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ABSTRACT

In this paper, we address the problem of recognizing human
actions with motion dynamics alone. For this purpose, we
propose to use silhouette sequences to represent the human
actions by discarding the appearance information, and then
model the sequences with linear dynamical systems (LDSs).
Recognition is achieved by directly comparing the distance
between LDSs, rather than resorting to complex Bayesian
learning and inference. In particular, we introduce an effi-
cient optimization method to learn robust LDSs, and develop
a shift invariant distance metric to measure the similarity on
the LDSs space. We evaluate our approach on the human
action data set and achieve comparable results.

Index Terms— Action recognition, linear dynamical sys-
tem, silhouette, similarity measurement

1. INTRODUCTION

Analysis of human activities has always been an active re-
search area in computer vision. Over the past couple of
decades, a large amount of algorithms have been proposed for
this task. In terms of the action representation, previous work
can be roughly classified into two aspects: appearance-based
approaches and motion-based approaches. The former usual-
ly characterizes the motion sequence with various local [1, 2]
or global [3] visual features extracted from raw video data.
The major problem in these approaches is that they discard
the temporal information inherent to actions and thus fail
to capture the temporal dynamics of human activities. The
latter generally models the motion sequence with state-space
models [4, 5] by viewing the human action recognition as
a temporal classification problem. These approaches are of
comparatively high complexity and require detailed statistical
modeling and parameter learning.

It is known that appearance and dynamics are two impor-
tant cues for human action recognition. Since much of the
previous work has focused on appearance cues, our goal in
this paper is to consider motion dynamics alone. For this pur-
pose, we propose to use silhouette images which are insensi-
tive to the subject appearance to represent the human actions.
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Thus we can focus on how to learn the intrinsic dynamics of
silhouette sequences.

In recent years, system theoretic methods to recognition
of human actions [3, 6] have attracted much interest, inspired
by the work in dynamic texture literature [7]. By modeling
the motion temporal variation with dynamical systems, sys-
tem theoretic methods specifically consider the global dynam-
ics of activities. Among all the methods, linear dynamical
systems (LDSs) are used broadly for the simplicity and effi-
ciency. Once each action sequence is characterized by a LDS
model, the similarity between two LDSs is directly measured
with a distance or kernel metric defined on the LDS space.
After all pairwise similarities are evaluated on the training
data, classifiers such as nearest neighbors or SVM can be used
to categorize the testing video sequences.

In this paper, we propose to learn robust LDSs to describe
the dynamics of silhouette sequences. We emphasize that sta-
bility is a crucial property for LDSs, while it is commonly
omitted by most of previous work [3, 7]. We also develop a
shift invariant distance metric based on the subspace angles
distance, which is insensitive to the starting frame of motion
sequences. We show that our method achieves encouraging
results for the task of human action recognition.

The remainder of the paper is structured as follows: Sec-
tion 2 first briefly introduces LDS and its parameter learning
methods. Then a robust LDS learning algorithm is introduced
and analyzed. Finally a shift invariant distance metric is pro-
posed to measure the similarity between LDSs. We conduct
experiments to evaluate the performance of our method in
Section 3 and give our conclusions in Section 4.

2. RECOGNITION WITH ROBUST LDS

Dynamical system methods have been studied extensively
in fields ranging from control engineering to visual process.
For instance, dynamic texture represent the texture’s temporal
variation as a LDS [7]. In graphical model’s perspective, LDS
is indeed a generative state-space model with Gaussian obser-
vations and Markov states. For human action sequence, many
inherent nonlinearities such as phase transition, turbulence
and delay can be eliminated by choosing proper coordinates
or mapping into high-dimensional spaces [6]. Therefore in
this paper, we will focus on how to model the human motion
dynamics with LDSs.

2832978-1-4799-2341-0/13/$31.00 ©2013 IEEE ICIP 2013



2.1. Linear Dynamical System

Let A ∈ Rn×n denote the system dynamic matrix, and C ∈
Rp×n denote the subspace mapping matrix. Here p and n are
the dimensions of the observation space and the state space,
respectively. Then a stationary LDS can be represented by the
tuple parameter M .

= (A,C) and evolves in time according
to the following equations{

xt+1 = Axt + vt
yt = Cxt + wt

(1)

where xt ∈ Rn is the state or latent variable, yt ∈ Rp is the
observed random variable or feature, vt and wt are the sys-
tem noise and observation noise, respectively. If we assume
the noises are zero-mean i.i.d Gaussian processes, then we
have vt ∼ N (0, Q) and wt ∼ N (0, R). Here Q and R are
covariant matrices of multivariate Gaussian.

Given a video sequence y1:τ , learning the intrinsic dynam-
ics amounts to identifying the model parameter M. This is a
typical system identification problem and there are normal-
ly two ways to solve it: maximum likelihood estimation and
least squares estimation.

Let Y1:τ = [y1, y2, ..., yτ ] and X1:τ = [x1, x2, ..., xτ ] rep-
resent the original observation sequence and state sequence,
respectively. For the least squares estimation method, the
model parameter M is computed by firstly decomposing ob-
servation matrix Y1:τ ≈ UΣV T with SVD to obtain an esti-
mate of the underlying state sequence

Ĉ = U X̂1:τ = ΣV T (2)

Then the least squares estimation of A is

Â = argmin
A

∥AX1:τ−1 −X2:τ∥2F = X2:τX
+
1:τ−1 (3)

According to (2), LDS implicitly models Y1:τ with a set of
subspaces matrix C and its corresponding coefficients X1:τ .
In action recognition task, the subspaces matrix C describes
the action appearance, while matrix A derived from the state
sequence X1:τ represents the motion dynamics. Thus we can
use M = (A,C) to represent the motion sequence descriptor.
Such a descriptor captures both the dynamics and appearance
of human action sequence, which is much different from lo-
cal spatio-temporal gradient descriptors. However, there exist
two problems when using M as the descriptor. The first one
is that the traditional LDS solvers ignore the stability of dy-
namical systems. This may result in a degenerate LDS model.
The second one is that the descriptor M = (A,C) lives in a
non-Euclidean space and is in non-vector form. There is no
a straightforward way to compute the non-vector descriptor
distance in a non-Euclidean space.

2.2. Learning Robust LDS

Stability is a very important property for LDSs. An unstable
LDS may become degenerate quickly and fail to generate long
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Fig. 1. Periodic state components and sample frame images.

sequences which share the same characteristics as the train-
ing data. We show in Section 2.3 that generating consistent
sequences is critical for our shift invariant distance metric.

In the field of dynamical systems, stability means the
poles of the model are all inside the complex unit circle. If
the poles are on the unit circle, the system is called to be
marginally stable. Marginally stable systems are very useful
as they generate sustained oscillations in the output, which in
our case describes the periodic patterns in motion sequences.
In Fig. 1, we show the three state components trajectories of a
jacking sequence learned with robust LDSs, which indicates
that robust LDSs capture the intrinsic periodic mode.

Let {λ1, λ2, ..., λn} denote the eigenvalues of dynamic
matrix A in decreasing order of magnitude. A LDS is called
stable or marginally stable if and only if λ1 ≤ 1. However,
traditional LDS learning method of (3) does not enforce this
stability criterion. This may cause the solution to be unsta-
ble. However, most of previous work employ this approach to
learn LDSs, thus the similarity results do not stand firmly.

In the system identification literature, stability has been
intensively studied. However, most of the methods are com-
putationally expensive to reach the optimization result. In our
task, we prefer an efficient approximation solution if only it
satisfies the stability criterion. Here we introduce a constraint
generation method [8], which achieves the stable result effi-
ciently by iteratively checking stability criterion and generat-
ing new constraints.

For the least squares problem in (3), it can be reformulated
by expanding polynomial as

Â = argmin
a

{aTPa− 2qTa+ r} (4)

where a = vec(A), q = vec(X1:τ−1X
T
2:τ ), P = In ⊗

(X1:τ−1X
T
1:τ−1), r = tr(XT

2:τX2:τ ). Here vec(·) is a linear
operator which flattens the matrix to vector in column order.

From the stability criterion, the constraint is obtained by
decomposing Â with SVD Σ̂ = ÛT ÂV̂ and inferring as

λ̃1 = tr(ũT
1 Âṽ1) = tr(ṽ1ũ

T
1 Â) = gT â ≤ 1 (5)

where g = vec(ũ1ṽ
T
1 ), and â = vec(Â).

Therefore, the quadratic program can be written as

minimize aTPa− 2qTa+ r
subject to gTa ≤ 1

(6)

which can be solved efficiently with quadprog.
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2.3. Shift Invariant Similarity Metric for LDS

Given two motion sequences, we use the robust LDS param-
eters M1 = (A1, C1) and M2 = (A2, C2) to represent the
motion sequence descriptors. Since the model space has a
non-Euclidean structure and the descriptors are in non-vector
form, this naturally raises the issue of how to measure the
similarity between these two descriptors. De Cock and De
Moor [9] propose to compare dynamical models by using the
subspace angles between two systems. The subspace angles
are obtained by solving the Lyapunov equation

Q = ATQA+ CTC (7)

where Q =

(
Q11 Q12

Q21 Q22

)
, A =

(
A1 0
0 A2

)
, C =

(C1 C2).
The solution of (7) is guaranteed when the systems are

stable. The cosines of the subspace angles cos2 θi are calcu-
lated as eigenvalues of matrix Q−1

11 Q12Q
−1
22 Q21.

Therefore the subspace angles distance is defined as

dLDS(M1,M2)
2 = − log

n∏
i=1

cos2 θi (8)

However, the experiments for human action recognition
show that the subspace angles distance varies greatly when
two sequences have only temporal shift (see Fig. 2). We are
prone to a similarity measure that is insensitive to the initial
state. In other words, two walking sequences should be clas-
sified into the same category no matter what frame they be-
gin with. Hence we develop an offset alignment strategy by
evolving each sequence for τ steps so that the similarity be-
tween them is maximized. That is

d(M1,M2) = min
τ1,τ2∈N

dLDS(M1(τ1),M2(τ2)) (9)

where M(τ) denotes the model parameter of evolved se-
quence which is generated by shifting the original one τ steps
ahead. We notice that the evolved sequences should keep the
same characteristics as the original one. In order to achieve
this purpose, the original model must be stable.

It is unfortunate that there is no an explicit way to obtain
the optimization solution of (9). However in many applica-
tions the periods of most motion patterns are short. Thus we
can handle this problem by searching through all the com-
binations of τ1 and τ2 exhaustively. Assuming the maximal
shift is T , the complexity of this problem is O(T 2).

We show in Fig. 2 that our aligned shift invariant dis-
tance outperforms the traditional one in two aspects. First,
the aligned distance shows higher similarity than the origi-
nal subspace angles distance. This results in better recog-
nition results as illustrated in Fig. 4. Second, the aligned
distance shows a more stable similarity measure that is in-
sensitive to the starting frame, whereas the subspace angles
distance shows sudden changes in some conditions.
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Fig. 2. Subspace versus aligned distances.

3. EXPERIMENTS

To evaluate the performance of our proposed method for hu-
man action recognition, we carry out detailed experiments on
the Weizmann data set.

The Weizmann data set consists of 90 video sequences
from 9 different people, each performing 10 natural actions.
These actions include bending, jumping jack, jumping-
forward-on-two-legs, jumping-in-place-on-two-legs, run-
ning, galloping-sideways, skipping, walking, waving-one-
hand, and waving-two-hands.

For learning the global dynamics, we prefer a sequence
representation that is insensitive to the subject appearance.
So we directly use the foreground silhouettes. Since some
of the silhouettes are rather noisy, we introduce a shape fea-
ture [10] which is robust for our motivation. Given a silhou-
ette image, we first compute two orthogonal projection lines
passing through its center of mass. Then we uniformly divide
the bounding box of silhouette into m bins on horizontal and
vertical directions, respectively. Finally we encode the shape
feature as the average distance of the points on the silhouette
from projection lines for each bin. In our experiments, we
use m = 16 on both sides of projection lines and obtain a
shape feature with 64 components. In Fig. 3, we show a sam-
ple silhouette sequence and the corresponding shape features.
We can see that though the silhouettes are noisy, the shape
features suppress the defects effectively.

In Fig. 4, we examine the relationship between the correct
classification rates and the model dimension n up to 20. We
also evaluate the effectiveness of our proposed shift invariant
distance metric compared with the standard subspace angles
distance. Average results are reported based on the leave-one-
out cross-validation method, from which we can see that: 1)
the recognition rates do not change much with respect to the
model dimension. This means that we can choose a compar-
atively small model dimension, say n = 3, to gain nearly
the same results with much less computation cost; 2) the pro-
posed shift invariant distance always performs better than the
traditional subspace angles distance. It achieves a best recog-
nition rate of 96.67% with n = 3, which is almost as well as
the state-of-the-art recognition result of 97.83% [11].

In Fig. 5, we show the confusion matrix of action clas-
sification by LDSs when the model dimension n = 3. We
can see that LDSs make misclassification primarily among
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Fig. 3. Silhouette sequence and associated shape features.
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Fig. 4. Recognition rate versus LDS dimension.
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Fig. 5. Confusion matrix of action classification.

Table 1. Comparison of recognition rates.

Methods Best accuracy

Ours - LDSs 96.67%

Gorelick et al. [11] 97.83%
Ali and Shah [12] 95.75%
Chaudhry et al. [3] 95.66%
Niebles et al. [13] 90.00%
Bregonzio et al. [14] 96.66%

the actions ’bend’, ’pjump’, ’jack’, and ’wave1’. This means
that these actions share high degrees of similarity in terms of
dynamics in some aspects.

Table 1 compares the performance of the state-of-the-art
methods on the Weizmann data set. We can see that our ap-
proach achieves comparable recognition results to the best
method [11]. In addition, [12] extracts a set of kinematic
features such as divergence, vorticity, etc., from the optical
flow for human action recognition. [3] uses Binet-Cauchy
kernels to capture the non-linear dynamics of histograms of
optical flow to recognize human action. Compared with these
dynamics methods, our approach outperforms them in both
accuracy and efficiency.

4. CONCLUSIONS

In this paper, we have proposed to model and recognize sil-
houette dynamics with robust LDSs. This is inspired by the
fact that most of the previous work focuses on appearance in-
formation, or models the human action with unstable dynam-
ical systems. We have proposed to learn robust LDSs with a
simple yet efficient suboptimal algorithm, and then developed
a shift invariant distance metric to measure the similarity be-
tween LDSs. We have validated our method on the human
action data set and achieved encouraging results.
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