-value  vector,  capturing  the  syntactic  and  semantic

information in the on-board log. After preprocessing, the

on-board  log  is  represented  as  the  serialized  data.  The

words  in  the  sample  are  spliced  sequentially  to  compose

an  input  embedding  matrix ,  where  is  the

length  of  the  longest  operation  state  statement  in  the

sample  set,  and  is the  dimension  of  the  word  embed-

ding. 

3.2   Attention layer

An attention mechanism is incorporated into the mod-

el to make the fault classification model focus on the im-

portant and distinguishable information to the classifica-

tion  results.  The  attention  mechanism[20, 21] of word  em-

bedding is mainly aimed at the text content. The idea is

to calculate the correlation score between each word and

other  words  in  the  text  and  create  a  context  vector  for

each  word.  The  context  vector  is  concatenated  with  the

word embedding as a new word representation fed to the

convolutional layer.  This method enables the network to

focus on specific significant words in the text with a high-

er correlation score with other words, which contain more

important distinguishing information.

xi ∈ Rd

hi

xi

hi hi

Suppose  is  the d-dimensional word  embed-

ding  of  the i-th  word  in  a  sample  and  is  the  context

vector corresponding to . Take turns to take each word

as the target word and find its corresponding . The 

is combined in a weighted sum:
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Fig. 1     Structure of CTCS-3
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hi =

n∑
j=1,j ̸=i

αi,j × xj (1)

αi,j αi,j ≥ 0
n∑

j=1

αi,j = 1

where  are  called  attention  weights,  and ,

.  Using  softmax  normalization  to  realize  the

allocation of attention weights.

αi,j=
exp (score (xi, xj))

n∑
j′=1

exp (score (xi, xj′))

(2)

where  the  score  function  in  (2)  is  used  to  calculate  the

correlation  score  between  two  words,  which  can  be

calculated by training a feedforward neural network.

score (xi, xj)=vT
a tanh (Wa [xi ⊕ xj ]) (3)

va Wawhere  and  are  the  weights  to  be  learned  in

network  training.  The  higher  the  correlation  scores,  the

greater the attention weights.

hi

xi xi
′

The context  vector  is  concatenated with  the  word

embedding  as the extended vector :

xi
′ = hi ⊕ xi (4)

 

Table 1    Fault type of on-board equipment

Fault
module

Number Fault type Operation state statements
Fault

module
Number Fault type Operation state statements

BTM

F1
BTM port

invalid

[BTMS] BTM1 status
telegram invalid.
StatusPort invalid in BTM1.

VDX

F11
VDX

telegram
invalid

BI-H A VDX1 telegram
state = 4 (invalid).
BI-H A telegram from VDX1
is not valid.

F2
BSA startup

error

Report failure inactive
BTM1:
Startup test strategy
mismatch.
BSA Permanent Error,
inactive BTM1.

F12
VDX port
invalid

BI-H VDX1:IN3 I/O failed.

F3
BSA

temporary
error

[BTMS] BSA temporary
error.
BSA Temporary Error,
active BTM1.

TIU

F13

Emergency
brake relay
(EBR) state

wrong

BI-H EBR1 feedback
timeout.
VDX EBR1 port switched to
invalid.

F4
BSA

permanent
error

[BTMS] BSA permanent
error.
BSA Permanent Error,
inactive BTM1.

F14

Brake
feedback

relay (BEB)
state wrong

Wrong feedback. Timeout
expires 66523.
Time 64 623 BI-H EBFR
state wrong.

F5
BTM test
timeout

[BTMS] startup test
timeout.
BSA TestInProgress, active
BTM1.

F15
Bypass

relay (BP)
state wrong

Bypass failed.
VDX bypass port switched
to invalid.

F6
All zero
balise

message

[BGH] Expected balise not
found.
IL A Detect balise reported.

F16
Cab activation
(CabAct) relay

state wrong

Direction control failure.
Invalid direction signal
combination received.

ATPCU

F7
Kernel mode
transition
invalid

(MS) A-kernel mode
transition invalid.

SDU

F17 Radar error Speed sensor failure 1.

F8
MA A/B

code
inconsistent

VC: end of MA!
a=1 145 772 832,
b=1145582832.
VC: start of MA!
a=1 143 838 732,
b=1143676832.

F18 Tacho error Tacho Error 1.

F9
Level transition

A/B code
inconsistent

VC: etcs level! a=3, b=5. RTM F19 Radio timeout

Level changed to LSTM,
NID=45, orderby=2.
[RS] NVCONTACT
time_out reaction SB.

F10

RBC
handover
A/B code

inconsistent

VC: RBCHandover! a=1,
b=0.

DMI F20
DMI

hardware
failure

IO reported stopping failure.
B-code: MMI down in active
cabin.

*Abbreviations: BTMS balise transmission module supervisor; BTM1: Balise transmission module 1; BSA: Balise service available; BGH: Balise
group handover; MS: Maintenance service; VC: Vital compare; MA: Movement authority; etcs: European train control system; RBC: Radio block
center; BI-H: Brake interface handler; VDX1: Vital digital input/output 1; IN3: Input port 3; I/O: Input/output; EBR1: Emergency brake relay 1;
EBFR: Emergency brake feedback relay; LSTM: Level specific transmission module; NID: Identification number; RS: Radio signal; SB: Stand-by
mode; MMI: Man machine interface.
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xi
′ ∈ R2d

X ′ ∈ Rn×2d xi
′

where the extended vector . A new text matrix

 is  constructed  by  stitching  together ,

which will be fed to the convolutional layer. 

3.3   Convolutional layer

This layer  is  a  standard  convolutional  layer  that  ex-

tracts the N-gram features of the input text matrix at dif-

ferent  positions  through  the  convolution  operation.  The

convolutional layer is connected to a local area of the up-

per  layer  by  a  convolution  filter.  The  locally  weighted

sum is  passed  to  the  non-linear  activation  function,  and

the final  output  value  of  the  convolutional  layer  is  pro-

duced.

k

wi ∈ Rc×2d

c

2d

mi

Suppose  that  there  are  convolution  filters  with  the

stride of 1 in the convolutional layer.  repres-

ents the i-th filter for the convolution operation, where 

is  the  window  size  of  the  filter  used  to  identify  the  N-

gram local  feature  and  is  the  dimension  of  the  input

text matrix. Each filter performs a convolution operation

on the  sliding over  the  text  matrix  from top to  bottom.

The feature map  generated by the i-th filter is

mi = f (wi · li:i+c−1 + bi) ∈ Rn−c+1 (5)

li:i+c−1 c

bi f

k k

where  represents a continuous  word embedding,

 is  bias,  is  a  non-linear  activate  function  rectified

linear  unit  (ReLU).  When  there  are  filters,  feature

maps can be obtained, which are defined as

M = [m1,m2, · · · ,mk] ∈ R(n−c+1)×k. (6)
 

3.4   Primary capsule layer

The primary capsule layer is the first capsule layer in

the network, which uses vector-valued capsules instead of

the  scalar-valued  feature  extractors  of  a  convolutional

neural network  to  combine  the  N-gram  features  extrac-

ted  from  the  same  location.  The  primary  capsule  layer

can extract different attributes of a certain feature in the

text,  such  as  the  location  information  of  the  word,  the

syntactic and semantic information of the text.

Mi
′(i = 1, 2, · · · ,

n− c+ 1)

Mi
′ M

l1
zi ∈ R1×k

Mi
′ pi

The primary capsule  layer  is  a  combination of  differ-

ent  attributes  of  the  vector-matrix 

 with N-gram length 1 in the convolutional lay-

er, and  is the i-th row vector of . Suppose that the

dimension  of  the  primary  capsule  is ,  the i-th  primary

capsule filter is . Each filter is convoluted with

 in step of 1, then the feature map  of each filter can

be generated:

pi = g
(
zi ·Mi

′ + ei
)
∈ Rn−c+1 (7)

ei g

l1
ui ∈ R(n−c+1)×l1 i ∈

{1, 2, · · · , q}

where  is  the  bias  term,  is  a  non-linear  activate

function. Since each capsule includes  filters, the output

vector  of  each  capsule  is .  For 

, the output of the primary capsule layer can

be obtained, which are defined as

U = [u1, u2, · · · , uq] ∈ R(n−c+1)×l1×q. (8)
 

3.5   Fully connected capsule layer

The  last  layer  of  the  network  is  the  fully  connected

capsule layer used to get the class capsule:

Y = [y1, y2, · · · , yj ] ∈ Rj×l2 (9)

yj ∈ Rl2

U

uj|q Y

where  represents  the j-th  class  capsule.  The

capsule matrix  obtained from the primary capsule layer

is  linearly  transformed  to  obtain  the  prediction  vector

,  and  the  final  class  capsule  is  produced  by  the

dynamic  routing  algorithm.  The  structure  of  the  fully

connected capsule layer is shown in Fig. 3. The output of

 

Embedding layer Attention layer

d 2d

Convolutional layer

k

Primary capsule

layer

Fully connected

capsule layer
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Correlation
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Fig. 2     Structure of fault classification model for on-board equipment
 

 818 International Journal of Automation and Computing 18(5), October 2021

 

CASIA
 O

pen
IR



the class capsule is a vector, and the norm of the capsule

vector represents the probability for each type. 

3.6   Dynamic routing

The structural  relationship between the primary cap-

sule layer and the fully connected capsule layer is shown

in Fig. 3.  The  calculation  process  includes  two  stages:

transformation  matrix  and  dynamic  routing.  First,  the

prediction vector is obtained by transforming the matrix

of each capsule in the primary capsule layer:

uj|q = uq × wqj (10)

uq wqjwhere  is the output of the primary capsule and  is

a transformation matrix. Then, the prediction vector can

be calculated:

Sj =
∑
q

cqj×uj|q (11)

cqj

q

cqj
Sj

Sj

where  is  the  coupling  coefficient,  which  can  be

determined by the iterative dynamic routing process. The

coupling  coefficient  represents  the  connection  weight

between  each  lower  capsule  layer  and  the  corresponding

upper  capsule  layer.  For  each  capsule ,  the  sum  of  all

weights  is  1.  According  to  the  method  of  Sabour  et

al.[10],  is  compressed  and  redistributed  by  the  squash

function, and the norm of  is transformed to 0−1.

yj =
∥Sj∥2

1 + ∥Sj∥2
× Sj

∥Sj∥
(12)

yj

yj
Sj yj

Sj

Sj

where  is  the  output  vector  of  the j-th  capsule  in  the

fully  connected  capsule  layer.  The  first  half  of  (12)  is  a

nonlinear squashing function，and its main function is to

constrain  the  length  of .  The  second half  of  (12)  is  to

unify the  and make its direction consistent with . So

the squashing function only changes the length of  and

does not change the direction of .

cqj

The  dynamic  routing  algorithm  learns  the  nonlinear

mapping  relationship  between  the  prediction  layer  and

the  full  connection  layer  in  an iterative  way.  It  depends

on the  softmax  function  to  update  the  coupling  coeffi-

cient  constantly.

cqj =
exp (bqj)∑

k

exp (bqk)
(13)

bqj ← bqj + uj|q × vj (14)

bqj q

j

uj|q

vj
bqj

cqj

where  represents the prior probability that capsule 

couples  to  capsule ,  and  its  initial  value  is  0.  The

similarity  between  the  vectors  is  judged  by  the  inner

product  of  the  prediction  vector  of  the  primary

capsule  and  the  output  vector  of  the  full  connection

layer capsule. Then update  iteratively and update the

coupling coefficient  accordingly.

The process of dynamic routing is summarized in Al-

gorithm 1.

Algorithm 1. Dynamic routing

uj|qInput: Prediction vectors ,  routing iteration times

T.

yjOutput: Class capsule vectors 

bqj ← 0
1) for all capsule q in lower-level and capsule j in higher-

level: 

2) for T iterations do

3) 　　for all  capsule q in  lower-level  and  capsule j in

higher-level:

cqj ← softmax (bqj)4) 　　　　

5) 　　for all capsule j in higher-level capsule:

Sj ←
∑
q

cqj×uj|q6) 　　　　

yj ← squash (Sj)7) 　　　　

bqj ← bqj + uj|q × vj8) 　　　　

yj9) return  

3.7   Loss function

As for the loss function, the focal loss is applied to the

ATT-Capsule  model.  Focal  loss  is  proposed  by  Lin  et

al.[22] as  a  binary  classification  problem  for  dense  object

detection initially,  which addresses  the few-shot problem

by  reshaping  the  standard  cross-entropy  loss,  it  down-

weights  the  loss  assigned  to  well-classified  examples.  In

this  paper,  a  loss  function  is  constructed  by  referring  to

the  focal  loss  function  to  solve  imbalanced  text  multi-

class classification.

The  standard  cross-entropy  loss  function  is  shown  in

(15):

fCE = − 1

D

D∑
i=1

C∑
j=1

p̂ij log pij (15)

D Cwhere  is  the  number  of  training  samples,  is  the
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Fig. 3     Structure of the fully connected capsule layer
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p̂

p

α

α

number of target classes.  is a variable. If the prediction

class  is  the  same  as  the  actual  class,  it  is  equal  to  1.

Otherwise,  it  is  equal  to  0.  is  the  probability  of  the

prediction  class.  Cross  entropy  loss  function  treats  all

samples  equally.  To  control  the  contribution  of  each

sample  to  the  loss,  a  weight  factor  is  introduced  to

weaken  the  influence  of  majority  class  samples  on  the

loss. The -balanced CE loss can be written as

fBCE = − 1

D

D∑
i=1

C∑
j=1

αj p̂ij log pij . (16)

(1−p̂ij)γ γ

Equation (16) is to balance the difference between the

number  of  samples.  To  further  differentiate  between

easy/hard  samples,  a  dynamically  modulating  factor

 is  introduced  based  on  (16),  where  is a  tun-

able  focal  parameter.  By  reshaping  the  loss  function  to

down-weight  easy  examples  and  thus  focus  training  on

hard negatives. The multi-class focal loss function can be

written as

fFL = − 1

D

D∑
i=1

C∑
j=1

αj(1−p̂ij)γ p̂ij log pij . (17)

αj(j =

1, 2, · · · , C) αj

In  the  case  of  multi-class  classification,  a 

 is set for each class and  is used to control

the  weights  of  different  classes.  In  model  training,  to

solve the problem of vanishing gradient and improve the

convergence  rate,  batch  normalization[23] is  added  after

the convolution operation of the model, and then the ac-

tivation  function  is  used  for  the  operation.  The  ATT-

Capsule  model  uses  the  adaptive  moment  estimation

(Adam) optimization method to minimize the multi-class

focal  loss.  The  hyperparameters  of  multi-class  focal  loss

are determined by experiments. 

4   Experiments
 

4.1   Dataset and evaluation metrics

To verify the effectiveness of the proposed ATT-Cap-

sule  model  for  fault  classification  of  high-speed  railway

on-board equipment, this paper takes the on-board equip-

ment  of  CTCS-3  as  the  research  object,  and  carries  out

experiments on 20 kinds of on-board equipment faults lis-

ted in Table 1 through the proposed ATT-Capsule model.

The  experimental  data  are  taken  from  the  on-board  log

provided by the electricity department of  a railway bur-

eau. The dataset consists of 3 152 samples with 21 classes,

among which the fault  numbers  F1 to F20 are  classified

as  classes  1  to  20,  and  the  normal  operation  class  N  is

classified as class 21. The ratio in which the data are di-

vided among training, verification, and testing is 6:2:2 so

that model can be trained and verified on sufficient data

and at the same time has enough data to test the effect of

the  model  on  the  classification  of  on-board  equipment

fault.

The  fault  classification  of  on-board  equipment  is  an

imbalanced multi-class classification problem, and the ac-

curacy is not enough to fully evaluate the fault classifica-

tion performance of the model. Because even if the minor-

ity class  fault  samples  are  misclassified,  the overall  fault

classification accuracy of the classifier is still very high. In

order to  scientifically  evaluate  the  fault  classification  ef-

fect  of  the  proposed  model,  precision  (Macro-P),  recall

(Macro-R),  and F1-Measure (Macro-F1) are used as the

evaluation metrics, which can be computed by

Macro-P =
1

K

K∑
i=1

Pi (18)

Macro-R =
1

K

K∑
i=1

Ri (19)

Pi Ri iwhere  and  represent  the  precision  and  recall  of .

F1-Measure  is  a  combination of  recall  and precision  and

helps understand the results much better than the other

metrics shown in (20). The following formula gives

Macro-F1 =
1

K

K∑
i=1

Fi =
1

K

K∑
i=1

2× Pi ×Ri

Pi +Ri
. (20)

 

4.2   Experiment settings

First,  the  word2vec  method  is  used  to  convert  each

word in  the  on-board  equipment  operation  status  state-

ments into word embedding, and in the experiments, the

dimension  of  the  word  embedding  is  set  to  300.  In  the

ATT-Capsule  on-board  equipment  fault  classification

model, three kinds of filter windows are set for the convo-

lutional layer to extract the low-level local features of dif-

ferent operation status statement lengths. The number of

capsules in the primary capsule layer is set to 10, and the

dimension is 12. An Adam optimizer with a learning rate

of 1×10−3 is used.

To  evaluate  the  performance  of  the  ATT-Capsule

model  in  fault  classification  of  high-speed  railway  on-

board equipment, this paper will evaluate the fault classi-

fication effect of the model from three aspects: 1) Discuss

the influence  of  model  parameters  on  on-board  equip-

ment fault classification. 2) Compare our proposed model

with several strong baselines to evaluate the effectiveness

of our model in fault classification. 3) Verify the effect of

introducing an attention mechanism into the capsule net-

work on the fault classification of on-board equipment.

In order  to verify  the fault  classification effect  of  the

proposed model, several representative classification mod-

els  are  selected as  baseline models  for  fault  classification

 820 International Journal of Automation and Computing 18(5), October 2021

 

CASIA
 O

pen
IR



on the  same  on-board  equipment  fault  data  set,  includ-

ing  statistical  machine  learning  method,  LSTM,  and  its

bidirectional  variant,  CNN  and  its  variation  methods,

and capsule-based models.

Support vector machine (SVM)[4]:  SVM uses a kernel

function to map data points in low-dimensional space to

high-dimensional space to realize the classification of non-

linear separable sample data.

Random  forest  (RF)[24]:  RF  is  an  ensemble  classifier

with  several  decision  trees.  The  predicted  class  for  a

sample is computed by aggregating the predictions of de-

cision trees through majority voting.

LSTM[25]:  LSTM  has  memory  ability  and  is  suitable

for  dealing  with  sequence  data.  It  can  obtain  sentence

features with long-distance dependency between words.

Bi-directional  LSTM (BiLSTM)[26]: BiLSTM uses  for-

ward and backward LSTM to capture the hidden inform-

ation, which constitutes the final output.

TextCNN[27]: TextCNN  is  a  feedforward  neural  net-

work with convolution operation.

Dynamic  CNN  (DCNN)[28]:  DCNN  extracts  sentence

features by  wide  convolution  and  dynamic  K-max  pool-

ing.

CapsNet[10]:  This  is  a  basic  capsule  network,  which

consists of a convolutional layer, a primary capsule layer,

and a fully connected capsule layer.

Gated  recurrent  unit  (GRU)-CapsNet[29]: This  net-

work uses  the GRU layer to learn latent representations

of input  word  embedding.  The  subsequent  capsule  net-

work  layer  learns  high-level  features  from  that  hidden

representation and outputs the prediction class. 

4.3   Parameters sensitive analysis

c

k

T
αj γ

In order to explore the influence of model parameters

on  fault  classification  effects  of  on-board  equipment  in

high-speed railways, three essential parameters are invest-

igated,  which  are  the  filter  window size  and the  num-

ber of filter windows  in the N-gram convolutional layer

define in (5) and (6),  the routing iteration times ,  and

the weight factor  and  define in (17).

First, taking the fault data set of on-board equipment

as the input, the routing iteration times in the fault clas-

sification model is set to 4, and the network is trained by

the standard cross-entropy loss function. The influence of

convolution filter parameters on the fault classification of

on-board  equipment  is  tested  by  changing  the  size  and

number of  filter  windows.  As can be seen from Table  2,

compared  with  the  single-size  filter  window,  using  a

multi-size  filter  window  to  extract  the  features  of  on-

board operation state statements can improve the adapt-

ability  of  the  model  to  the  change  of  state  statement

length, so as to improve the precision and recall  of fault

classification.  When  the  filter  window  size  of  the  fault

classification  model  is  the  same,  compared  with  the  200

filter  windows,  the  F1-Measure  of  on-board  equipment

fault classification is improved under the number of filter

windows is  300.  The results  show that the multi-size fil-

ter window can extract the low-level local features of dif-

ferent  on-board  operation  state  statement  lengths  more

comprehensively. And  appropriately  increasing  the  num-

ber of filter windows can also improve the fault classifica-

tion effect.

αj γ

αj(j = 1, 2, · · · , C) C

αj

For the multi-class focal loss function, its main idea is

to use  an  appropriate  function  to  measure  the  contribu-

tion  between  easy/hard  samples  and  minority  /majority

class  samples,  so  the  values  of  and  will  affect  the

model, resulting in the difference of the judgment results

of on-board fault type. Buda et al.[30] proposed that most

of the real-world cases can be divided into two types: step

imbalance  and  linear  imbalance.  In  step  imbalance,  the

number  of  samples  is  equal  within  minority  classes  and

equal within majority classes but differs between the ma-

jority and minority classes. In the task of fault classifica-

tion of on-board equipment, the number of normal classes

is much higher than that of other fault classes. Therefore,

this  task  belongs  to  a  step  imbalance.  There  are  21

classes in the task of on-board fault classification, among

which  the  fault  numbers  F1  to  F20  are  classified  as

classes 1 to 20, and the normal operation class N is classi-

fied  as  class  21.  In  the  multi-class  focal  loss  function  of

(17), the  weight  of  different  classes  needs  to  be  con-

trolled by ,  where  is  the number of

target classes. Since this task is step imbalance,  can be

expressed as

αj =

{
σ1,

σ2,

if j = 1, 2, · · · , 20
if j = 21

(21)

αj

γ σ1
σ2

σ2

σ2 = 0.8
σ2 σ1

γ

γ

The first step is to test the effect of  on fault classi-

fication. The value of  is set to 0 and fix  is set to 1. It

is only necessary to adjust  to weakening the influence

of  on-board  equipment  normal  operation  samples  on  the

loss.  The  value  of  is  searched  on  the  range {0.2,  0.4,

0.6, 0.8, 1}. As shown in Table 3, the model proposed has

good  fault  classification  performance  when .

Then,  the  is  set  to  0.8  and  remains  unchanged to

investigate  the  effect  of  on fault  classification.  Refer-

ring  to  the  research  of  Lin  et  al.[22],  the  value  of  is

searched on the range of {0.5, 1, 2, 3, 4, 5}. Through ex-

periments, the highest Marco-P, Marco-R, and Marco-F1

 

Table 2    Fault classification effect under convolution
filter parameters

Filter window size Filter window number Marco-PMarco-RMarco-F1

3 200 0.856 7 0.760 1 0.784 6

3 300 0.873 8 0.775 1 0.798 1

3,4 300 0.866 9 0.790 1 0.810 4

3,4,5 200 0.881 4 0.792 2 0.822 3

3,4,5 300 0.887 2 0.796 9 0.825 3
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γ = 3

σ2 = 0.8 γ = 3

are  obtained  when .  It  shows  that  the  balance

between  easy/hard  samples  and  minority/majority  class

samples can be found when and . It can im-

prove  the  imbalance  classification  effect  of  on-board

equipment fault to a certain extent.

The relational operation between capsules is often de-

termined by dynamic routing, and different routing itera-

tion  times  will  affect  the  effect  of  fault  classification.  In

dynamic  routing  between  the  primary  capsule  layer  and

the  fully  connected  capsule  layer,  the  routing  iteration

time is  searched on the  range  of {1,  2,  3,  4,  5,  6,  7,  8}.
The  experimental  results  are  shown  in Fig. 4.  According

to the results,  it can be observed that the effect of fault

classification  gets  better  with  the  increase  of  dynamic

routing  iteration  times  initially  and  reaches  the  peak

when the routing iteration time is set to 4. Its Marco-P,

Marco-R,  and Marco-F1 reach 0.907 7, 0.811 2, 0.844 2,

respectively, which achieve the best fault classification ef-

fect. This may be because the dynamic routing algorithm

is easy to converge at this time. After that, the effect of

fault classification decreases as the routing iteration times

increases. Considering the reason, when the times of iter-

ations  are  less  than  3,  the  dynamic  connection  between

the primary  capsule  layer  and  the  fully  connected  cap-

sule  layer  cannot  be  fully  connected,  and  the  optimal

routing  relationship  between  the  capsules  cannot  be

found,  resulting  in  poor  performance.  When  the  routing

iteration times increased to 5, the performance decreases

slightly.  With  the  increase  of  iteration  times,  it  takes  a

longer time and easily leads to over-fitting, which leads to

the degradation of fault classification performance. When

the  number  of  routing  iterations  is  4,  the  model  can

achieve high precision, recall and F1-Measure in the fault

classification of on-board equipment. 

4.4   Model evaluation and comparison

To verify the effectiveness of the ATT-Capsule model

in  the  fault  classification  of  high-speed  railway  on-board

equipment,  the  model  is  compared  with  other  baseline

models. Each model  is  tested with the optimal  paramet-

ers to ensure the effectiveness of the comparative experi-

mental results.  Considering  the  influence  of  the  imbal-

ance of on-board fault samples on the classification mod-

el, precision, recall, and F1-Measure are used as the eval-

uation metrics. The results are shown in Table 4.

As  shown  in Table  4,  compared  with  the  baseline

models,  the  ATT-capsule  model  proposed  in  this  paper

has the best fault classification effect for on-board equip-

ment. SVM and RF are  traditional  machine  learning  al-

gorithms.  When  judging  the  fault  types  of  on-board

equipment, the two models will treat the on-board equip-

ment  in  the  normal  state  (majority  class)  and  the  fault

samples (minority  class)  equally  based  on  the  class  bal-

ance hypothesis. However, in the fault classification of on-

board  equipment,  it  is  important  to  accurately  identify

the fault type (minority class), so the two models are not

effective in fault classification. Simultaneously, the opera-

tion state statements of on-board equipment are complex

and  vary  in  length,  so  it  is  essential  to  extract  features

from samples.  High-quality  features  will  improve  the  ef-

fectiveness  of  the  fault  classification  model.  Traditional

machine  learning  depends  on  artificial  feature  design,

 

Table 3    Fault classification effect under focal loss parameters

σ2 γ Marco-P Marco-R Marco-F1

1 0 0.887 2 0.796 9 0.825 3

0.8 0 0.893 6 0.809 0 0.834 3

0.6 0 0.880 5 0.803 7 0.828 6

0.4 0 0.889 9 0.803 5 0.829 4

0.2 0 0.884 5 0.811 2 0.830 1

0.8 0.5 0.894 1 0.805 2 0.826 6

0.8 1 0.898 5 0.805 9 0.834 2

0.8 2 0.875 5 0.803 5 0.823 4

0.8 3 0.907 7 0.811 2 0.844 2

0.8 4 0.884 5 0.807 2 0.830 1

0.8 5 0.870 5 0.805 9 0.820 4
 

 

Table 4    Experimental results of on-board equipment
fault classification

Models Marco-P Marco-R Marco-F1

SVM 0.833 6 0.709 9 0.745 1

RF 0.871 4 0.724 5 0.753 2

LSTM 0.835 6 0.741 1 0.766 3

BiLSTM 0.887 2 0.731 2 0.768 6

TextCNN 0.867 8 0.731 7 0.770 8

DCNN 0.845 8 0.732 3 0.768 9

CapsNet 0.895 8 0.760 0 0.792 8

GRU-CapsNet 0.860 8 0.738 7 0.768 5

ATT-Capsule 0.907 7 0.811 2 0.844 2
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Fig. 4     Comparison of different routing iteration times
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which has some limitations in feature extraction of opera-

tion state  statements.  Compared  with  SVM,  RF  im-

proves  the  precision  and  recall  of  fault  classification  by

3.78%  and  1.46%.  The  RF  model  adopts  the  ensemble

learning strategy  based  on  the  decision  tree  to  compre-

hensively  judge  the  fault  types  of  on-board  equipment,

enhancing the generalization ability of the model and im-

proving the fault recognition effect.

The  performance  of  most  deep  learning  methods  in

fault  classification  of  on-board  equipment  is  better  than

that  of  traditional  machine  learning  methods.  The  deep

learning method  can  automatically  extract  the  embed-

ding  features  of  operation  state  statements,  reduce  the

need  for  feature  engineering,  and  improve  the  quality  of

feature extraction  of  on-board  fault  samples.  When  em-

bedding is used as model input, TextCNN is better than

LSTM and BiLSTM in fault classification. The F1-Meas-

ure  of  LSTM  and  BiLSTM  are 0.766 3 and 0.768 6, re-

spectively,  while  that  of  TextCNN  is 0.770 8，which  is

higher than that of the former two models. LSTM can re-

flect the relationship between two distant words, which is

suitable  for  long  text  modeling.  The  on-board  operation

state  statements  are  short  text  structure,  which  is  more

suitable to use a CNN model to extract N-gram features

from different positions of the state statement in parallel

to serve the final fault type output. However, the pooling

layer of CNN can only extract the most significant or av-

erage semantic features in state statements,  ignoring the

semantic information, which is  helpful  to fault classifica-

tion but has a low probability of occurrence. In sequence

modeling,  the  pooling  operation  will  cause  information

loss  of  the  local  position  and  overall  sequence  structure

and destroy the word order feature of the operation state

statements.

Compared with other baseline models, the ATT-Cap-

sule model  proposed in  this  paper  has  the highest  preci-

sion, recall, and F1-Measure in the on-board fault classi-

fication  of  high-speed  railway.  Compared  with  CapsNet,

the F1-Measure of  the CNN model  in  fault  classification

is increased by 2.2%, and the recall is increased by 2.83%.

In  the  case  of  the  imbalanced  number  of  fault  samples,

the recall is significantly improved. The results show that

the CapsNet uses vector-output capsules to replace CNN

scalar-output  to  enrich  the  attribute  feature  information

in the on-board operation state statements. The dynamic

routing  between  capsule  layers  can  dynamically  assign

the attribute feature in operation state statements to all

kinds of categories, which can retain all the semantic fea-

tures and word order features in the sentence. ATT-Cap-

sule introduces the attention mechanism into the capsule

network and makes the model pay more attention to the

features that play a key role in the fault classification res-

ults.  Simultaneously,  the  model  dynamically  adjusts  the

impact of imbalanced samples on the loss function in the

training  process,  which  helps  identify  the  fault  type

(minority class) accurately. Compared with CapsNet, the

ATT-Capsule  fault  classification  model  increased  from

0.76 to 0.811 2 in the recall. Although GRU-CapsNet also

uses  the  capsule  layer,  GRU pays  more  attention to  the

remote information capture between words and does not

fully  extract  the  short-distance  hierarchical  features  of

the operation  state  statements.  Hence,  the  effect  of  fea-

ture  extraction  is  not  good,  which  affects  the  final  fault

classification effect of on-board equipment. 

4.5   Attention mechanism effect verifica-
tion

To  verify  the  influence  of  the  attention  mechanism

proposed in this paper on the fault classification effect of

high-speed railway on-board equipment, a fault classifica-

tion  model  is  established  by  combining  the  attention

mechanism  with  the  capsule  network  and  CNN:  ATT-

Capsule, Capsule, ATT-CNN, and CNN. ATT-Capsule is

the  model  proposed  in  this  paper.  The  Capsule  model

only removes the attention layer based on the ATT-Cap-

sule,  and  the  input,  parameters,  and  training  process  of

the Capsule  model  are  consistent  with  the  model  pro-

posed in this paper. CNN model includes a convolutional

layer,  a  max-pooling  layer,  and  a  full  connection  layer.

The ATT-CNN model  introduces  the  attention  mechan-

ism based on the CNN model. These two fault classifica-

tion  models  also  use  the  Adam  optimization  method  to

minimize the multi-class focal loss over the training data.

The input, filter window parameters, and focal loss func-

tion parameters of the two models are consistent with the

model  in  this  paper.  The Marco-P, Marco-R,  and

Marco-F1 of  the  fault  classification  result  of  on-board

equipment  are  obtained  by  using  each  model,  and  these

three  metrics  are  used as  the  evaluation criteria  of  fault

classification  performance.  The  experimental  results  are

shown in Fig. 5.

The experimental results show that the fault classific-

ation performance of the model with the attention mech-

anism is better than that without the attention mechan-

ism. Compared with Capsule, the Marco-P, Marco-R, and

Marco-F1 of ATT-Capsule  in  fault  classification  in-

creased by 2.02%, 1.25%, and 1.89%, respectively. When
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Fig. 5     Comparison of different models
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the CNN model is combined with the attention layer, the

Marco-F1 of fault classification increases to 0.818 5, while

the Marco-F1 of CNN is only 0.809 9, it shows that these

attention-based methods can obtain more important and

differentiated  information  for  fault  classification  results

from on-board operation status statements under the su-

pervision of on-board equipment type tags F1-F20 and N.

Compared with the ATT-CNN model,  the ATT-Capsule

model  increases  3.23%  and  2.57%  respectively  in  the

Marco-R and Marco-F1 of fault classification, and the re-

call is improved obviously. This metric is the main basis

to  measure  the  correct  classification  of  on-board  fault

samples. It shows that the Capsule network can learn the

part  and  whole  association  information  of  the  on-board

log to get abundant information of  features from the in-

put operation state statements, reduce the loss of semant-

ic information, and improve the effect of on-board equip-

ment fault classification. It also shows the value and feas-

ibility  of  introducing  the  attention  mechanism  into  the

capsule network. 

5   Conclusions

The  fault  classification  for  on-board  equipment  of

high-speed railways is  investigated in this  paper.  Taking

the  on-board  log  as  data  source,  a  fault  classification

model based on an attention capsule network is proposed.

The  attention  mechanism  is  introduced  to  calculate  the

dependencies between words in the on-board log and cap-

ture  important  information,  which  solves  the  problem

that the  capsule  network  cannot  selectively  pay  atten-

tion to the information that is important and distinguish-

able  to  the  classification  results.  To  effectively  capture

the part-whole  relationship  information  and  reduce  in-

formation  loss,  the  capsule  network  is  used  to  activate

high-level  features  by  dynamic  routing  agreement

between low-level  features.  A  multi-class  focal  loss  func-

tion is  used  to  train  the  model  to  deal  with  the  imbal-

ance  of  samples.  Through  experiments  on  the  on-board

log provided  by  a  railway  bureau,  our  results  conclus-

ively  show  that  the  ATT-Capsule  model  is  superior  to

other models in terms of Marco-P, Marco-R, and Marco-
F1. It also provides theoretical basis and application value

for the fault classification of high-speed railway on-board

equipment. 
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