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Abstract

Interactions between moving targets often provide dis-
criminative clues for multiple target tracking (MTT), though
many existing approaches ignore such interactions due to d-
ifficulty in effectively handling them. In this paper, we mod-
el interactions between neighbor targets by pair-wise mo-
tion context, and further encode such context into the glob-
al association optimization. To solve the resulting global
non-convex maximization, we propose an effective and ef-
ficient power iteration framework. This solution enjoys t-
wo advantages for MTT: First, it allows us to combine the
global energy accumulated from individual trajectories and
the between-trajectory interaction energy into a united opti-
mization, which can be solved by the proposed power itera-
tion algorithm. Second, the framework is flexible to accom-
modate various types of pairwise context models and we in
fact studied two different context models in this paper. For
evaluation, we apply the proposed methods to four public
datasets involving different challenging scenarios such as
dense aerial borne traffic tracking, dense point set tracking,
and semi-crowded pedestrian tracking. In all the experi-
ments, our approaches demonstrate very promising results
in comparison with state-of-the-art trackers.

1. Introduction
With great advances in object detection [8, 9], data asso-

ciation based multi-target tracking (DAT) has been gaining

popularity recently. An effective DAT algorithm needs to

address intrinsic association ambiguities due to challenges

such as appearance similarity, occlusion and fast motion.

A group of DAT algorithms focus on reducing the associ-

ation ambiguity by collecting multi-frame observations in

the time window, and making the association decisions in

a batch way. Association across multiple frames is more

robust than the recursive tracking counterparts, but mean-

while more difficult to obtain the global solution. Different

optimization strategies, such as linear programming [12],

network flow [25, 17, 2, 6] and tensor approximation [19],

Figure 1. Contextual modeling in a 3-frame association. a) Tem-

poral global trajectory energy. b) Spatial interaction energy (one

block). c) Higher-order compound energy (tensor representation).

have been proposed to solve the high-dimensional associa-

tion problem. However, insufficient attention has been de-

voted to the interactions between target associations, except

for the simple constraint that one target belongs to at most

one association.

In this paper, we propose computationally efficient mo-

tion contexts to model the interaction between any local as-

sociations and integrate seamlessly the contexts into a pow-

er iteration association framework. In particular, we unite

the pairwise interaction energy and the unary trajectory en-

ergy into a single optimization framework. Then, a power

iteration solution is proposed for the complex non-convex

optimization. Relations among the unary trajectory energy,

the pairwise interaction energy and the united energy are il-

lustrated in Fig. 1. The framework has three key ingredients

to address challenges in MTT. First, the between-trajectory

interaction is treated in a global data association framework;

such a combination of context modeling and high-order tra-

jectory information largely alleviates the association ambi-

guity. Second, the united energy term is encoded in a tensor

approximation representation and can be effectively solved

via the proposed power iteration solution. Finally, the opti-

mization framework provides the flexibility to use differen-

t context information, and we devise two kinds of context

representations in this paper.
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We applied the proposed method to MTT and tested it

on four challenging benchmark datasets involving various

scenarios such as wide area traffic scenes, low frame-rate

point set sequences and semi-crowded pedestrian videos.

In all experiments, our approach produces excellent perfor-

mances in comparison with several state-of-the-art trackers.

The superiority of our approach is especially demonstrated

on dense scenes with large association ambiguity between

targets.

2. Related work
Most MTT methods can be roughly divided into two

groups. Methods in the first group use only observation-

s till the current frame to estimate the current target states,

such as recursive filters [13, 4]. The second group contains

association-based methods that use information from both

previous and future frames to estimate the current states.

The association-based approaches become popular recent-

ly, since solving the data association jointly across multiple

frames are more reliable in general.

By decomposing the global affinity as the product of lo-

cal pairwise items, the global association can be formulated

as a network flow problem [25, 17, 2]. The decomposition

on the affinity achieves the efficient global solution at the

cost of limited discriminability, since higher-order motion

information, which is very useful to ease the association

ambiguity, is lost. Addressing this issue, the global affin-

ity is used to enhance the association robustness in some

recent methods such as [7, 19]. Our work shares the similar

idea with [7, 19] in modeling high-order motion informa-

tion using global trajectory affinity. In particular, the power

iteration solution in our approach is inspired by the tenor

approximation solution in [19]. That said, we integrate the

context information into the global association, which has

not been exploited by previous approaches. We emphasize

here that the seamless integration is non-trivial (as shown

in the next section), and is very beneficial (as shown in the

experiments).

Modeling the interactions among targets is importan-

t for crowded scene and traffic analysis, where objects

have grouping behavior [10, 16, 21] and follow the simi-

lar motion pattern (e.g. velocity) in local temporal-spatial

cubes [1]. In the classic social force model (SFM) [11], a

series of social forces are defined for a pedestrian, to avoid

collision and choose a desired direction for the destination.

Though powerfully used in pedestrian tracking [15, 18, 14],

SFM is complicated and requires pre-training from the sim-

ilar scenes, as well as the prior knowledge such as the des-

tinations which are not universally available. Further, with

the embedding of interaction based motion model, most ap-

proaches [1, 15, 14, 21] are limited to the predictive track-

ing framework, such as recursive filters. However, the local

(temporal) association is often troubled by the intrinsic mo-

tion ambiguity. In [1], the motion context is a collection

of trajectories of objects, and is used to predict and reac-

quire occluded targets. In [5], the association problem is

formulated as finding the maximum weighted independent

set, and the interaction between two trajectories is embed-

ded as the soft constraint.

3. Encoding Context in Association

Multi-frame data association is popularly formulated as

a multi-dimensional assignment (MDA) problem [7], which

is the NP hard in general. In [19], MDA is reformulated

as a rank-1 tensor approximation problem and consequent-

ly leads to an efficient tensor approximation solution. In

the following, we first review the basic optimization formu-

lation, and then show the united optimization framework

encoding the motion context. Finally, we give the power

iteration solution for the united optimization.

3.1. Problem Formulation

Assume the association is performed on a K+1 frame

sequence, each frame has N targets1, and M =N2 denotes

the number of possible two-frame associations. Suppose the

ik-th(1≤ ik≤N) target in the k-th(0≤k≤K) frame is okik ,

the global trajectory hypothesis with targets o0i0 , o
1
i1
, ..., oKiK

is represented as Ti0i1...iK , with trajectory energy si0i1...iK .

For targets ok−1ik−1 and okik , their association variables are

represented interchangably as xk
ik−1ik (as an element of an

assignment matrix) and vklk (as an element of the vectorized

assignment vector), such that lk = (ik−1−1)×N+ ik.

In the hard decision, xk
ik−1ik has a binary value as 0 or 1,

where 1 means targets ok−1ik−1 and okik are associated, and 0

otherwise. While in the soft decision, xk
ik−1ik represents the

probability of associating ok−1ik−1 and okik .

The trajectory affinity is represented using association
index as

al1l2...lK =

{
sl1 l2...lK lK

, if lk+1= lk, 1 ≤ k < K

0, otherwise
(1)

where lk and lk denote the indexes of the two targets con-

nected in association vklk (i.e., ik−1 and ik), and sl1 l2...lK lK

is the affinity for trajectory Tl1l2...lK lK
. Formally, we have

lk =
⌈
lk
N

⌉
, where �·� is the up rounding operator, and

lk = lk − (lk − 1)×N .

Denote V={V k : k = 1, . . . ,K} as the set of associ-

ation vectors we are seeking, and each vector is defined

by V k = (vk1 , v
k
2 , . . . , v

k
M )� ∈ RM . With these notations,

1Assuming fixed number of targets is for presentation convenience,

variable numbers of targets do not hurt the formulation and derivation.
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multi-frame data association can be formulated as the fol-

lowing optimization [19]

max
V

∑
L

al1l2...lKv1l1v
2
l2 · · · vKlK , (2)

s.t.

⎧⎪⎪⎨
⎪⎪⎩

∑
ik−1

xk
ik−1ik

= 1, k ∈ {1, 2, ...,K}∑
ik

xk
ik−1ik

= 1, k ∈ {1, 2, ...,K}

0 ≤ xk
ik−1ik

≤ 1, k ∈ {1, 2, ...,K}

(3)

For notation conciseness, in the above formulae and here-

after we define L = {l1, l2, · · · , lK} and use
∑
L to denote

the series of summation
∑M

l1=1

∑M
l2=1 · · ·

∑M
lK=1.

The constrained optimization (2) is challenging due to

the very high-dimensional solution space. In work [19],

it demonstrates the close relations between the optimiza-

tion and rank-1 tensor approximation problem, and further

presents an efficient iteration approach for the optimization.

3.2. Encoding Context Information

We aim at combining the individual temporal energy and

spatial interaction energy of trajectories into a united opti-

mization framework. Modeling the contextual relations of

two trajectories over a long term is risky, as the motion pat-

terns of a target are changing over time. We focus on the

interaction between two trajectories in a short term. Spe-

cially, we consider the pairwise interactions between two

associations on neighboring detections or tracklets.

For two-frame association hypothesis T k
lk

and T k
jk
(1 ≤

k≤K), whose association variables are vklk and vkjk respec-

tively. We define the interaction energy between T k
lk

and T k
jk

as cklkjk . By embedding the interaction energy, the total en-

ergy is represented as the linear combination of two types

of energies. In this way, the combinational optimization is

formulated as

max
V

∑
L
al1...lKv1l1...v

K
lK + α

K∑
k=1

∑
lk,jk

cklkjkv
k
lk
vkjk , (4)

where α is the weighting parameter, and the optimization

has the same constraints as Eq. (3). Intuitively, the second

term in (4) models the between-association interaction.

3.3. Power Iteration Solution

The new problem (4) is more difficult than the basic

one (2) due to the quadratic context items, where vklk and vkjk
lie in the same block and couple with each other. In the fol-

lowing, we decouple the interdependency between vklk and

vkjk to simplify the optimization. If two association hypoth-

esis T k
lk

and T k
jk

share the same target, that is lk = jk or

lk = jk, we set their interaction energy cklkjk as 0. This is

reasonable as one target can not be in two real associations.

Next, we make some reformulations to make (4) self-

consistent. With constraint (3), there are formulations as⎧⎪⎨
⎪⎩

∑
lk

vklk = N, k = 1, 2, ...,K∑
jk:jk �=lk

vkjk = N − 1, ∀lk, k = 1, 2, ...,K (5)

Using the formulation (5), the two components in (4) can

be rewritten as∑
L
al1...lKv1l1 . . . v

K
lK

=

1
N−1

∑
L

∑
jk:jk �=lk

al1...lKv1l1...v
k
lk
vkjk...v

K
lK
, (6)

∑
lk,jk

cklkjkv
k
lk
vkjk =

1
NK−1

∑
L

∑
jk:jk �=lk

cklkjkv
1
l1
...vklkv

k
jk
...vKlK .

(7)

Merging (6) and (7), optimization (4) is rewritten as

max
V

∑
L

∑
jk:jk �=lk

el1...lkjk...lKv
1
l1
...vklkv

k
jk
...vKlK

+ α(N−1)
∑
f �=k

∑
lf ,jf

cflf jf v
f
lf
vfjf ,

(8)

where el1...lkjk...lK is the element of the (K+1)-th augment-

ed tensor, which is a combination of the items al1...lk...lK
and cklkjk , and is computed as

el1...lkjk...lK = al1...lk...lK +
α(N−1)

NK−1
cklkjk . (9)

The relation between the new context aware tensor and the

original tensor is illustrated in Fig. 1.

We apply the block update strategy [7, 19] to opti-

mize (8) iteratively. When updating block variables in V k,

other block variables V f (f �= k) are fixed. In this manner,

optimization (8) degenerates into the following formulation

max
V k

∑
L

∑
jk:jk �=lk

el1...lkjk...lKv
1
l1
...vklkv

k
jk
...vKlK .

(10)

The optimizations (10) and (2) share the similar form.

The former is performed on all block variables V f , f =
1,. . .,K, while the latter is on the block variable V k for a

certain k. We further reformulate (10) as

max
V k

∑
L

∑
jk:jk �=lk

el1...lkjk...lKv
1
l1
. . . vklkv

k
jk
. . . vKlK

=
N∑

n=1
max

vk
lk
:lk=n

Ekn ,
(11)

where

Ekn=
∑
l1

...
∑

lk:lk=n

∑
jk:jk�=n

...
∑
lK

el1...lkjk...lKv
1
l1
...vklkv

k
jk
...vKlK . (12)

This way, (10) is divided into a series of subproblems. In

each subproblem, the interdependency between vklk and vkjk
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Algorithm 1 Power iteration with interaction

1: Input: Global energy A : al1...lk...lK .

interaction energy Ck :cklkjk , k ∈ {1, . . . ,K}.
2: Output: association variables V k:{vk1,...,vkM}(1≤k≤K).

3: Initialize V 1, . . . , V K ;

4: repeat
5: for k = 1, . . . ,K do
6: for ik−1 = 1, . . . , N do
7: for ik = 1, . . . , N do
8: ϕik−1ik=

∑
lf :f �=k

al1...lKv
1
l1
...vflf...v

K
lK

.

9: φik−1ik=
∑

jk:{jk�=ik−1}
cklkjkv

k
jk

.

10: end for
11: ∀ik, xk

ik−1ik=
xk
ik−1ik(ϕik−1ik+αφik−1ik)

∑
ik

xk
ik−1ik(ϕik−1ik+αφik−1ik)

;

12: end for
13: ∀ik−1, xk

ik−1ik=
xk
ik−1ik∑

ik−1 xk
ik−1ik

;

14: end for
15: until convergence

is decoupled, and the subproblem has the similar formula-

tion with (2). We can then use tensor power iteration [19]

for solving each subproblem, and the key iteration is

vklk ∝ vklk
∑
L\{k}

∑
jk:jk�=lk

el1...lkjk...lKv
k
jk
v1l1v

2
l2
. . . vKlK

∝ vklk

( ∑
L\{k}

al1...lKv
1
l1
v2l2 . . . v

K
lK
+α

∑
jk:jk�=lk

cklkjkv
k
jk

)
.

(13)

We update the block variables V k(1 ≤ k ≤ K) in turn

to obtain the (local) optimum of (4), the power iteration is

presented as Alg. 1.

4. Motion Context
In this section, we define the interaction energy cklkjk .

Specifically, we propose two types of motion contexts, low-

level context and high-level context, to represent different

types of interactions on associations.

4.1. Low-level context

Low-level motion context measures the interaction be-

tween two associations on raw detections. First, we give the

motion consistency representation for any association pair.

Then the specific motion context formulation is presented,

by using the non-maximum suppression (NMS) strategy.

Suppose T k
lk

represents the association hypothesis con-

necting targets ok−1ik−1 and okik , pk−1
ik−1(p

k
ik
) is the spatial posi-

tion of the target ok−1ik−1(o
k
ik
). For another association hypoth-

esis T k
jk

, it associates targets ok−1i′k−1
and oki′k

, whose spatial

positions are pk−1
i′k−1

and pk
i′k

respectively. Then, the motion

Figure 2. Low-level motion context. For association hypothe-

sis Bb, the neighbor targets are A and C, each has three associ-

ation candidates. For all association candidates of A, interaction

between Ab and Bb is filtered as one-to-one mapping constraint,

interaction between Ae and Bb is filtered as non-maximum sup-

pression, only interaction between Aa and Bb is retained. For

target C, only energy between Cc and Bb is retained.

consistency between T k
lk

and T k
jk

is defined as

mk
ik−1ik,i′k−1i

′
k
=mk

lkjk
=

∣∣zklk�zkjk ∣∣∥∥zklk∥∥∥∥zkjk∥∥+
λ
∥∥zklk∥∥∥∥zkjk∥∥∥∥zklk∥∥2

+
∥∥zkjk∥∥2 , (14)

where zklk=pk
ik
−pk−1

ik−1 and zkjk=pk
i′k
−pk−1

i′k−1
, both of which

represent the spatial displacement (velocity) vector; λ is the

weighting parameter. Formulation (14) is intuitive, the mo-

tion consistency is computed from the orientation similarity

and the speed similarity.

Modeling the interaction between any two associations

is meaningless, since targets only in the local spatial neigh-

borhood follow the similar motion. Specifically, we define

the low-level motion context as a selective representation,

the context between T k
lk

and T k
jk

is formulated as

cklkjk=IΩ

(
ik−1,i′k−1,ik,i

′
k,p

k−1
ik−1 ,p

k−1
i′k−1

,pk
ik
,pk

i′k

)
mk

lkjk
, (15)

where IΩ(·) is the indicator function, it has value 1 when
condition set Ω is true, otherwise it is 0. Ω is defined as

Ω:
{
ik−1 �= i′k−1

}⋂{ik �= i′k}
⋂{∥∥∥pk−1

ik−1−pk−1
i′k−1

∥∥∥<L
}

⋂{∥∥∥pk
ik
−pk

i′k

∥∥∥<L}⋂{
i′k=max

j
mk

ik−1ik,i′k−1j

}
,

(16)

where L is the distance threshold. Set Ω constitutes of three

parts: one-to-one mapping constraint, spatial distance mask

and non-maximum suppression.

Low-level context is illustrated in Fig. 2. NMS is very

important and effective, because the selection mechanism

makes a binding for two association candidates with similar

motion patterns and drives them to be true or wrong syn-

chronously. The underlying assumption in this procedure is

that real associations around the target follow similar mo-

tion patterns, while wrong associations are irregular in mo-

tion statistics. Further, it is robust by suppressing the influ-

ences from noisy and conflicting association counterparts.

351735213521



Figure 3. High-level motion contexts. a) Context-A: interaction

between association Tjk and tracklet Ti; b) Context-B: interaction

between any two tracklet associations.

4.2. High-level Context

When frame-between motions are notable and reliable,

low-level context is valuable, such as the low-frame rate or

fast motion applications. In most pedestrian tracking, bad

located object detections (raw zigzag trajectory) along with

low-speed motion make raw detection based low-level con-

text unreliable. In this section, we devise two kinds of high-

level contexts to model the motion interaction on tracklet

associations, which are illustrated in Fig. 3.

Suppose Ti :
{
o
tis
i ,o

tis+1
i , ..., o

tie
i

}
represents the i-th track-

let, where tis and tie denotes the start time and end time of Ti

respectively. The spatial displacement from the target ot−1i

to oti is represented as zti = pt
i−pt−1

i and pt
i(p

t−1
i ) is the spa-

tial position of the target oti(o
t−1
i ). For other tracklets such

as Tj and Tk, there are similar notations and definitions.

For two tracklets Tj :
{
o
tjs
j , ..., o

tje
j

}
and Tk :

{
o
tks
k , ..., o

tke
k

}
showed in Fig.3-(a), there exists association hypothesis

Tjk :{ot
j
s
j , ...,o

tje
j ,o

tje+1
jk , ...,o

tks−1
jk ,o

tks
k, ...,o

tke
k }, where otjk(t

j
e<t<tks)

is the interpolated target using Tj and Tk. Then the motion

interaction between Tjk and Ti in Fig.3-(a) is defined as

mjk,i =
1

tks − tje

tks∑
t=tje+1

∣∣ztjk�zti∣∣∥∥ztjk∥∥∥∥zti∥∥ , (17)

where ztjk is the spatial displacement from target ot−1jk to otjk.

For context-A of Tjk, we consider interactions from all

neighbor tracklets around Tjk, and give the final formula-

tion. Suppose tracklet set is T :{T1,..., TC}, where C is the

number of tracklets, then context-A of Tjk is computed as

scjk =

C∑
c=1

mjk,cIΦ
(
tje, t

k
s , t

c
s, t

c
e,p

tje
j ,p

tks
k ,p

tje
c ,p

tks
c

)
C∑

c=1
IΦ
(
tje, tks , t

c
s, t

c
e,p

tje
j ,p

tks
k ,ptje

c ,p
tks
c

) , (18)

where Φ denotes the condition set defined as:{
tcs ≤ tje

}⋂{
tks ≤ tce

}⋂{∥∥ptje
c − p

tje
j

∥∥ < L
}⋂{∥∥ptks

c − p
tks
k

∥∥ < L
}
.

(19)

As shown in Fig.3-(a), Φ selects the spatial neighbor

tracklets which are overlapped with Tj and Tk in the time

window. Context-A (18) measures the average motion in-

teraction between contextual tracklets and Tjk.

Suppose association hypothesis Tjk connects tracklet Tj

and Tk, association hypothesis Tfh connects tracklet Tf and

Th, as is shown in Fig. 3-(b). Motion similarity between Tjk

and Tfh is computed as

mjk,fh =
1

tkhs − tjfe

tkh
s∑

t=tjfe +1

∣∣ztjk�ztfh∣∣∥∥ztjk∥∥∥∥ztfh∥∥ , (20)

where ztjk(z
t
fh) denotes the spatial displacement from tar-

get ot−1jk (ot−1fh ) to otjk(o
t
fh) . tkhs and tjfe are computed as

tkhs = min{ths , tks}; tjfe = max{tfe , tje}. (21)

Eq. (20) computes the temporal average of motion sim-

ilarities between Tjk and Tfh. Context-B between Tjk and

Tfh is computed as

cjk,fh =

IΨ
(
tkhs , tjfe , j, k, f, h,p

tjfe
j ,p

tjfe
f ,p

tkh
s

h ,p
tkh
s

k

)
mjk,fh,

(22)

where condition set Ψ is defined as:

{
tjfe <tkhs

}⋂{
j �=f

}⋂{
k �=h

}⋂{∥∥ptjfej −p
tjfe
f

∥∥<L
}

⋂{∥∥ptkh
s

h − p
tkhs
k

∥∥<L
}⋂{

h=maxg mjk,fg

}
.

(23)

Condition set Ψ is similar with Ω which is used in low-

level context, and Context-B measures the motion interac-

tion between any two tracklet association hypotheses.

Association on tracklets is performed as the extended

two-frame association (i.e. K =1), thus the global affinity

degenerates into al1(1≤ l1≤C2), and the pairwise interac-

tion element is c1l1j1 , i.e., Eq. (22).

5. Experiments
We evaluate the proposed approach on four public

datasets, Columbus Large Image Format (CLIF) [22], PSU-

data [10], PETS 2009 and TUD-Stadtmitte. The first two

datasets are low frame-rate (1∼2 fps) sequences, which are

used to test the proposed low-level motion context. The last

two pedestrian sequences are used to validate the effective-

ness of the high-level motion context.

5.1. Low Frame-rate Sequences

Both CLIF and PSUdata are challenging as the targets

have fast motions, along with other challenges. CLIF has

extra difficulties such as a large amount of targets, tiny ob-

ject occupy, similar target appearance and so on. PSUdata

are point set sequences, which are challenging as the vi-

sual cues relied heavily by many tracking approaches are

unavailable.

Three CLIF sequences, seq1, seq2 and seq3, are used in

the experiments. There are about 80 targets in each frame

for seq1 and seq2, and 200 targets for seq3. Three PSUdata

sequences, dense-1fps, dense-2fps and sparse-1fps are test-

ed in the second experiment. The first two contain about 20
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targets in each frame, and the last one has 3∼5 objects in

each frame.

For CLIF, the global affinity al1l2...lK in (4) is defined as

al1l2...lK = e1l1e
2
l2 ...e

K
lKdl1l2...lK , (24)

where eklk and dl1l2...lk are appearance/shape affinity and

motion affinity, respectively. Specifically, for an association

hypothesis T k
lk

, its appearance/shape affinity is defined as

elk =
2qk−1ik−1q

k
ik

(qk−1ik−1)
2 + (qkik)

2
+

∑
b
min

(
h
ik−1
b , hik

b

)
, (25)

where qk−1ik−1(q
k
ik
) denotes the area of the target ok−1ik−1(o

k
ik
),

and h
ik−1
b (hik

b ) is b-th bin of the color histogram of the target

ok−1ik−1(o
k
ik
). The motion affinity is defined as

dl1l2...lK ∝
K−1∏
k=1

exp
( zklk

�
zk+1
lk+1

‖zklk‖‖z
k+1
lk+1

‖
+

2‖zklk‖‖z
k+1
lk+1

‖
‖zklk‖2 + ‖z

k+1
lk+1

‖2
)
,

(26)

where zklk is the spatial displacement of T k
lk

.

The motion affinity (26) has the similar formulation with

the motion consistency representation (14), both of which

aim at enforcing compatible motion patterns. The differ-

ence is that (26) focuses on the motion smoothness of the

same target within the temporal window, while the contex-

t (14) pays attention to the motion coherence between spa-

tial neighbor targets.

Global affinity al1l2...lK used in PSUdata is defined as

al1l2...lK= E0 − Econt − Ecurv

= E0 − η
K∑

k=1

∥∥zklk∥∥−K−1∑
k=1

∥∥∥zk+1
lk+1

− zklk

∥∥∥, (27)

where η is the weighting parameter; E0 is a large constant

to make the affinity positive; Econt is used to penalize the

large jump in position for any association, and Ecurv is the

constant-velocity model to assure the similar motions for

consecutive associations.

The source inputs for the PSUdata are the ground truth

data, each point is featured with a spatial coordinate. While

the inputs for the CLIF are from vehicle detection [20]. The

frame number in a batch is 5 and 6 for CLIF and PSUdata

respectively. Some parameters are set as follows: λ in (14)

is 0.6 and 2.0 for CLIF and PSUdata respectively; α in (4) is

10 and 5 for two datasets respectively; η in (27) is 0.5. Most

parameters are application dependent, such as a smaller λ is

used in CLIF than in PSUdata, since the orientation consis-

tency is more important in the CLIF scenarios.

We compare our work with the tensor method [19], the

network flow approach [17] and the min-cost flow [6].

In [19], we employ the same affinity model al1l2...lK and pa-

rameters. Let cm(t), wm(t) and g(t) represent the numbers
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Figure 4. The energy and association performance variations in

the iteration process (for one batch in PSUdata). Left: the energy

iterated curve; Right: correct match rate curve.

Table 1. Association results of three approaches on the CLIF
Correct match percentage Wrong match percentage

Seq1 Seq2 Seq3 Seq1 Seq2 Seq3

[17] 65.4 71.6 74.6 34.1 28.1 25.7

[19] 91.1 92.1 91.4 11.9 9.4 9.4

Ours 94.7 96.0 95.8 6.0 4.8 4.1

Table 2. Association results of three approaches on the PSUdata
Correct match percentage Wrong match percentage

Dense1 Dense2 Sparse Dense1 Dense2 Sparse

[17] 78.65 98.64 94.57 21.35 1.36 5.43

[6] 98.54 99.83 99.59 1.46 0.17 0.41

[19] 96.98 99.78 99.45 3.01 0.20 0.50

Ours 98.41 99.88 99.74 1.58 0.11 0.24

of correct associations, wrong associations and ground truth

associations at frame t respectively, we use correct match

percentage Pc=100×(∑tcm(t)/
∑

tg(t)) and wrong match

percentage Pw=100×(
∑

twm(t)/
∑

tg(t)) to evaluate the

association performance.

Quantitative results on the CLIF and PSUdata2 are p-

resented in Tab. 1 and Tab. 2 respectively. It can be seen

that the proposed approach performs better than the tensor

method, especially on the CLIF. Both Pc and Pw are im-

proved a lot, and Pw has a remarkable decrease relatively. It

demonstrates the proposed solution and the motion context

are effective. The motion context is very useful for reducing

the association ambiguity, as the decision of the local asso-

ciation is influenced by not only its temporal coherence on

the whole trajectory, but also its spatial interaction with oth-

er associations. Though the performances of method [19]

in PSUdata are close to saturation, yet the embedding of the

proposed context improves the results on all sequences re-

markably. The min-cost flow [6] has excellent performance

on the PSUdata, while our approach is slightly better. The

method [17] performs the worst among all algorithms, since

the motion information are lost in the network flow formu-

lation. An example to illustrate the variations of the energy

and association performance in the power iteration is shown

in Fig. 4, both the combined energy and basic energies in-

crease in the iteration, and the association performance is

improved gradually too.

Qualitative results are presented in Fig. 5 and Fig. 6.

2The results for method [17] is taken from [7] on the PSUdata.
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Figure 5. Tracking results on dense-1fps. Left half for the first

episode and right half for the second episode. From left to right:

our approach (14 mismatches), tensor method [19] (25 mismatch-

es), our approach (12 mismatches), and tensor method (27 mis-

matches). All trajectories are color-coded with respect to ground

truth; edges of good trajectories appear in the same color.

Figure 6. Association results on CLIF (part). Top: tensor

method [19] has 6 mismatches; Bottom: our approach has no

mismatch; White (black) rectangles: vehicle detections in current

(last) frame; Red (green) lines: associations on two orientations.

There are fewer association errors for our approach.

5.2. Pedestrian Datasets

The high-level association is performed on tracklet sets,

and the basic tracklets are achieved with the approach [19].

For tracklet Tj :
{
o
tjs
j , ..., o

tje
j

}
and Tk :

{
o
tks
k , ..., o

tke
k

}
, the asso-

ciation affinity used in (4) is computed as

al1 = (sajk + sdjk + scjk) stjk , (28)

where scjk is the contextual affinity, computed as Eq. (18);

sajk, sdjk and stjk are the appearance, spatial distance and

temporal distance affinity respectively, which are defined as

sajk=
∑

b
min

(
hj
b, h

k
b

)
, (29)

stjk=

{
exp(−Δt

TL ), if 0<Δt<TL
0, otherwise

(30)

sdjk=
1
2exp

(∥∥Δd−Δtz
t
j
e

j

∥∥2

−2
∥∥z

t
j
e

j

∥∥2

)
+ 1

2exp
(∥∥Δd−Δtz

tks
k

∥∥2

−2
∥∥z

tks
k

∥∥2

)
. (31)

Table 3. Tracking results on PETS 2009
Rec Prec TA TP MT PT Frag IDS

[23] 91.8 99.0 - - 89.5 10.5 9 0
[17] 94.0 97.4 88.9 80.9 89.5 10.5 13 10

[19] 96.0 98.2 92.7 81.8 94.7 5.3 11 7

A 97.4 98.5 94.7 81.4 94.7 5.3 8 6

B 96.6 98.8 94.9 81.6 94.7 5.3 8 5

Ours 97.7 98.9 96.1 81.8 94.7 5.3 6 4

Note: ‘A’ in Tab. 3 and Tab. 4 is the approach with high-level context listed

in Fig. 3 (a), and ‘B’ is the approach with context listed in Fig. 3 (b).

In (29), hj
b (hk

b ) is the value in the b-th bin of the average

color histogram of the tracklet Tj (Tk). In (30), Δt = tks−tje
is the time gap between Tj and Tk, and TL is the temporal

threshold for possible tracklet associations. In (31), Δd =

p
tks
k−p

tje
j is the spatial displacement from the target o

tje
j to o

tks
k ,

and z
tks
k (z

tje
j ) is the velocity of Tk (Tj) at instant tks (tje ).

We use pedestrian detection results in [24, 23] as the

association inputs. For fair comparison, we also list their

tracking results in the experiments. α in (4) is set as 0.4 and

0.2 for PETS 2009 and TUD-Stadtmitte respectively. TL
in (29) is set as 25 for both sequences, we do not link two

tracklets with a large time gap, since this association may

be unreliable. Finally, two kinds of metrics are applied to

evaluate the tracking performance. The first is the CLEAR

MOT metric [3]. The second metric [24, 23] evaluates the

numbers of mostly/partially tracked (MT/PT), mostly lost

(ML) trajectories, numbers of fragments and ID switches.

We compare our approach with some state-of-the-art

tracking algorithms [19, 17, 23, 24]. Quantitative results are

presented in Tab. 3 and Tab. 4, and results of [19] are the

performances of further association on tracklets. Our ap-

proach is much better than the tensor method, there are less

fragments and ID switches, as well as higher TA and TP.

The advances on the performances illustrate the effective-

ness of the motion context on reducing association errors

and merging short tracklets into long tracks. Our approach

has more ID switches than the method [23] on PETS 2009,

as most errors in our approach are made in the low-level as-

sociation, where we use the ordinary color histogram. We

believe a more powerful appearance model is helpful in

reducing ID switches. Generally, our approach has lower

fragments and higher MT than methods [23, 24]. For deep

analysis on the motion context, we also give the results of

the approaches with different high-level contexts. It can be

seen both contexts improve the tracking results, and a com-

bination of two kinds of high-level contexts advances the

performances significantly. Qualitative illustrations of our

approaches on two datasets are presented in Fig. 7.

6. Conclusion

In this paper, we propose a new association-based MTT

algorithm by integrating motion context in a power iteration
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Figure 7. Tracking results of our approach on the pedestrian datasets. Top: PETS 2009 sequence, Bottom: TUD-Stadtmitte sequence.

Table 4. Tracking results on TUD-Stadtmitte
Rec Prec TA TP MT PT Frag IDS

[24] 87.0 96.7 - - 70.0 30.0 1 0

[17] 83.8 96.5 75.9 82.6 80.0 20.0 10 8

[19] 83.9 98.8 80.4 87.7 70.0 30.0 5 3

A 85.4 98.6 81.3 87.8 80.0 20.0 2 2

B 83.7 99.7 81.8 88.8 80.0 20.0 2 1

Ours 84.0 99.9 82.5 89.3 80.0 20.0 1 0

framework. Our method seamlessly models the interaction

energy between target trajectories and the energy of individ-

ual trajectories in a united optimization framework. Such

integration allows us to use simultaneously contextual cues

and high-order motion information to alleviate the associa-

tion ambiguity. The effectiveness of the proposed approach

is demonstrated clearly thorough experiments.
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