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ABSTRACT
Kernel SVM is prohibitively expensive when dealing with
large nonlinear data. While ensembles of linear classifiers
have been proposed to address this inefficiency, these meth-
ods are time-consuming or lack robustness. We propose an
efficient classifier for nonlinear data using a new iterative
learning algorithm, which partitions the data into clusters,
and then trains a linear SVM for each cluster. These two
steps are combined into a graphical model, with the param-
eters estimated efficiently using the EM algorithm. Dur-
ing training, clustered multi-task learning is used to capture
the relatedness among the multiple linear SVMs and avoid
overfitting. Experimental results on benchmark datasets
show that our method outperforms state-of-the-art methods.
During prediction, it also obtains comparable classification
performance to kernel SVM, with much higher efficiency.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Statistical computing;
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Performance, Experimentation

Keywords
Nonlinear Classification; Linear SVMs; Multi-Task Learning

1. INTRODUCTION
Kernel SVM often produces satisfactory classification re-

sults on nonlinear data. Unfortunately, the complexity of
kernel SVM relies on the number of support vectors. Alter-
natively, while linear SVM is extremely efficient, it performs
poorly on nonlinear data. Ensembles of linear SVMs can im-
prove performance, though these methods either lack robust-
ness, such as CSVM [5] which aligns the linear SVM weight
vectors with a global weight vector, or are time-consuming,
such as SVM-KNN [8] which uses a lazy learning strategy.
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In this paper, an efficient classifier for nonlinear data is
constructed by using Linear SVMs and Multi-Task Learning
(LSVM-MTL). The method uses a divide-and-conquer strat-
egy which partitions the data into clusters using a Gaussian
mixture model (GMM), and then trains a linear SVM for
each cluster. Instead of being treated independently, the two
steps are combined into a generative model and alternatively
performed in each iteration. To ensure the data points in
each cluster are linearly separable, some clusters may have
relatively few points, and can overfit. In this work, we con-
sider training a linear SVM for a cluster as a single task, and
the training of the classifier ensemble as a multi-task learn-
ing problem. Clustered multi-task learning is used to exploit
the relatedness between tasks, and avoid overfitting. To our
knowledge, multi-task learning has not previously been used
to train multiple linear SVMs on nonlinear datasets. Ex-
perimental results on benchmark datasets demonstrate that
the model outperforms state-of-the-art methods. For pre-
diction, LSVM-MTL achieves much higher efficiency than
kernel SVM, with comparable classification performance.

2. RELATED WORK
Methods for learning multiple linear SVMs for nonlinear

data can be roughly divided into two categories. In lazy
learning methods, such as SVM-KNN [8], the learning pro-
cess is postponed until the testing phase, which is therefore
expensive. By contrast, eager learning methods construct lo-
cal classifiers during the training phase, usually employing a
divide-and-conquer strategy. MLSVM [4] and CSVM [5] fall
into this category. Other eager learning methods, such as
LLSVM [6], use local coordinate coding. These methods ei-
ther lack robustness, such as CSVM, or are time-consuming,
such as SVM-KNN, MLSVM and LLSVM.

Multi-task learning (MTL) is a method where multiple
related tasks are learned simultaneously to improve gener-
alization [9]. It has been used in various areas, such as web
mining [7].

3. LSVM-MTL MODEL

3.1 Model Formulation
At a high level, LSVM-MTL is an iterative divide-and-

conquer approach which alternates between two steps: par-
titioning the data into clusters with a GMM and training a
linear SVM in each cluster. Instead of being independent,
the two steps promote each other: GMM clustering improves
the SVM classification performance for each cluster, and vice
versa. This idea is integrated into our LSVM-MTL model
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Figure 1: (a) GMM (b) LSVM-MTL

as shown in Figure 1(b). The upper part of the model cor-
responds to the GMM in Figure 1(a), which is responsible
for partitioning the data into clusters. The lower part of the
model trains linear SVMs for each cluster.
We introduce the following notation: in Figure 1(b), there

are N i.i.d. samples X = {xn}n=1,··· ,N and their corre-
sponding labels Y = {yn}n=1,··· ,N . The latent variables
Z = {zn}n=1,··· ,N denote the assignments of samples to the
K mixtures. The parameters µ = {µj}j=1,··· ,K and Σ =
{Σj}j=1,··· ,K denote the centroids and covariance matrixes
of Gaussian components respectively. W = {wj}j=1,··· ,K
represents the weight vectors of the linear SVMs for the K
clusters. π = {πj}j=1,··· ,K are the mixing coefficients of
the GMM. Let Θ = {π, µ,Σ,W} be the total set of model
parameters. The joint distribution over X and Y is:

P (X,Y |Θ) =

N∏
n=1

P (xn, yn|Θ)

=
N∏

n=1

K∑
zn=1

πznP (xn|zn, µ,Σ)P (yn|xn, zn,W )

=
N∏

n=1

K∑
j=1

πjN (xn|zn = j, µj ,Σj)P (yn|xn, wj) (1)

which is obtained by summing the joint distribution of ob-
served variables X, Y and latent variables Z over all pos-
sible states of Z, with zn taking values in {1, · · · ,K}. The
mixing coefficient πj is the prior probability of picking the
jth Gaussian component. P (xn|zn = j, µ,Σ) = N (xn|zn =
j, µj ,Σj) is a Gaussian component of the mixture, specify-
ing the probability of xn conditioned on the jth component.
P (yn|xn, wj) is the posterior probability of the nth sample
output by the jth linear SVM. We estimate the parameters
by maximum likelihood. The regularized log-likelihood is:

L(Θ) =
N∑

n=1

logP (xn, yn|Θ) + Ω(W )

=
N∑

n=1

log
K∑

j=1

πjN(xn|zn = j, µj,Σj)P(yn|xn, wj)+Ω(W ) (2)

where Ω(W ) is a regularization term on the linear SVM
weight vectors. This term encodes prior knowledge about
the K classifiers, and is defined shortly.
Unlike previous work, our model learns the multiple linear

classifiers simultaneously rather than independently. More
specifically, if training a linear SVM in a cluster is regarded
as a task, training linear SVMs for all clusters corresponds to
a multi-task learning problem. To ensure that the samples in
each cluster are linearly separable, the samples available for
each cluster may be limited, possibly leading to over-fitting.
More importantly, since all the clusters are partitioned from
the same dataset, they should be latently related. Multi-
task learning can be employed to capture the intrinsic re-
latedness between tasks and avoid over-fitting in each task.

We use clustered multi-task learning [9], which clusters tasks
into groups, with tasks in each group having similar weight
vectors. This approach is motivated by the desire for the
decision boundary to be smooth and have constrained cur-
vature, since a decision boundary with arbitrary curvature
will likely overfit the data [6]. Hence, tasks in adjacent re-
gions on the decision boundary should have similar weight
vectors and should be clustered into one group. We illus-
trate this issue with a synthetic dataset in the experimen-
tal section. In practice, we find this clustering is beneficial
for using multiple linear SVMs to nonlinear datasets. Note
that LSVM-MTL clusters based on task similarities and the
cluster structure is unknown beforehand. Furthermore, note
that this clustering of SVM weight vectors is distinct from
the GMM data clustering described previously.

In order to incorporate multi-task learning and linear SVMs
into the above maximum likelihood estimation framework
(2), we recall that training a linear SVM usually leads to
the following quadratic optimization problem:

min
w

∥w∥2

2
+ C

∑
n

ℓ(w;xn, yn) (3)

where the first term regularizes the SVM weight vector, and
the second term measures the total loss. We next describe
correspondence between minimization problem in (3) and
maximization problem of the log-likelihood function in (2).
The first term in (3) corresponds to the second term in (2),
since they both regularize the weight vector. Finally, to
incorporate multi-task learning, Ω(W ) is formulated as:

Ω(W ) = −α

r∑
c=1

∑
j∈Ic

∥wj − w̄c∥22 − β

K∑
j=1

∥wj∥22 (4)

where the first term on the right-hand side assumes that the
total K tasks are clustered into r clusters, with the index set
of the cth cluster defined as Ic = {j|j ∈ cluster c}. The av-
erage weight vector of the cth cluster is w̄c = 1

mc

∑
j∈Ic

wj ,
where there are mc tasks in the cth cluster. The first term
measures the within-cluster variance, which requires tasks
from the same cluster to have similar weight vectors. The
second term improves the generalization performance.

We next establish the relationship between the first term
in (2) and the second term in (3) by defining:

P (yn|xn, wj) = exp(−ℓ(wj ;xn, yn)) (5)

The posterior probability P (yn|xn, wj) will be equal to 1
if the loss ℓ(wj ;xn, yn) is zero, otherwise P (yn|xn, wj) will
be less than 1. To facilitate computation, P (yn|xn, wj) is
not normalized. When we employ the EM algorithm to
maximize (2) in the following section, the value of the log-
likelihood function will increase in each iteration, regardless
of whether P (yn|xn, wj) is a proper probability measure.

3.2 The EM Algorithm and Implementation
We now apply the EM algorithm to the above LSVM-

MTL model. Let Θ(t) = {π(t)
j , µ

(t)
j ,Σ

(t)
j , w

(t)
j |j = 1, · · · ,K}

denote the collection of parameters at the tth iteration.
In each E step, the posterior probability of assigning the

nth sample to the jth linear SVM is evaluated as:

q
(t)
n,j =

π
(t)
j N (xn|zn = j, µ

(t)
j ,Σ

(t)
j )P (yn|xn, w

(t)
j )∑K

j=1 π
(t)
j N (xn|zn = j, µ

(t)
j ,Σ

(t)
j )P (yn|xn, w

(t)
j )

(6)
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Algorithm 1 LSVM-MTL

Input: Training data {(xn, yn)|n = 1, · · · , N} ⊂ Rd ×
{−1, 1} and the number of clusters K

Output: Parameter Θ = {πj , µj ,Σj , wj |j = 1, · · · ,K}
Initialise Θ by K-means.
repeat

E step: Evaluate qn,j using Equation (6).
M step: Re-estimate the GMM-related parameters πj ,
µj and Σj by following the steps in [2].

Re-estimate wj for all j simultaneously as a
multi-task learning problem using Equation (8).

until convergence

This posterior probability is then utilized to derive the fol-
lowing lower bound on the log-likelihood function:

Q(Θ(t+1); Θ(t)) =
N∑

n=1

K∑
j=1

q
(t)
n,j log

[
π
(t+1)
j ·

N(xn|zn = j, µ
(t+1)
j ,Σ

(t+1)
j )P (yn|xn, w

(t+1)
j )

]
+Ω(W (t+1))

(7)

where Ω(W (t+1)) is the regularization term given by (4).

Θ(t) is the parameter for the current iteration, which directly

determines the posterior probability q
(t)
n,j on the right-hand

side through Equation (6).

In the M step, the parameter is updated to Θ(t+1) by
maximizing (7). Fortunately, updating the parameters of
the GMM and the linear SVMs is decoupled in (7). For
updating the GMM-related parameters {π, µ,Σ}, we follow
the steps in [2]. To update the weight vectors W of the
linear SVMs, we solve the following optimization problem:

max
W

N∑
n=1

K∑
j=1

q
(t)
n,j logP (yn|xn, w

(t+1)
j )

− α

r∑
c=1

∑
j∈Ic

∥w(t+1)
j − w̄(t+1)

c ∥22 − β

K∑
j=1

∥w(t+1)
j ∥22 (8)

where logP (yn|xn, w
(t+1)
j ) = −ℓ(w

(t+1)
j ;xn, yn) using Equa-

tion (5). With the first term regarded as a weighted loss
function, Equation (8) is equivalent to the clustered multi-
task learning and is solved by the method of [9].
A sketch of our algorithm is presented in Algorithm 1.

K-means is utilized to initialize the mixing coefficients π,
centroids µ and covariance matrixes Σ. A linear SVM is
then trained for each cluster, resulting in the initial weight
vectors W . With the log-likelihood function in Equation (2)
being increased in each iteration of EM, our algorithm is
guaranteed to converge.
During testing, a new sample x is classified by the weighted

average of the linear classifiers:

K∑
j=1

πjN (x|z = j, µj ,Σj)
(
P (1|x,wj)− P (−1|x,wj)

)
(9)

The sample is classified as positive if the weighted average
is greater than 0, and negative otherwise. Obviously, the
prediction complexity is linear in the number of tasks K.
Prediction efficiency is particularly critical for large-scale or
online applications.

4. EXPERIMENTS

4.1 Synthetic Dataset
The synthetic dataset in Figure 2 consists of two shifted

sine signals, with 1000 points each, and each signal con-
sidered a separate class. K-means is used to partition the
data into five clusters, denoted with different colors. Linear
SVM is then applied to each cluster. This simple baseline is
denoted as K-means+SVM, and is also the initial stage of
LSVM-MTL. Figure 2(a) shows that the linear SVM does
not accurately classify the data points in each cluster. Ap-
plying CSVM [5] gives similar results. The lack of improve-
ment for CSVM here is because the method is not itera-
tive, so its performance is directly determined by the initial
K-means clustering. Additionally, CSVM aligns each SVM
weight vector with a global weight vector, which is inappro-
priate here. In contrast to CSVM, LSVM-MTL is iterative;
Figure 2(b) shows the result at the fifth iteration. The linear
SVMs correctly classify the data in each cluster, which em-
pirically shows that the two steps in LSVM-MTL mutually
reinforce each other. When the number of clusters (tasks)
is increased to ten, Figure 2(c) illustrates that the ten tasks
are clustered into five groups, with each group containing
two tasks in adjacent regions. This result occurs because
the decision boundary is smooth and tasks in adjacent re-
gions on the decision boundary are similar. Note that the
decision boundaries in Figure 2(c) correctly classify all the
data points, since each linear SVM is only applied to its
corresponding cluster.

4.2 Real Datasets
We use six benchmark datasets: IJCNN1, SVMGUIDE1,

SKIN segmentation, LETTER recognition, Pendigits and
Landsat Satellite. The first two are available at the LibSVM
website [3], and the others are taken from the UCI machine
learning repository [1].

We compare LSVM-MTL with seven previously-mentioned
methods: Linear SVM, Kernel SVM, SVM-KNN, K-means+
SVM, MLSVM, LLSVM, and CSVM. The parameters of all
the methods are set as in [5], with most parameters set by
cross validation. For methods using K-means clustering, we
calculate the average accuracy and the standard deviation
on the test set over 10 random repetitions. The results are
presented in Table 1. Here, we set the number of clusters
K to 14 for K-means+SVM, CSVM and LSVM-MTL. As
expected, linear and kernel SVM achieve the worst and best
performance, respectively, over all datasets. Nevertheless,
kernel SVM can be prohibitively expensive for large-scale
datasets. Our proposed LSVM-MTL achieves not only com-
parable performance to kernel SVM, but also much higher
efficiency for prediction. The reason is that the predic-
tion complexity of LSVM-MTL is linear in the number of
tasks K, while the complexity of kernel SVM scales with
the number of support vectors. For example, with K = 14,
the prediction time of LSVM-MTL on the IJCNN1 dataset
is 0.62 seconds, whereas the time of kernel SVM is 34.71
seconds, with 7924 support vectors learned. Even though
SVM-KNN and LLSVM also perform well in most cases,
they are slow due to the nature of lazy learning and local
coordinate coding respectively. LLSVM is sometimes slower
than kernel SVM [5]. The relatively poor performance of K-
means+SVM is likely due to its ignorance of the relatedness
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(a) K-means+SVM and CSVM
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(b) LSVM-MTL 5 tasks
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(c) LSVM-MTL 10 tasks

Figure 2: Learned classifiers on the synthetic sine dataset

Table 1: Comparison of different classifiers in terms of classification accuracy (%)
Datasets IJCNN1 SVMGUIDE1 SKIN LETTER Pendigits Landsat Satellite

Linear SVM 91.01 79.13 97.43 84.60 80.84 86.01
Kernel SVM 98.72 87.95 99.60 99.35 98.91 91.20
SVM-KNN 92.45 85.78 98.88 95.05 97.43 86.93

K-means+SVM 93.87±0.53 83.25±0.72 97.82±0.28 93.66±0.35 96.89±0.19 87.55±0.23
MLSVM 93.41±0.19 83.27±0.64 98.12±0.37 93.89±0.42 97.21±0.26 87.63±0.28
LLSVM 94.07±0.45 87.64±0.30 98.36±0.21 95.68±0.17 98.11±0.38 87.42±0.11
CSVM 95.41±0.34 86.32±0.47 98.72±0.15 94.37±0.26 97.14±0.18 88.98±0.21

LSVM-MTL 96.32±0.27 87.88±0.43 98.70±0.19 96.12±0.14 98.28±0.23 89.70±0.15
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Figure 3: Classification accuracy of CSVM and LSVM-MTL with respect to the number of clusters K

among the multiple tasks. MLSVM only yields slightly bet-
ter results than K-means+SVM, with increased complexity.
CSVM is state-of-the-art for this field, so we compare it

with LSVM-MTL in detail. Figure 3 shows the classifica-
tion accuracy of CSVM and LSVM-MTL with the number
of clusters ranging from 2 to 20. LSVM-MTL outperforms
CSVM on all the datasets except the SKIN dataset. How-
ever, the SKIN dataset is simple, so even linear SVM pro-
duces satisfactory results. The performance of LSVM-MTL
generally improves with the number of clusters. Two factors
may account for this improvement. First, when the number
of clusters increases, the samples in each cluster become lin-
early separable, and the SVM can classify them well. Sec-
ond, with more clusters (tasks), multi-task learning is better
utilized to transfer knowledge between tasks and avoid over-
fitting. The performance of LSVM-MTL generally stabilizes
as the number of clusters exceeds a certain threshold.

5. CONCLUSIONS
In this paper, we have proposed the LSVM-MTL model,

which clusters the data with a GMM and trains a linear
SVM for each cluster. These two steps are combined into a
generative model and implemented with an EM algorithm.
Furthermore, we consider the training of each linear SVM
as a single task and use clustered multi-task learning to cap-
ture the relatedness between tasks. Experimental results on
benchmark datasets demonstrate that LSVM-MTL outper-
forms state-of-the-art methods. In the prediction phase, it
also achieves much higher efficiency than kernel SVM with
comparable classification performance.
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