
Applied Intelligence
https://doi.org/10.1007/s10489-021-02569-y

Deep convolutional self-paced clustering

Rui Chen1,2 · Yongqiang Tang2 · Lei Tian2,3 · Caixia Zhang1 ·Wensheng Zhang2,3

Accepted: 25 May 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Clustering is a crucial but challenging task in data mining and machine learning. Recently, deep clustering, which derives
inspiration primarily from deep learning approaches, has achieved state-of-the-art performance in various applications
and attracted considerable attention. Nevertheless, most of these approaches fail to effectively learn informative cluster-
oriented features for data with spatial correlation structure, e.g., images. To tackle this problem, in this paper, we develop
a deep convolutional self-paced clustering (DCSPC) method. Specifically, in the pretraining stage, we propose to utilize
a convolutional autoencoder to extract a high-quality data representation that contains the spatial correlation information.
Then, in the finetuning stage, a clustering loss is directly imposed on the learned features to jointly perform feature
refinement and cluster assignment. We retain the decoder to avoid the feature space being distorted by the clustering loss. To
stabilize the training process of the whole network, we further introduce a self-paced learning mechanism and select the most
confident samples in each iteration. Through comprehensive experiments on seven popular image datasets, we demonstrate
that the proposed algorithm can consistently outperform state-of-the-art rivals.

Keywords Deep clustering · Convolutional autoencoder · Local structure preservation · Self-paced learning

1 Introduction

Clustering aims to partition data into different groups,
where samples in the same group are more similar to
each other than to those in other groups. Over the past
several decades, numerous clustering methods have been
exploited in diverse real-world applications, e.g., image
classification [1–4] and data visualization. Conventional
clustering methods [5–7] have high speed and are suitable
for a wide range of problems. Despite their success in
data clustering, these methods usually depend on predefined
similarity measurements, which are subject to the original

� Yongqiang Tang
yongqiang.tang@ia.ac.cn

� Caixia Zhang
zh caixia@163.com

1 Department of Automation, Foshan University, Foshan, China

2 Research Center of Precision Sensing and Control, Institute
of Automation, Chinese Academy of Sciences, Beijing, China

3 School of Artificial Intelligence, University of Chinese
Academy of Sciences, Beijing, China

data space and tend to be ineffective when the input
dimensionality is relatively high.

To remedy the above issues, many works attempt
to borrow the advantages of dimensionality reduction
techniques to map raw data into a new low-dimensional
feature space [8–12]. For instance, principal component
analysis (PCA) [8] aims to learn a linear projection
and maximizes the data variance in the projected low-
dimensional space. Nevertheless, such a simple linear
transformation makes PCA unable to depict the extremely
complex latent structure underlying the data. Recently,
Peng et al. [11] have proposed to utilize the tensor similarity
to capture complementary information that a pairwise
similarity fails to provide, i.e., the structural information,
achieving excellent clustering performance. In contrast
to the above traditional methods, deep neural networks
(DNNs) have shown much greater power to extract high-
level features by nonlinear embedding. Among existing
DNNs, the autoencoder is a favorable method that first
embeds the data into a latent feature space and then attempts
to reconstruct the input data based on this space. The past
few years have witnessed many related achievements [27,
28]. Peng et al. [27] integrate prior sparsity information
into the middle layer of an autoencoder to simultaneously
adapt the local and global subspace structure. Ji et al. [28]

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-021-02569-y&domain=pdf
mailto: yongqiang.tang@ia.ac.cn
mailto: zh_caixia@163.com


R. Chen et al.

incorporate a differentiable self-expressive layer into an
autoencoder to learn pairwise relationships between data
points. Although the improved clustering performance
is achieved by the autoencoder, it generally treats the
processes of feature learning and pseudolabel assignment as
two separate steps, rendering these two processes incapable
to benefit from each other.

More recently, several works [32–34, 41] have attempted
to integrate autoencoder and data clustering into a unified
framework, such that the representations of data points
as well as their corresponding cluster assignments can
be optimized jointly to achieve superior performance.
For example, Xie et al. [32] utilize an autoencoder to
dig out the cluster-oriented feature representations for
input data, which achieves a substantial improvement
compared with traditional clustering approaches. Guo et al.
[33] further propose to merge the reconstruction loss
of an autoencoder into DEC’s [32] objective, achieving
appreciable improvement. Yang et al. [34] combine
autoencoder-based dimensionality reduction and K-means
[5] clustering into a joint learning framework to improve
the performance of both, which requires an alternative
optimization strategy to discretely update cluster centers,
cluster assignments and network parameters. Huang et al.
[41] propose to jointly extract distinctive features via
autoencoder and perform subspace learning to guide the
clustering task.

Despite these excellent efforts, the existing deep cluster-
ing methods still present three drawbacks: First, the most
widely used autoencoder in deep clustering algorithms is the
stacked autoencoder (SAE) [25], which requires layer-wise
training before being tuned. However, this procedure may be
time-consuming and redundant as the layers go deeper. Fur-
thermore, SAE is built with fully connected layers, which
is ineffective for dealing with data with spatial correlation
structures such as images. Second, one more issue deserv-
ing our attention is that most current works typically ignore
the preservation of data properties, which can result in the
corruption of feature space and hinder the clustering per-
formance accordingly. Third, previous approaches fail to
take the effect of marginal samples into account during net-
work training. Although near the cluster boundaries, these
marginal examples may not provide convincing guidance
since clustering is performed in an unsupervised manner. As
a result, as illustrated in [37], unreliable samples could con-
fuse or even mislead the training process of the DNN and
thus seriously degrade the clustering performance.

Aiming to tackle the above three issues simultaneously,
in this paper, we propose a Deep Convolutional Self-Paced
Clustering (DCSPC) method. Specifically, our approach
embodies two stages: pretraining and finetuning. In the
pretraining stage, we train a convolutional autoencoder
(CAE) [26] by minimizing the reconstruction loss in an

end-to-end manner to learn high-quality features. By
employing CAE, our approach can transform data from
a relatively high-dimensional and sparse space to a low-
dimensional and compact space. Then, in the finetuning
stage, different from some previous works [31, 32, 37] that
only retain the encoder, we tune the whole autoencoder
(or specifically CAE) by using both clustering loss and
reconstruction loss, such that data properties can be
preserved to avoid the corruption of feature space. In
addition, to eliminate the influence of marginal samples,
we introduce a self-paced learning mechanism to gradually
select training samples from easy to hard. To summarize, the
main contributions of this work are highlighted as follows:

– We propose a novel deep clustering method called
DCSPC. Our DCSPC employs a convolutional autoen-
coder to capture the spatial relationship and avoids
the corruption of feature space by tuning both cluster-
ing loss and reconstruction loss, such that high-quality
cluster-oriented features can be learned.

– In the finetuning stage, we further introduce a self-
paced learning mechanism into our DCSPC. The
samples are involved in the optimization process from
easy to hard, such that adverse effects of marginal
samples can be mitigated effectively.

– Extensive experiments on seven widely used bench-
mark image datasets demonstrate the superiority of
our DCSPC against the state-of-the-art deep cluster-
ing methods. An elaborate ablation study confirms the
effectiveness of our proposals.

The remainder of this paper is organized as follows. In
Section 2, we present a brief review of the related work.
Section 3 describes the details of the developed DCSPC
algorithm. Comprehensive experimental results are reported
and analyzed in Section 4. Finally, Section 5 concludes this
paper.

2 Related work

This section reviews some of the previous work closely
related to this paper. We first briefly review the classical K-
means algorithm. Next, related studies of deep unsupervised
clustering are reviewed. Finally, we introduce the self-paced
learning paradigm.

2.1 K-means algorithm

Given a set of data X = {x1, x2, . . . , xn} ∈ R
D×n,

the goal of clustering is to divide the n samples into K

groups, forcing samples within the identical groups to be
more similar to each other than to those in other groups.
Among existing works, prototype-based clustering [5, 15]



Deep convolutional self-paced clustering

has attracted much attention. In this paper, we focus on the
commonly used prototype-based clustering method, i.e., K-
means algorithm, whose optimization problem can be stated
as follows:

min
M,s

1

n

n∑

i=1

‖xi − Msi‖22,

s.t . si ∈ {0, 1}K, 1Tsi = 1,

(1)

where si ∈ R
K is the assignment vector of data point xi ,

which has only one nonzero element, and the j th column
of M ∈ R

D×K , i.e., mj , denotes the centroid of the j th
cluster. When the data points are evenly scattered around
their corresponding centroids in the feature space, the K-
means algorithmworks very effectively. However,K-means
is usually not suitable for high-dimensional data because
of the inefficient similarity measurement caused by the
“curse of dimensionality”. Thus, in practice, we should use
dimensionality reduction methods, such as PCA [8], MDS
[9] and NMF [10], to project the original data onto low-
dimensional space and then employ the K-means algorithm
to cluster the low-dimensional data, which will usually
bring about better results. In addition to the above linear
dimensionality reduction approaches, nonlinear algorithms
such as tSNE [17], LLE [18], and DNN-based methods
[19–21] are widely used for preprocessing before the K-
means algorithm. We refer interested readers to [22–24]
for a comprehensive understanding. In many real-world
applications, data may be derived from different views,
and thus, a number of multiview clustering methods have
been proposed. For example, Zhang et al. [13] first map
the multiview samples to a shared view space, then convert
the samples to a discriminative space, and finally conduct
K-means to cluster the converted samples. Wang et al.
[14] propose a general graph-based multiview clustering
framework, which generates a unified graph matrix by
extracting feature matrices and fusing graph matrices from
multiple views for direct clustering. Considering that there
may be cases in which a specific class is not in the training
data, Hayashi et al. [16] propose a cluster-based zero-shot
learning method to divide the data into invisible and visible
classes.

2.2 Deep unsupervised clustering

Deep unsupervised clustering methods can be roughly
divided into two categories. One category includes
approaches that usually treat feature learning or cluster-
ing independently, i.e., project the raw data into a low-
dimensional feature space first, and then conduct conven-
tional clustering algorithms to group feature points. Unfor-
tunately, this kind of separated form can place restrictions
on the clustering performance because of the neglect of

some potential relationships between feature learning and
clustering.

Another category refers to methods that use the joint
optimization criterion, which perform both feature learning
and clustering simultaneously and have shown great
superiority beyond the separated methods. Recently, several
approaches have been proposed to integrate feature learning
and clustering into a unified framework. Joint unsupervised
learning (JULE) [29] proposes to guide the agglomerative
clustering and representation learning concurrently on the
basis of a unified weighted triplet loss, but it involves
relatively high computational complexity. Chang et al.
[30] raise a hypothesis of the binary relationship between
pairwise images and develop a deep adaptive clustering
(DAC) model to reestablish the clustering task as a
binary pairwise-classification problem, showing excellent
results on six image datasets. Drawing lessons from
hard-weighting self-paced learning, adaptive self-paced
clustering (ASPC) [37] prioritizes high-confidence samples
during the clustering network training to eliminate the
negative effect of marginal samples and stabilize the
training process. Ren et al. [40] propose a deep density-
based clustering (DDC) technique, which can adaptively
estimate the number of data clusters with arbitrary shapes.
Deep embedded clustering with data augmentation (DEC-
DA) [36] incorporates the data augmentation trick into
the original deep embedded clustering framework and
achieves excellent clustering performance on four grayscale
image datasets. Semisupervised deep embedded clustering
(SDEC) [39] overcomes the drawback in that DEC [32] fails
to guide the training process by taking advantage of prior
knowledge.

2.3 Self-paced learning

Similar to the core idea of curriculum learning [43], the
goal of self-paced learning is to learn a model by gradually
involving samples for training from easy to hard. The
obvious difference between these approaches is that the
former requires a predetermined prior of easy and hard
samples, whereas the latter can automatically select the
order from the data themselves. Given one training set
X = {(x1, y1), (x2, y2), . . . , (xn, yn)} and training model fθ

with θ being the model parameters, the general objective of
self-paced learning can be stated as follows:

min
θ,v

1

n

n∑

i=1

viL(fθ (xi ), yi ) + h(λ, vi ),

s.t . vi ∈ [0, 1],
(2)

where L(·) denotes the loss function of a specific
problem, h(λ, vi ) represents a self-paced regularizer that is
independent of L(·) and can be defined in various forms,



R. Chen et al.

v = [v1, v2, . . . , vn]T symbolizes the weight variable
reflecting the complexity of samples, and λ is a parameter,
called learning pace, for controlling the “model age” which
gradually increases in order to explore more samples. When
h(λ, vi ) = −λvi with vi equals 0 or 1, self-paced learning
degenerates into the hard-weighting form, i.e.,

min
θ,v

1

n

n∑

i=1

viL(fθ (xi ), yi ) − λvi ,

s.t . vi ∈ {0, 1}.
(3)

With θ fixed, the optimal vi of problem (3) is determined
by:

vi =
{
1, if L(fθ (xi ), yi ) ≤ λ,

0, otherwise.
(4)

Additionally, for updating θ with fixed v, problem (3)
degenerates into a weighted loss minimization problem,
which can be readily settled via stochastic gradient descent
(SGD) and backpropagation (BP).

To date, self-paced learning has been applied in a variety
of tasks and models. Kumar et al. [44] first demonstrate that
a self-paced learning algorithm outperforms the state-of-
the-art methods for learning a latent structural SVM. In [45],
the self-paced learning paradigm is successfully employed
for time series clustering. Jiang et al. [46] propose a
self-paced curriculum learning (SPCL) framework, which
is capable of jointly considering prior knowledge and
the learning progress. To simultaneously enhance the
robustness and the effectiveness for supervised learning, Pi

et al. [47] first put forward the self-paced boost learning
(SPBL) framework, which can reveal and utilize the
association of boosting and self-paced learning. Noticing
that standard self-paced learning may suffer from the class
imbalance issue, Ren et al. [48] carefully design two novel
soft-weighting schemes to remedy this issue by assigning
weights and selecting instances locally for each class.
More recently, SPUDRFs [49] solves the basic issue of
ranking and selecting in self-paced learning with respect to
fairness and can be handily combined with various deep
discriminative models. In SAMVC [50], a soft-weighting
form of self-paced learning is introduced into the multiview
clustering model to reduce the adverse impacts from outliers
and noises, and an auto-weighted strategy is developed to
judge the importance of different views. Meng et al. [51]
manage to provide some explanations of the self-paced
learning paradigm to pursue a theoretical understanding.
Overall, these literature publications confirm that self-paced
learning is beneficial to avoid entrapment in undesirable
local minima and to generally improve the performance of
their models.

3 Deep convolutional self-paced clustering

In this section, we first introduce the basic deep clustering
model, which takes into account the local structure
preservation (LSP). Next, we equip both a convolutional
neural network (CNN) and self-paced learning (SPL) into
our basic model to learn high-quality cluster-oriented

Fig. 1 Framework of the proposed DCSPC algorithm



Deep convolutional self-paced clustering

features containing spatial relationship information and to
eliminate the negative effect of marginal samples. In the
end, we elaborate the optimization procedure for our intact
model. The framework of the proposed DCSPC algorithm
is illustrated in Fig. 1.

3.1 Basic deep clusteringmodel

Suppose we have n samples, denoted by X =
{x1, x2, . . . , xn}, where xi ∈ R

D . In our proposal, we
take the SAE as the basic model, in which each sam-
ple xi is first transformed to a d-dimensional low feature
space by the encoder network fθ (·),= and then is recon-
structed by the decoder network gθ ′(·) using the correspond-
ing d-dimensional feature representation zi . For simplicity,
we presume that the number of clusters K is provided
as a priori knowledge. With the center of the j th clus-
ter as mj ∈ R

d , the cluster matrix can be expressed as
M = [m1, m2, . . . , mK ] ∈ R

d×K . The cluster assign-
ment for sample zi is denoted by si ∈ {0, 1}K , and then,
yi = Msi represents the cluster centroid to which the sam-
ple zi belongs. Inspired by DCN [34], we simultaneously
consider the reconstruction loss and clustering loss in our
basic model. To this end, our objective function can be
formulated as:

L = Lr + γLc, (5)

where

Lr = 1

n

n∑

i=1

‖xi − gθ ′(fθ (xi ))‖22 (6)

and

Lc = 1

n

n∑

i=1

‖fθ (xi ) − Msi‖22 (7)

are corresponding to the reconstruction error and the
clustering error, respectively. γ is a parameter that trades off
between Lr and Lc to protect feature properties.

However, different from DCN [34], which alternatively
updates cluster centers M and cluster assignments during
its finetuning stage, in our work, we merely conduct K-
means to initialize M based on the latent features Z =
{z1, z2, . . . , zn} = fθ (X) ∈ R

d×n and then fix it to prevent
all samples from being assigned into one group in the
feature space. In fact, once M is fixed, decision boundaries
are also determined. In such a case, it will be impossible to
assign all samples together by minimizing (7) with fixed θ .
For simplicity, we refer to the aforementioned basic deep
clustering model as BDCM.

In our BDCM, the quality of the target label yi

is influenced by two factors: the initialization and the
finetuning process. That is, to obtain a high-quality target
label, we are supposed to carefully focus on the above

two factors. Unfortunately, the features learned by utilizing
SAE may not be sufficient to support a good initialization.
Moreover, as noted earlier, margin samples could seriously
mislead the finetuning process. Therefore, there is a strong
motivation to find an effective method of feature learning
for good initialization and to eliminate the negative effect
of marginal samples in the finetuning process. To achieve
these two goals, we equip a CNN and SPL in our BDCM.

3.2 Equipping the CNN and SPL

As is known, compared with SAE, CAE is a more powerful
network to deal with structured image data as CAE can
successfully capture the spatial relationship of data points.
Therefore, we can obtain more robust cluster-oriented
features with spatial relationship information by replacing
SAE with CAE, i.e., equipping a CNN in our BDCMmodel,
which is a great help to creating a better initialization.
Moreover, to remove the effect of marginal samples as
well as guarantee the stability of the minimization of
(5), we equip SPL into our basic model to gradually
select the most confident samples for training. Then, the
optimization problem of our enhanced model, named Deep
Convolutional Self-Paced Clustering (DCSPC), can be
formulated as:

min
θ,θ ′,v,s

1

n

n∑

i=1

vi (‖xi − gθ ′(fθ (xi ))‖22 + γ ‖fθ (xi ) − Msi‖22) − λvi ,

s.t . vi ∈ {0, 1}, si ∈ {0, 1}K, 1Tsi = 1.

(8)

However, it is very difficult to control the growth rate of λ

for different tasks. Thus, following [37], we adopt a statistic
based adaptive method to update it:

λ = μ(Lt ) + t

T
σ (Lt ), (9)

where Lt is a loss vector at the t th training step, and the
value of the ith sample is calculated as:

Lt
i = ‖xi − gθ ′t (fθ t (xi ))‖22 + γ ‖fθ t (xi ) − Msti‖22. (10)

μ(Lt ) and σ(Lt ) denote the average and standard deviation
of vector Lt , respectively. T is the number of training
iterations. By introducing the weight vector v and parameter
λ, our model can select the most confident samples for
training whose loss values are no more than λ. With
increasing iterations, increasing numbers of samples will
be utilized in training. This process is similar to human
cognitive learning, i.e., learning from easy to hard.



R. Chen et al.

3.3 Optimization

3.3.1 Optimization procedure

Similar to the conventional autoencoder, all parameters
of the pretraining network can be directly optimized by
stochastic gradient descent (SGD) and backpropagation
(BP). Therefore, we only focus on the optimization of
the finetuning network, where an iterative alternative
optimization strategy is considered to optimize problem (8).

1. Update network parameters θ and θ ′: With the
other irrelevant variables fixed, the optimization problem
for network parameters θ and θ ′ is degraded to:

min
θ ,θ ′

1

n

n∑

i=1

vi (‖xi − gθ ′(fθ (xi ))‖22 + γ ‖fθ (xi ) − Msi‖22),

(11)

which can be adaptively optimized by SGD and BP.
2. Update cluster assignments s:With θ , θ ′ and v fixed,

s is updated by resolving the following subproblem:

min
s

1

n

n∑

i=1

‖fθ (xi ) − Msi‖22,

s.t . si ∈ {0, 1}K, 1Tsi = 1,

(12)

whose optimal solution is:

sij =
{
1, if j = argmin

k
‖fθ (xi ) − mk‖22,

0, otherwise.
(13)

3. Update sample weights v: Fixing θ , θ ′ and s, the
optimization problem to v is degraded as follows:

min
v

1

n

n∑

i=1

vi (‖xi − gθ ′
(
fθ (xi ))‖22 + γ ‖fθ (xi ) − Msi‖22

)
− λvi ,

s.t . vi ∈ {0, 1}.
(14)

Let

Li = ‖xi − gθ ′(fθ (xi ))‖22 + γ ‖fθ (xi ) − Msi‖22, (15)

the optimal solution to problem (14) can be expressed as:

vi =
{
1, if Li ≤ λ,

0, otherwise.
(16)

4. Update learning pace λ: λ is updated by (9).

3.3.2 Stopping criterion

As described in [32], if the variation of predicted labels
between two consecutive iterations is less than a threshold
δ, the training procedure will be terminated. Formally, the
stopping criterion is:

1 − 1

n

∑

i,j

stij s
t−1
ij < δ, (17)

where stij and st−1
ij are indicators for whether sample xi is

assigned to the j th cluster at the (t − 1)th and t th iteration,
respectively. Following the pioneering work [32], we set
δ = 0.1% in our experiment.

Finally, by alternatively updating the above variables,
the proposed algorithm can theoretically converge to the
local optimal solution. The optimization procedure of the
objective function (8) is summarized in Algorithm 1.

Table 1 Properties of different datasets

Samples Classes Size Dimensions

MNIST 70000 10 28 × 28 × 1 784

MNIST-test 10000 10 28 × 28 × 1 784

USPS 9298 10 16 × 16 × 1 256

FMNIST 70000 10 28 × 28 × 1 784

ENGLISHFNT 10160 10 32 × 32 × 1 1024

COIL20 1440 20 32 × 32 × 1 1024

COIL100 7200 100 32 × 32 × 1 1024



Deep convolutional self-paced clustering

Fig. 2 Examples of different datasets

4 Experiment

In this section, we conduct comprehensive experiments to
investigate the performance of our DCSPC. All experiments
are implemented on a workstation with an Intel(R) Xeon(R)
E5-2640 v4 @ 2.40 GHz CPU, 120 GB RAM, and NVIDIA
GeForce GTX 1080 Ti GPU (11 GB caches).

4.1 Datasets

We evaluate our DCSPC on seven popular image
datasets, namely, MNIST, MNIST-test, USPS, FMNIST,
ENGLISHFNT, COIL20 and COIL100. We will introduce
more details about each dataset as follows.

– MNIST [52] consists of 70000 grayscale handwritten
digit images with a size of 28 × 28 pixels from 10
categories. The training set includes 60000 images,
while the test set contains 10000 images.

– MNIST-test covers the test set of MNIST, with 10000
samples.

– USPS [53] contains 9298 gray handwritten digits with
the image size 16 × 16 from 10 categories.

– FMNIST [54] is a collection of 70000 fashion product
images from 10 classes, with the same image size as
MNIST.

– ENGLISHFNT [55] consists of more than 60000 128×
128 one-channel character images of English letters
from A(a) to Z(z) and Arabic numerals from 0 to 9.
We only consider its Arabic numerals subset with 10160
images from 10 categories, where the image size is
resized to 32 × 32.

– COIL20 [56] includes 1440 128 × 128 gray object
images from 20 categories and shot from different
angles. The resized version of 32× 32 is adopted in our
experiment.

– COIL100 [57] is similar to COIL20, which incor-
porates 7200 three-channel images of 100 object

Table 2 Configuration of the
proposed DCSPC algorithm Stage Parameter Value

Pretraining Structure conv532 − conv564 − conv3128 − fc10 − deconv364 − deconv532 − deconv51
Optimizer Adam (learning rate = 0.001)

Epochs 400

Batch size 256

Kernel initializer Glorot uniform

Activation ReLU

Finetuning Structure conv532 − conv564 − conv3128 − fc10 − deconv364 − deconv532 − deconv51
Optimizer Adam (learning rate = 0.0001)

Iterations T 100

Batch size 256

Balance factor γ 0.5

Threshold δ 0.1%



R. Chen et al.

categories. We grayscale it and map the image size to
32 × 32.

The properties of the above datasets are summarized in
Table 1. Examples of some datasets are shown in Fig. 2. In
our experiments, all datasets are rescaled to [−1, 1] for each
element before being fed to clustering algorithms. Note that
for some datasets that have been separated into training set
and testing set, both parts are included for clustering.

4.2 Evaluationmetrics

To measure the clustering performance, we adopt three
popular standard metrics including accuracy (ACC) [59],
normalized mutual information (NMI) [60] and adjusted
Rand index (ARI) [61]. ACC is defined as follows:

ACC = max
m

∑n
i=1 1{yi = map(si)}

n
, (18)

where yi and si denote the ground-truth label and the cluster
assignment produced by the model, respectively. map(si) is
the permutation map function, which embodies all possible
one-to-one mappings from clusters to labels. The best
mapping can be efficiently computed by the Hungarian
algorithm [58]. NMI calculates the normalized measure of
similarity between two labels of the same data, which can
be formulated as:

NMI = I(y; s)

max{H(y), H(s)} , (19)

where I(y; s) and H represent the mutual information
between y and s and the entropy value, respectively. ARI
is the corrected-for-chance version of the Rand index (RI)
[62], which is computed as follows:

ARI = RI − E(RI)

max(RI) − E(RI)
, (20)

where E(RI) is the expectation of RI.
Generally, the above metrics are commonly adopted in

a variety of clustering literature [32–35, 37–42]. Each one
offers pros and cons, but using them together is sufficient to
demonstrate the effectiveness of the clustering algorithms.
Note that ACC and NMI range within [0, 1], while the range
of ARI is [−1, 1], and a higher value signifies a better
clustering performance.

4.3 Comparedmethods

Several clustering methods are employed for comparison
with our DCSPC, which can be roughly grouped as
three categories: 1) Traditional methods, containing K-
means (KM) [5], Gaussian mixture models (GMM) [6],
and spectral clustering (SC) [7]; 2) Representation-based
methods, including SAE [25] and CAE [26]; 3) Deep
clustering methods, consisting of deep embedded clustering

Ta
bl
e
3

C
lu
st
er
in
g
pe
rf
or
m
an
ce

of
di
ff
er
en
ta
lg
or
ith

m
s
on

se
ve
n
da
ta
se
ts
in

te
rm

s
of

A
C
C
an
d
N
M
I

M
N
IS
T

M
N
IS
T-
te
st

U
SP

S
FM

N
IS
T

E
N
G
L
IS
H
FN

T
C
O
IL
20

C
O
IL
10
0

A
C
C

N
M
I

A
C
C

N
M
I

A
C
C

N
M
I

A
C
C

N
M
I

A
C
C

N
M
I

A
C
C

N
M
I

A
C
C

N
M
I

K
M

[5
]

0.
53
2

0.
50
0

0.
54
6

0.
50
1

0.
66
8

0.
62
7

0.
47
4

0.
51
2

0.
54
1

0.
50
0

0.
60
7

0.
48
7

0.
49
5

0.
76
9

G
M
M

[6
]

0.
43
3

0.
36
6

0.
54
0

0.
49
3

0.
55
1

0.
53
0

0.
55
6

0.
55
7

0.
52
0

0.
50
3

0.
65
5

0.
77
5

0.
48
9

0.
76
4

SC
[7
]

0.
65
6

0.
73
1

0.
66
0

0.
70
4

0.
64
9

0.
79
4

0.
50
8

0.
57
5

−
−

0.
62
8

0.
52
3

−
−

SA
E
[2
5]

0.
78
2

0.
71
5

0.
66
8

0.
59
6

0.
61
7

0.
57
3

0.
50
8

0.
53
9

0.
57
7

0.
53
9

0.
55
8

0.
71
5

0.
50
4

0.
76
7

C
A
E
[2
6]

0.
84
9

0.
79
3

0.
79
0

0.
72
6

0.
74
2

0.
73
3

0.
58
3

0.
62
1

0.
71
7

0.
69
7

0.
66
8

0.
78
2

0.
51
6

0.
78
5

D
E
C
[3
2]

0.
84
1

0.
81
3

0.
69
9

0.
67
7

0.
69
3

0.
70
2

0.
51
8

0.
54
6

0.
59
5

0.
57
3

0.
57
3

0.
75
9

0.
50
0

0.
76
5

ID
E
C
[3
3]

0.
84
2

0.
83
8

0.
71
5

0.
69
4

0.
72
1

0.
73
2

0.
52
9

0.
55
7

0.
66
5

0.
66
7

0.
58
6

0.
76
1

0.
51
9

0.
79
2

D
C
N
[3
4]

0.
81
1

0.
75
7

0.
80
2

0.
78
6

0.
73
0

0.
71
9

0.
50
1

0.
55
8

−
−

−
−

−
−

D
K
M

[3
5]

0.
84
0

0.
79
6

−
−

0.
75
7

0.
77
6

0.
53
9

0.
56
3

−
−

−
−

−
−

C
on
vD

E
C
[3
6]

0.
88
6

0.
87
6

0.
84
8

0.
82
6

0.
77
9

0.
81
1

0.
56
6

0.
61
4

0.
68
1

0.
69
5

0.
68
7

0.
79
8

0.
51
1

0.
77
5

A
SP

C
[3
7]

0.
85
9

0.
84
2

0.
78
2

0.
73
4

0.
75
3

0.
76
6

0.
60
0

0.
63
3

0.
64
9

0.
63
8

0.
56
9

0.
74
3

0.
50
9

0.
78
2

A
SP

C
w
/o

SP
L

0.
84
4

0.
81
8

0.
74
7

0.
68
4

0.
72
5

0.
73
0

0.
59
7

0.
62
5

0.
62
4

0.
59
8

0.
55
1

0.
72
3

0.
50
0

0.
77
1

SD
C
N
[3
8]

−
−

−
−

0.
78
1

0.
79
5

−
−

−
−

−
−

−
−

SD
E
C
[3
9]

0.
86
1

0.
82
9

−
−

0.
76
4

0.
77
7

−
−

−
−

−
−

−
−

D
C
SP

C
(o
ur
s)

0.
91
4

0.
88
2

0.
85
3

0.
83
0

0.
79
1

0.
82
6

0.
62
9

0.
65
8

0.
72
9

0.
75
5

0.
69
4

0.
80
4

0.
54
0

0.
80
0



Deep convolutional self-paced clustering

Table 4 Clustering performance of different algorithms with DA tricks in terms of ACC and NMI on the MNIST, USPS, FMNIST, and
ENGLISHFNT datasets

MNIST USPS FMNIST ENGLISHFNT

ACC NMI ACC NMI ACC NMI ACC NMI

ConvDEC+DA [36] 0.952 0.945 0.941 0.942 0.586 0.635 0.890 0.935

ASPC+DA [37] 0.913 0.895 0.842 0.879 0.549 0.618 0.799 0.795

DDC+DA [40] 0.932 0.927 0.975 0.935 0.594 0.661 0.686 0.814

DCSPC+DA (ours) 0.967 0.923 0.976 0.938 0.623 0.662 0.980 0.949

(DEC) [32], improved deep embedded clustering (IDEC)
[33], deep clustering network (DCN) [34], deep K-means
(DKM) [35], convolutional deep embedded clustering
(ConvDEC) [36], adaptive self-paced clustering (ASPC)
[37], structural deep clustering network (SDCN) [38], semi-
supervised deep embedded clustering (SDEC) [39], and
deep density-based clustering (DDC) [40].

4.4 Experimental settings

In the pretraining stage, the encoder network structure is
conv532 → conv564 → conv3128 → fc10, where convk

n

denotes a convolutional layer with n filters, k×k kernel size
and 2 stride length, whose mirrored version is regarded as
the decoder network. The Glorot uniform [63] is employed
as the layer kernel initializer. All internal layers (except for
the input, output, and embedding layers) are activated by
ReLU [64]. We place the decoder on the top of the encoder
to construct the CAE, which is trained in an end-to-end
manner for 400 epochs using the Adam [65] optimizer with
an initial learning rate of 0.001. In the finetuning stage,
different from the previous works [31, 32, 37], the decoder
is also considered to protect data properties. The number
of clusters K is set according to the ground truth labels,
i.e., to let K be equal to the ground truth cluster number,
and nonparametric Bayesian methods [66] can be adopted
to estimate unknownK . The maximum number of iterations
is set to T = 100. The Adam [65] optimizer with initial
learning rate 0.0001 is used. The batch size is fixed to 256.
The balance factor is fixed to γ = 0.5. The threshold of
the stopping criterion is set to δ = 0.1%. A summary of
these setups is listed in Table 2. Note that for reasonable
evaluation, we perform 5 random restarts for all experiments
and report the average results to compare with the others
based on Python 3.7 and TensorFlow 2.0.0-beta0.

4.5 Performance comparison

Table 3 reports the clustering results of all compared algo-
rithms, where the mark “−” denotes that the experimental
results or code are inaccessible from the corresponding
paper, and the bold number refers to the best clustering

result. As is shown, in most cases, deep clustering algo-
rithms perform better than traditional algorithms by a large
margin, reflecting the effectiveness of deep neural net-
works in nonlinear feature learning. In fact, deep clustering
algorithms also achieve better performance than the corre-
sponding representation-based approaches, i.e., SAE [25]
and CAE [26], in almost all cases for all metrics, which
clearly demonstrates that combining feature learning and
clustering can bring about more suitable features for cluster-
ing, indicating the advantage of using the joint optimization
criterion.

Moreover, comparison between SAE and CAE validates
the superiority of CAE. This is because CAE is equipped
with the convolutional neural network (CNN) instead of
the fully connected network adopted in SAE, such that
the information of spatial correlation lying in raw data
can be effectively captured and the quality of feature
embedding is enhanced. In addition, the performance of
IDEC [33] over DEC [32] shows that the LSP mechanism
can help protect feature properties to improve clustering
performance. Additionally, the superior result of ASPC
[37] over ASPC w/o SPL (i.e., ASPC without SPL)
indicates that the SPL paradigm is provided with the
advantage of eliminating the negative effects from marginal
samples by gradually selecting increasing numbers of high-
confidence samples into training. In fact, the proposed
DCSPC succeeds in achieving the best performance in terms
of all metrics on all datasets; in particular, the state-of-
the-art performance (achieved by ASPC) on FMNIST is
improved from 60.0% (63.3%) to 62.9% (65.8%) by our
method with respect to ACC (NMI).

We also find that a novel data augmentation (DA)
trick is employed by [36, 37, 40] and improved clustering
performance is acquired. In this study, we incorporate such
DA strategy with our DCSPC algorithm. On the one hand,
we can evaluate whether the proposed DCSPC could also
benefit from DA. On the other hand, we can arrive at more
fair comparison with the rivals [36, 37, 40] that use the DA
trick. It is observed from Tables 3 and 4 that the DA strategy
can obviously promote the clustering performance of our
DCSPC on the MNIST, USPS, and ENGLISHFNT datasets.
Compared with other competitors adopting a DA strategy,



R. Chen et al.

Ta
bl
e
5

Pe
rf
or
m
an
ce

of
D
C
SP

C
w
ith

di
ff
er
en
tc
on
fi
gu
ra
tio

ns
on

M
N
IS
T,

M
N
IS
T-
te
st
,U

SP
S,

an
d
FM

N
IS
T

C
N
N

L
SP

SP
L

M
N
IS
T

M
N
IS
T-
te
st

U
SP

S
FM

N
IS
T

A
C
C

N
M
I

A
R
I

A
C
C

N
M
I

A
R
I

A
C
C

N
M
I

A
R
I

A
C
C

N
M
I

A
R
I

B
as
ic
D
C

×
×

×
0.
84
42

0.
81
75

0.
77
48

0.
74
69

0.
68
38

0.
60
54

0.
72
46

0.
73
01

0.
61
66

0.
59
73

0.
62
54

0.
47
71

A
SP

C
×

×
�

0.
85
93

0.
84
23

0.
80
46

0.
78
20

0.
73
37

0.
66
94

0.
75
33

0.
76
61

0.
66
79

0.
59
96

0.
63
32

0.
48
04

B
D
C
M

×
�

×
0.
85
23

0.
83
38

0.
79
18

0.
74
91

0.
68
55

0.
61
14

0.
73
04

0.
73
43

0.
62
35

0.
59
96

0.
63
86

0.
48
29

−
×

�
�

0.
86
82

0.
85
98

0.
82
14

0.
79
10

0.
74
39

0.
68
71

0.
75
94

0.
77
25

0.
66
64

0.
60
01

0.
63
72

0.
48
07

−
�

×
×

0.
89
16

0.
87
40

0.
83
53

0.
83
08

0.
81
10

0.
74
97

0.
77
83

0.
80
58

0.
71
57

0.
62
29

0.
64
89

0.
49
32

−
�

×
�

0.
90
28

0.
87
95

0.
84
90

0.
83
58

0.
82
92

0.
76
51

0.
78
61

0.
82
03

0.
72
88

0.
62
76

0.
65
31

0.
49
78

−
�

�
×

0.
89
77

0.
87
71

0.
84
21

0.
83
45

0.
81
31

0.
75
51

0.
78
01

0.
80
49

0.
71
64

0.
62
76

0.
65
51

0.
49
82

SP
L
w
/o

L
SP

�
�

�
0.
90
87

0.
88
01

0.
85
19

0.
84
29

0.
82
94

0.
76
68

0.
78
93

0.
82
20

0.
73
43

0.
62
88

0.
65
64

0.
49
91

D
C
SP

C
(o
ur
s)

�
�

�
0.
91
42

0.
88
20

0.
85
46

0.
84
61

0.
82
97

0.
77
45

0.
79
14

0.
82
58

0.
73
72

0.
62
94

0.
65
82

0.
50
05

DCSPC+DA achieves the highest ACC score on all four
datasets and works the best on two datasets with respect
to NMI. In particular, our DCSPC+DA obtains a great
advantage over other methods on the ENGLISHFNT dataset
and surpasses the second-best method ConvDEC+DA [36]
by 9.0% and 1.4% in terms of ACC and NMI, respectively.

Overall, these superior results are quite in line with our
conjecture, owing to the fact that CNN plays a key role in
feature extraction during pretraining and that both LSP and
SPL are conducive to promoting the model training process,
leading to a satisfactory result.

4.6 Ablation study

This subsection describes an ablation study to analyze the
contributions of three parts of our DCSPC, i.e., convolu-
tional neural network (CNN), local structure preservation
(LSP), and self-paced learning (SPL). Removing the CNN
from DCSPC means that the stacked autoencoder (SAE)
is considered instead of convolutional autoencoder (CAE)
as our basic model. Freezing LSP in DCSPC is equivalent
to merely keeping the encoder unchanged during finetun-
ing. Disabling SPL in DCSPC equates to fixing v =
[1, 1, . . . , 1]T = 1 in (8). We regard the configuration with
all three parts removed as BasicDC, as named in [37].

The results of DCSPC with different configurations are
shown in Tables 5 and 6, where whether to use a specific part
in DCSPC is marked by “�” or “×”. When we individually
add one of three parts to the BasicDC, improved clustering
performance can be observed in most cases. In fact, the most
considerable improvement is observed by adding the CNN.
As we can see, the results of the last 5 rows are consistently
much better than those of the first 4 rows, which reveals
that the CNN is the most important part of our DCSPC
algorithm for learning robust features and creating the right
initialization atmosphere for the following clustering task.
When all three parts are simultaneously considered, our
DCSPC algorithm achieves the best performance in terms
of all metrics on all datasets. Moreover, when introducing
a self-paced learning mechanism in our DCSPC, we
simultaneously include the reconstruction and clustering
losses instead of merely considering the clustering loss. The
superior performance of DCSPC as shown in the second row
from the bottom confirms that our DCSPC can describe the
confidence of the samples more comprehensively.

4.7 Parameter analysis

Since our model is based on a DNN, which inevitably
involves the necessity of tuning some hyperparameters, and
because it is impractical to search for an optimal value
in the whole parameter space, we determine most of the
parameters by following the previous work [32]. Here,



Deep convolutional self-paced clustering

Table 6 Performance of DCSPC with different configurations on ENGLISHFNT, COIL20, and COIL100

CNN LSP SPL ENGLISHFNT COIL20 COIL100

ACC NMI ARI ACC NMI ARI ACC NMI ARI

BasicDC × × × 0.6243 0.5984 0.4667 0.5507 0.7234 0.5030 0.5004 0.7707 0.4457

ASPC × × � 0.6491 0.6379 0.4961 0.5693 0.7431 0.5184 0.5090 0.7824 0.4519

BDCM × � × 0.6388 0.6049 0.4764 0.5703 0.7327 0.5178 0.5099 0.7748 0.4555

− × � � 0.6438 0.6338 0.4926 0.5878 0.7592 0.5421 0.5240 0.7860 0.4565

− � × × 0.7140 0.7260 0.6162 0.6671 0.7821 0.6050 0.5144 0.7873 0.4645

− � × � 0.7276 0.7497 0.6319 0.6674 0.8035 0.6072 0.5170 0.7936 0.4580

− � � × 0.7273 0.7337 0.6262 0.6850 0.7842 0.6134 0.5156 0.7872 0.4714

SPL w/o LSP � � � 0.7282 0.7547 0.6347 0.6889 0.8038 0.6227 0.5350 0.7962 0.4766

DCSPC (ours) � � � 0.7291 0.7554 0.6483 0.6944 0.8043 0.6240 0.5404 0.7997 0.4789

due to limited space, we focus only on the importance
coefficient γ and the cluster number K .

We first study the sensitivity of the importance coeffi-
cient γ , which trades off between the reconstruction loss
and the clustering loss. As seen from the comprehensive
experiments in Section 4.5, the proposed algorithm works

well with fixed γ = 0.5. Figure 3 shows how our model
performs with different γ values on the MNIST, MNIST-
test, USPS, and ENGLISHFNT datasets. When γ = 0,
the objective only contains the reconstruction part and
the clustering constraint loses efficacy, resulting in poor
performance. When γ increases gradually, the clustering

Fig. 3 Clustering performance on four datasets with different γ



R. Chen et al.

Fig. 4 Clustering performance with different K

constraint efficacy is rejuvenated and improved cluster-
ing performance is obtained. Moreover, as γ increases, the
fluctuation of metrics is extremely mild, which signifies
that the proposed model yields satisfactory performance for
a suitable range of γ and suggests that our approach is
desensitized to the specific value of γ .

We next discuss the cluster number K . In the previous
experiments in Sections 4.5 and 4.6, we have assumed
that the cluster number K on each dataset is predefined
based on the ground truth labels. However, in many real-
world applications, K is usually unknown in unsupervised
settings. Therefore, here we run our model on the MNIST
dataset with different K to search for the optimal value,
whose quality is measured by ACC. As shown in Fig. 4, we
can see that our DCSPC achieves the highest ACC when
K = 10, according with the ground truth labels. For a visual
understanding, we also show the clustering results of DEC
[32] and our method in Fig. 5. We can observe that our
DCSPC tends to partition all handwritten digit images into
10 clusters, which is consistent with the ground truth labels.

Fig. 5 Visualization of the
clustering results

Fig. 6 Clustering performance vs. iterations

However, DEC confuses the numbers 4 and 9, i.e., grouping
all images into 9 clusters, which conflicts with the ground
truth labels.

4.8 Convergence analysis

In this section, we record the evolution of three metrics over
iterations on the USPS dataset to study the convergence
of our DCSPC. The results are displayed in Fig. 6. We
can observe a clear ascending trend of each metric in
the first few iterations, and all metrics ultimately achieve
stability. Furthermore, we visualize the 10-dimensional
learned feature embeddings in different periods of the
optimization on a subset of the MNIST dataset with 1000
examples, using tSNE [17], as described in Fig. 7. We can
observe that data points projected from raw pixel space are
highly overlapped, indicating the difficulty of the clustering
task. After initialization, feature points extracted from the
CAE are more discrete than raw samples, and although
most points in the same cluster have crowded together,



Deep convolutional self-paced clustering

Fig. 7 Visualization of the clustering process using tSNE

there are still many inseparable points near cluster borders
(i.e., marginal samples). As the finetuning process proceeds
until the model reaches convergence, feature points reach
stability and are well separated. Figures 6 and 7 demonstrate
that the proposed algorithm usually converges in practice.

5 Conclusion

In this paper, we present a new approach for jointly
learning representations and clustering by incorporating
a convolutional network, local structure preservation and
a self-paced learning mechanism. Using a convolutional
network in the training process is beneficial for capturing
high-quality features with spatial relationship information
for subsequent clustering tasks. Local structure preservation
effectively prevents feature space from being distorted by
the clustering loss. Then, we select samples from easy to
hard by integrating the self-paced learning mechanism to
make the training process more stable. In comparison with
existing approaches, our approach has achieved superior
performance on different datasets concurrently. Future
work may include conducting more experiments on three-
channel image, text, and audio datasets and exploring more
advanced convolutional networks for feature learning to
improve clustering performance.

Acknowledgements The authors are thankful for the financial support
in part by the Key-Area Research and Development Program of
Guangdong Province (2019B010153002), by the National Natural
Science Foundation of China (U1936206, 61806202, 61803087,
61803086), by the Feature Innovation Project of Guangdong Province
Department of Education (2019KTSCX192), by the Guangdong Basic
and Applied Basic Research Fund (2020B1515310003), and by the
Foshan Core Technology Research Project (1920001001367). Rui
Chen and Yongqiang Tang contribute equally to this article.

References

1. Simonyan K, Zisserman A (2014) Very deep convolutional
networks for large-scale image recognition. arXiv:1409.1556

2. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D,
Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper
with convolutions, in IEEE Conference on Computer Vision and
Pattern Recognition, pp 1–9

3. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition, in IEEE Conference on Computer Vision and
Pattern Recognition, pp 770–778

4. Hayashi T, Fujita H, Hernandez-Matamoros A (2021) Less
complexity one-class classification approach using construction
error of convolutional image transformation network. Inf Sci
560:217–234

5. MacQueen J (1967) Some methods for classification and
analysis of multivariate observations. In: Berkeley Symposium
on Mathematical Statistics and Probability, vol 1(14):281–297.
Oakland

6. Bishop CM (2006) Pattern recognition and machine learning.
Springer

7. Shi J, Malik J (2000) Normalized cuts and image segmentation.
IEEE Trans Pattern Anal Mach Intell 22(8):888–905

8. Wold S, Esbensen K, Geladi P (1987) Principal component
analysis. Chemometrics Intell Labor Syst 2(1–3):37–52

9. Cox TF, Cox MAA (2001) Multidimensional scaling. J R Stat Soc
46(2):1050–1057

10. Xu W, Liu X, Gong Y (2003) Document clustering based on non-
negative matrix factorization. In: Annual Conference on Research
and Development in Informaion Retrieval. ACM, pp 267–
273

11. Peng H, Hu Y, Chen J, Wang H, Li Y, Cai H (2020) Integrating
Tensor Similarity to Enhance Clustering Performance. IEEE
Transactions on Pattern Analysis and Machine Intelligence

12. Tang Y, Xie Y, Zhang C, Zhang Z, Zhang W (2021) One-
step multi-view subspace segmentation via joint skinny tensor
learning and latent clustering. IEEE Transactions on Cybernetics.
https://doi.org/10.1109/TCYB.2021.3053057

13. Zhang Y, Yang Y, Li T, Fujita H (2019) A multitask multiview
clustering algorithm in heterogeneous situations based on LLE
and LE. Knowl-Based Syst 163:776–786

14. Wang H, Yang Y, Liu B, Fujita H (2019) A study of graph-based
system for multi-view clustering. Knowl-Based Syst 16:1009–
1019

15. Deng T, Ye D, Ma R, Fujita H, Xiong L (2020) Low-rank
local tangent space embedding for subspace clustering. Inf Sci
508:1–21

16. Hayashi T, Fujita H (2021) Cluster-based zero-shot learning for
multivariate data. J Ambient Intell Human Comput 12:1897–1911

17. Maaten L. v. d., Hinton G (2008) Visualizing data using t-sne. J
Mach Learn Res 9:2579–2605

18. Roweis S, Saul L (2000) Nonlinear dimensionality reduction by
locally linear embedding. Science 290(5500):2323–6

19. Hinton G, Salakhutdinov R (2006) Reducing the dimensionality
of data with neural networks. Science 313(5786):504–507

http://arxiv.org/abs/1409.1556
https://doi.org/10.1109/TCYB.2021.3053057


R. Chen et al.

20. Schroff F, Kalenichenko D, Philbin J (2015) A unified embedding
for face recognition and clustering. In: IEEE Conference on
Computer Vision and Pattern Recognition, pp 815–823

21. Hershey J, Chen Z, Leroux J, Watanabe S (2016) Deep clustering:
Discriminative embeddings for segmentation and separation. In:
IEEE International Conference on Acoustics, Speech and Signal
Processing, pp 31–35

22. Hornik K, Stinchcombe M, White H (1989) Multilayer feed-
forward networks are universal approximators. Neural Netw
2(5):359–366

23. Bengio Y, Courville A, Vincent P (2013) Representation learning:
A review and new perspectives

24. Bruna J, Mallat S (2013) Invariant scattering convolution
networks. IEEE Trans Pattern Anal Mach Intell 35(8):1872–1886

25. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P.-
A. (2010) Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising criterion.
J Mach Learn Res 11:3371–3408

26. Guo X, Liu X, Zhu E, Yin J (2017) Deep clustering with
convolutional autoencoders. In: International Conference on
Neural Information Processing, pp 373–382

27. Peng X, Xiao S, Feng J, Yau W, Yi Z (2016) Deep subspace
clustering with sparsity prior. In: International Joint Conference
on Artificial Intelligence

28. Ji P, Zhang T, Li H, Salzmann M, Reid ID (2017) Deep
subspace clustering networks. In: Annual Conference on Neural
Information Processing Systems, pp 23–32

29. Yang J, Parikh D, Batra D (2016) Joint unsupervised learning of
deep representations and image clusters. In: IEEE Conference on
Computer Vision and Pattern Recognition, pp 5147–5156

30. Chang J, Wang L, Meng G, Xiang S, Pan C (2017) Deep adaptive
image clustering. In: International Conference on Computer
Vision, pp 5880–5888

31. Li F, Qiao H, Zhang B (2017) Discriminatively boosted image
clustering with fully convolutional auto-encoders. Pattern Recogn
83:161–173

32. Xie J, Girshick R, Farhadi A (2016) Unsupervised deep
embedding for clustering analysis. In: International Conference on
Machine Learning, pp 478–487

33. Guo X, Gao L, Liu X, Yin J (2017) Improved deep embedded
clustering with local structure preservation. In: International Joint
Conference on Artificial Intelligence, pp 1753–1759

34. Yang B, Fu X, Sidiropoulos ND, HongM (2017) Towards kmeans-
friendly spaces: Simultaneous deep learning and clustering. Int
Conf Mach Learn 70:3861–3870

35. Fard MM, Thonet T, Gaussier E (2020) Deep k-means: Jointly
clustering with k-means and learning representations. Pattern
Recognition Letters

36. Guo X, Zhu E, Liu X, Yin J (2018) Deep embedded clustering with
data augmentation. In: Asian Conference on Machine Learning,
pp 550–565

37. Guo X, Liu X, Zhu E, Zhu X, Li M, Xu X, Yin J (2020) Adaptive
self-paced deep clustering with data augmentation. IEEE Trans
Knowl Data Eng 32(9):1680–1693

38. Bo D, Wang X, Shi C, Zhu M, Lu E, Cui P (2020) Structural deep
clustering network in international world wide web conferences

39. Ren Y, Hu K, Dai X, Pan L, Hoi SCH, Xu Z (2019) Semi-
supervised deep embedded clustering. Neurocomputing 325:121–
130

40. Ren Y, Wang N, Li M, Xu Z (2020) Deep density-based image
clustering. Knowledge-Based Systems

41. Huang Q, Zhang Y, Peng H, Dan T, Weng W, Cai H
(2020) Deep subspace clustering to achieve jointly latent feature
extraction and discriminative learning. Neurocomputing 404:340–
350

42. Chen R, Tang Y, Zhang C, Zhang W, Hao Z (2021) Deep
multi-network embedded clustering. Pattern Recogn Artif Intell
34(1):14–24

43. Khan F, Mutlu B, Zhu X (2011) How do humans teach:
On curriculum learning and teaching dimension. In: Annual
Conference on Neural Information Processing Systems, pp 1449–
1457

44. Kumar MP, Packer B, Koller D (2010) Self-paced learning
for latent variable models. In: Annual Conference on Neural
Information Processing Systems, pp 1189–1197

45. Tang Y, Xie Y, Yang X, Niu J, Zhang W (2021) Tensor multi-
elastic kernel self-paced learning for time series clustering. IEEE
Trans Knowl Data Eng 33(3):1223–1237

46. Jiang L, Meng D, Zhao Q, Shan S, Hauptmann AG (2015) Self-
paced curriculum learning. In: AAAI Conference on Artificial
Intelligence

47. Pi T, Li X, Zhang Z, Meng D, Wu F, Xiao J, Zhuang Y (2016)
Self-paced boost learning for classification. In: International Joint
Conference on Artificial Intelligence

48. Ren Y, Zhao P, Sheng Y, Yao D, Xu Z (2017) Robust softmax
regression for multi-class classification with self-paced learning.
In: International Joint Conference on Artificial Intelligence

49. Pan L, Ai S, Ren Y, Xu Z (2020) Self-paced deep regression
forests with consideration on underrepresented examples. In:
European Conference on Computer Vision

50. Ren Y, Huang S, Zhao P, Han M, Xu Z (2020) Self-paced and
auto-weighted multi-view clustering. Neurocomputing 383:248–
256

51. Meng D, Zhao Q, Jiang L (2017) A theoretical understanding of
self-paced learning. Inf Sci 414:319–328

52. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-
based learning applied to document recognition. Proc IEEE
86(11):2278–2324

53. Hull JJ (1994) A database for handwritten text recognition
research. IEEE Trans Pattern Anal Mach Intell 16(5):550–
554

54. Han X, Rasul K, Vollgraf R (2017) Fashion-mnist: a novel
image dataset for benchmarking machine learning algorithms.
arXiv:1708.07747v2

55. de Campos TE, Babu BR, Varma M (2009) Character recognition
in natural images. In: International Conference on Computer
Vision Theory and Applications, Lisbon

56. Nene SA, Nayar SK, Murase H (1996) Columbia object image
library (COIL-20). Technical report CUCS-006-96

57. Nene SA, Nayar SK, Murase H (February 1996) Columbia object
image library (COIL-100), Technical report CUCS-006-96

58. Kuhn HW (1955) The hungarian method for the assignment
problem. Naval Res Logist Quart 2(1):83–97

59. Li T, Ding C (2006) The relationships among various nonnegative
matrix factorization methods for clustering. In: International
Conference on Data Mining, pp 362–371

60. Strehl A, Ghosh J (2002) Cluster ensembles — a knowledge reuse
framework for combining multiple partitions. J Mach Learn Res
3:583–617

61. Hubert L, Arabie P (1985) Comparing partitions. J Classif
2(1):193–218

62. RandWM (1971) Objective criteria for the evaluation of clustering
methods. J Am Stat Assoc 66(336):846–850

63. Glorot X, Bengio Y (2010) Understanding the difficulty of train-
ing deep feedforward neural networks. J Mach Learn Res 9:249–
256

64. Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural
networks. J Mach Learn Res 15:315–323

65. Kingma D, Ba J (2014) Adam: A method for stochastic
optimization, arXiv:1412.6980

http://arxiv.org/abs/1708.07747v2
http://arxiv.org/abs/1412.6980


Deep convolutional self-paced clustering

66. Ma Z, Lai Y, Kleijn W, Song Y, Wang L, Guo J (2018) Variational
bayesian learning for dirichlet process mixture of inverted dirichlet
distributions in non-gaussian image feature modeling. IEEE Trans
Neural Netw Learn Syst 30:449–463

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Rui Chen received the M.E.
degree from the Department
of Automation, Foshan Uni-
versity, Foshan, China, in
2021. He is currently pur-
suing the Ph.D. degree at
Hainan University, Haikou,
China. His research interests
include machine learning, data
mining, and computer vision.

Yongqiang Tang received the
B.S. degree from the Depart-
ment of Automation, Cen-
tral South University, Chang-
sha, China, in 2014, and the
Ph.D. degree from the Insti-
tute of Automation, Chinese
Academy of Sciences (CAS),
Beijing, China, in 2019. He
is currently an Assistant Pro-
fessor with the Research Cen-
ter of Precision Sensing and
Control, Institute of Automa-
tion, CAS. His research inter-
ests include machine learn-
ing, computer vision, and data
mining.

Lei Tian is currently a Ph.D.
candidate in the Institute
of Automation, Chinese
Academy of Sciences (CAS).
He received the B.S. degree
from the Department of Pre-
cision Instrument, Tsinghua
University, Beijing, China, in
2017. His research interests
include machine learning,
pattern recognition, computer
vision, transfer learning, and
domain adaptation.

Caixia Zhang received the
Ph.D. degree in control the-
ory and control engineering
from Guangdong University
of Technology, Guangzhou,
China, in 2012. She is cur-
rently a Full Professor with
the Department of Automa-
tion, Foshan University, Fos-
han, China. Her research inter-
ests include intelligent com-
puting, intelligent control sys-
tem, and multi-source infor-
mation fusion.

Wensheng Zhang received
the Ph.D. degree in pattern
recognition and intelligent
systems from the Institute of
Automation, Chinese Academy
of Sciences (CAS), Beijing,
China, in 2000. He joined the
Institute of Software, CAS, in
2001, where he is a Professor
of machine learning and data
mining and the Director of the
Research and Development
Department, Institute of Auto-
mation. His research interests
include computer vision, pat-
tern recognition, and artificial
intelligence.


	Deep convolutional self-paced clustering
	Abstract
	Introduction
	Related work
	K-means algorithm
	Deep unsupervised clustering
	Self-paced learning

	Deep convolutional self-paced clustering
	Basic deep clustering model
	Equipping the CNN and SPL
	Optimization
	Optimization procedure
	Stopping criterion


	Experiment
	Datasets
	Evaluation metrics
	Compared methods
	Experimental settings
	Performance comparison
	Ablation study
	Parameter analysis
	Convergence analysis

	Conclusion
	References


