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a b s t r a c t

End-to-end task-oriented dialogue systems, which provide a natural and informative way for human–
computer interaction, are gaining more and more attention. The main challenge of such dialogue
systems is how to effectively incorporate external knowledge bases into the learning framework.
However, existing approaches usually overlook the natural graph structure information in the knowl-
edge base and the relevant information between the knowledge base and the dialogue history, which
makes them deficient in handling the above challenge. Besides, existing methods ignore the entity
imbalance problem and treat different entities in system responses indiscriminately, which limits the
learning of hard target entities. To address the two challenges, we propose Heterogeneous Relational
Graph Neural Networks with Adaptive Objective (HRGNN-AO) for end-to-end task-oriented dialogue
systems. In the method, we explore effective heterogeneous relational graphs to jointly capture multi-
perspective graph structure information from the knowledge base and the dialogue history, which
ultimately facilitates the generation of informative responses. Moreover, we design two components,
shared-private parameterization and hierarchical attention mechanism, to solve the overfitting and
confusion problems in the heterogeneous relational graph, respectively. To handle the entity imbalance
problem, we propose an adaptive objective, which dynamically adjusts the weights of different target
entities during the training process. The experimental results show that HRGNN-AO is effective in
generating informative responses and outperforms state-of-the-art dialogue systems on the SMD and
extended Multi-WOZ 2.1 datasets.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Task-oriented dialogue systems are widely used to help users
ccomplish a variety of tasks, such as booking restaurants, finding
lights, and querying weather [1–5]. Since these dialogue systems
rovide a natural and informative way for human–machine in-
eraction, they are attracting more and more attention from both
ndustry and academia. Traditional pipeline solutions consist of
atural language understanding, dialogue management, and nat-
ral language generation [6–8], where each module is designed
eparately. In order to reduce the human effort required to de-
ign and maintain these modules, recent work usually adopts an
nd-to-end approach to incorporate large-scale knowledge bases
KBs) into the learning framework and directly output system
esponses without separate modules [9–11].

The main challenge of end-to-end task-oriented dialogue sys-
ems is how to effectively incorporate external KBs into the
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learning framework [5,12]. Nevertheless, existing work [5,12,13]
usually uses disordered memory to represent the knowledge base
(KB), which ignores the natural graph structure information in the
KB. As a result, existing work fails to capture sufficient informa-
tion from the knowledge base to represent entities. In addition,
during a dialogue, users usually focus on different relations. Take
the dialogue in Fig. 1 as an example. In the first turn, the user
focuses on two relations, ‘‘food’’ and ‘‘price’’. Later, in the second
turn, the user focuses on the ‘‘address’’ relation. Therefore, un-
der different dialogue contexts, task-oriented dialogue systems
should have the ability to dynamically capture graph structure
information from the knowledge base to represent entities.

In fact, the knowledge base is also a powerful source of in-
formation for dialogue understanding. As shown in Fig. 1, in the
first dialogue turn, the user expresses two preferences for the
desired restaurant, ‘‘expensive’’ and ‘‘food similar to Stazione’’. By
understanding the dialogue history without accessing the knowl-
edge base, the model is able to understand the first preference
‘‘expensive’’, while it fails to understand the second preference
‘‘food similar to Stazione’’. The key reason is that understanding

https://doi.org/10.1016/j.knosys.2021.107186
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2021.107186&domain=pdf
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Fig. 1. Example of a task-oriented dialogue that incorporates a knowledge base. The yellow box represents a preference informed by the user. The blue boxes
represent the knowledge related to the preference.
the second preference requires the model to provide and learn a
relational path from the knowledge base to the dialogue history
to obtain the ‘‘food’’ attribute of the restaurant ‘‘Stazione’’. With-
out the relational path, these dialogue systems tend to predict an
incorrect restaurant, e.g., ‘‘Backstreet Bistro’’, which matches only
part of the preferences, i.e., ‘‘expensive’’.

Besides, existing approaches usually ignore the entity imbal-
nce problem and treat different entities in system responses
ndiscriminately. In detail, the frequency of different kinds of
ntities in the target system response is different. For example,
n the extended Multi-WOZ 2.1 dataset [5,14,15], 35.7% responses
ontain entities belonging to the relation ‘‘name’’, while 4.0% for
he relation ‘‘postcode’’. We refer to this problem as ‘‘entity im-
alance’’, which varies the learning difficulty of different entities
nd limits the learning of hard entities.
To address these two issues, we propose Heterogeneous Rela-

ional Graph Neural Networks with Adaptive Objective (HRGNN-
O) for end-to-end task-oriented dialogue systems. In the
ethod, we explore effective heterogeneous relational graphs

hat jointly encode the knowledge base and the dialogue history
o capture the graph structure information. The constructed graph
ses multiple relations to link two kinds of nodes, entities in
he knowledge base and words in the dialogue history. As a
esult, the constructed graph has the following advantages: (1)
t dynamically captures the graph structure information from the
nowledge base according to the dialogue process to represent
he entities. In contrast to ours, previous work [5,12] usually
ses an embedding layer to represent the entities, which remains
nchanged regardless of the dialogue process. (2) It propagates
elevant information from the knowledge base to the dialogue
ontext through relational paths, enabling knowledge-aware di-
logue understanding. (3) The constructed graph is scalable in
ifferent domains. For example, we can bring nodes from differ-
nt domains into the graph for multi-domain dialogues. However,
ince the heterogeneous relational graph contains a large num-
er of imbalanced relations, it is suboptimal to directly deploy
xisting Relational Graph Neural Networks (RGNNs) [16–19] on
he constructed graph. It generally suffers from two problems,
verfitting and confusion. Overfitting: The relations in the het-
rogeneous relational graph are imbalanced, which makes it easy
or the model to overfit those rare relations [16,17]. Confusion:
hen aggregating relational information, existing RGNNs usually

reat all relations as equally important. Therefore, they are dif-
icult to capture important relational information from a large
umber of relations [16–18]. To handle the two problems, we
esign two components: a shared-private parameterization and
hierarchical attention mechanism. To address the overfitting
2

problem, we propose a shared-private parameterization module,
which transfers effective features from high-frequency relations
to rare relations. To reduce the adverse effects of confusion, we
design a hierarchical attention mechanism to make the model pay
more attention to important relations. Furthermore, for the entity
imbalance problem, we propose an adaptive objective to dynam-
ically evaluate the difficulty in a performance-sensitive manner.
Then, we adaptively adjust the learning weights of different target
entities to balance the learning process as much as possible.

The experimental results on the two multi-domain task-
oriented dialogue datasets, SMD [9] and extended Multi-WOZ
2.1 [5,14,15], demonstrate that our method outperforms previous
state-of-the-art methods by 2.5% and 2.9% in terms of the entity
F1 metric, respectively. In addition, the ablation experiments
further demonstrate the effectiveness of our proposed method.

The main contributions of this paper are as follows:

• In the end-to-end task-oriented dialogue task, we propose
heterogeneous relational graph neural networks that jointly
encode the knowledge base and the dialogue history to
capture the graph structure information, which ultimately
facilitates the generation of informative responses.

• To handle the overfitting and confusion problems in the
constructed heterogeneous relational graph, we design two
modules, the shared-private parameterization and the hier-
archical attention mechanism.

• We propose an adaptive objective to solve the entity im-
balance problem by dynamically adjusting the weights of
different kinds of entities. To the best of our knowledge, our
method is the first to address the entity imbalance problem
in task-oriented dialogues.

• Experimental results show that our method outperforms
previous state-of-the-art methods. In addition, the ablation
experiments further demonstrate the effectiveness of our
proposed method.

2. Related work

2.1. Task-oriented dialogue system

Task-oriented dialogue is a hot research topic in recent years,
where typical task-oriented dialogue systems can be divided into
two categories: pipeline solutions and end-to-end dialogue mod-
els. The pipeline solution consists of three modules: natural lan-
guage understanding, dialogue management, and natural lan-
guage generation [1,7,8,20], which are designed separately. To re-
duce the human effort required to design and maintain these sep-
arate modules, recent work is changing from pipeline solutions [2,
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,21,22] to end-to-end dialogue models [3,23–25] that input plain
exts and directly output a system response [5,26,27]. These end-
o-end dialogue models focus on incorporating external knowl-
dge bases into the learning framework. Eric et al. [9] proposed an
nd-to-end dialogue model that uses key–value pairs to represent
he knowledge base while considering the one-hop relations of
ntities in their model. Madotto et al. [13] used disordered mem-
ry [28] to represent the knowledge triplets in the knowledge
ase. Wen et al. [10] combined the dialogue model with an at-
ention mechanism, which retrieves entities from the knowledge
ase. Reddy et al. [29] utilized multi-level memory to represent
he knowledge base in the form of queries, queried entities,
nd key–value pairs. GLMP (Global-to-Local Memory Pointer Net-
orks) proposed by Wu et al. [12] estimates the tokens that will
ppear in the system response before the decoding process. Qin
t al. [30] proposed a retriever to ensure that the predicted enti-
ies are in the same row of the tabular KB. Qin et al. [5] proposed
shared-private model to learn the shared features between
ifferent domains. Besides, many other efforts employed multi-
ask learning frameworks to jointly generate dialogue states and
emplate responses. Lei et al. [31] proposed a two-stage copy
echanism for jointly generating dialogue states and system

esponses in an encoder–decoder architecture. Mehri et al. [32]
roposed structured fusion networks to fuse the structural fea-
ures of the pipeline solution into the end-to-end dialogue model.
hang et al. [33] enhanced the decoder with multiple target
esponses to handle the one-to-many problem. However, the pre-
ious work ignored the graph structure information in the knowl-
dge base and the relevant information between the knowledge
ase and the dialogue history. In contrast to the previous work,
e build a heterogeneous relational graph to capture the graph
tructure information and jointly encode the two input texts.

.2. Graph Neural Network

Graph Neural Network (GNN) is a kind of graph-based deep
earning method [19,34–37]. This method has received much
ttention for its convincing performance and high scalability.
ipf et al. [34] proposed Graph Convolutional Network (GCN) for
emi-supervised learning, which is a graph encoder based on con-
olutional neural networks and graph structures. Graph Attention
etwork (GAT) proposed by Veličković et al. [35] is a combination
f GNN and the attention mechanism [38], which aims to focus
n important neighbouring nodes. Zhang et al. [39] proposed
ardinality preserved attention models to improve the perfor-
ance of GAT. Schlichtkrull et al. [16] proposed Relational Graph
onvolutional Network (RGCN) with block and basic decompo-
itions to handle multi-relational graphs. Busbridge et al. [17]
roposed Relational Graph Attention Network (RGAT) to explore
he attention mechanism between neighbouring nodes under the
ame relation. Qi et al. [36] combined residual networks [40]
ith GCN to handle the face clustering task. Wang et al. [41]
uilt a heterogeneous graph to combine word-level and sentence-
evel nodes and they adopted GAT in their task. Hong et al. [42]
ombined the attention mechanism with GNN to aggregate multi-
elational information of heterogeneous vertices. Wang et al. [18]
dded a semantic-level attention mechanism to GAT to handle
eterogeneous graphs. In contrast to the previous work, we pro-
ose Heterogeneous Relational Graph Neural Networks (HRGNN)
hat jointly encode the knowledge base and the dialogue history.
n addition, our graph encoder contains two improvements for

ealing with overfitting and confusion problems. i

3

2.3. Class imbalance

To the best of our knowledge, we are the first to handle the
entity imbalance problem in task-oriented dialogues, which can
be regarded as a kind of class imbalance. To handle the class
imbalance problem, the focal loss proposed by Lin et al. [43]
reweights the losses of different categories to focus on hard
and misclassified examples. Shan et al. [7] adjusted the learning
weights according to the accuracy of each slot to handle the class
imbalance problem in the slot-filling task. However, previous
work mainly focused on simple classification tasks or slot-filling
tasks rather than generation tasks. Lin et al. [43] adopted static
learning weights in the focal loss for each category, which af-
fects the performance on dialogue generation tasks that have
numerous categories. The method proposed by Shan et al. [7] fails
to distinguish between words and entities, limiting its perfor-
mance on dialogue generation tasks. In our work, we propose an
adaptive objective to evaluate the difficulty of different kinds of
target entities, and then adaptively adjust the learning weights of
different categories (i.e., different entities and words) to address
the entity imbalance problem in dialogue generation tasks.

3. Task formulation

In this section, we will present the inputs and outputs of an
end-to-end task-oriented dialogue system to facilitate the under-
standing of the task. At each dialogue turn, the dialogue system
takes the dialogue history and the knowledge base as inputs and
aims to output the system response. We denote the user utter-
ance as u and the system response as s, thus the k-turn dialogue
history can be represented as {D = (u1, s1), (u2, s2), . . . , uk

}.
oreover, the knowledge base can be represented as a collection
f triplets. For tabular knowledge bases, we use table headers
s relations to construct triplets, such as (‘‘Stazione’’, ‘‘food’’,
‘Italian’’). The triplets in the knowledge base form a directed
elational graph, where entities correspond to nodes and relations
orrespond to edges. We represent the knowledge graph as G =

V; E;R), where vi ∈ V is an entity, (vi; r; vj) ∈ E is a triplet, and
∈ R is a relation type.
We define the end-to-end task-oriented dialogue task [9] as

redicting the system response y according to the dialogue his-
ory D and the knowledge base G. Formally, the task is defined
s:

(y|D,G) =

d∏
i=1

p(yi|y1, . . . , yi−1,D,G), (1)

where yi is the ith output token of the system response and d is
he number of tokens.

. Method

In order to handle the end-to-end task-oriented dialogue task,
e propose the Heterogeneous Relational Graph Neural Networks
ith Adaptive Objective, which is illustrated in Fig. 2. The method
onsists of four important parts: Heterogeneous Relational Graph
onstruction, Heterogeneous Relational Graph Neural Networks,
RGNN-Based Task-Oriented Dialogue System, and Adaptive Ob-
ective. The heterogeneous relational graph jointly encodes the
nowledge base and the dialogue history to capture the graph
tructure information. The heterogeneous relational graph neural
etworks adopt the shared-private parameterization and the hi-
rarchical attention mechanism to encode the constructed graph
ntil equilibrium. We integrate HRGNN into a task-oriented dia-
ogue system. To train the dialogue system, an adaptive objective

s proposed to handle the entity imbalance problem.
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Fig. 2. Overview of the heterogeneous relational graph (A) and the heterogeneous relational graph neural networks (B). For better understanding, we simplify some
nodes and edges in the graph.
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4.1. Heterogeneous relational graph construction

In this subsection, we describe how to construct the hetero-
eneous relational graph. In the heterogeneous relational graph,
e use two kinds of basic units as nodes: words in the dialogue
istory and entities in the knowledge base. Entities are usually
omposed of multiple words. Therefore, in our method, the term
‘heterogeneous’’ implies that our method is able to handle differ-
nt kinds of nodes, including word-level and entity-level nodes.
ased on these nodes, we consider multi-perspective relations
o construct effective paths for propagating relevant information.
e will first introduce how to construct knowledge subgraphs
n the basis of a tabular knowledge base. Next, we describe the
onstruction of a dynamic dialogue subgraph. Finally, we describe
he cross-subgraph relations that capture relevant information
etween the knowledge base and the dialogue history.
Knowledge Subgraph To capture structural information from

the knowledge base, we should propagate the relevant infor-
mation from the knowledge base (including relevant entities
and corresponding relations) into each entity representation. As
shown in Fig. 2, we propagate the attributes ‘‘moderate’’ and ‘‘Ital-
ian’’ into the entity ‘‘Stazione’’. In the tabular knowledge bases of
the task-oriented dialogue datasets, we find that each row usually
represents a single individual, such as a restaurant, and that
there is no significant correlation between entities in different
rows. Irrelevant information from other rows may negatively
affect the entity representation and degrades performance. There-
fore, for each entity, the knowledge subgraph should capture the
structural information within each row to obtain an information-
rich entity representation. With this guidance, we construct the
knowledge subgraphs as follows: (1) We first represent each
row of the knowledge base as multiple triplets. (2) We then
construct a subgraph for each row to capture the graph structure
information within the row. Specifically, if two entities (vi, vj) in
he same row have a relation r , we use that relation as a directed
dge to link the tail entity to the head entity. In addition, we
se the inverse relation to connect the two entities from opposite
irections. For example, we link the two entities ‘‘Stazione’’ and
‘Italian’’ through the two relations ‘‘food’’ and ‘‘is the food of’’,
hich are represented as two opposite edges in the graph. The
djacent matrix Ar

ij of the relation r in the knowledge base is
efined as:

r
ij =

⎧⎨⎩
1 if vi and vj are in the same row and there

is a relation r between them,
0 otherwise.

(2)

ig. 2(A) shows an example of the knowledge subgraphs. In these
ubgraphs, the entities within each row are connected according
o their relations in the knowledge base. The different rows are
4

onnected by the dialogue history. Therefore, each entity can
btain structural information from its corresponding row and
ther rows related to the dialogue topic. We also tried a very plain
ay to construct the knowledge subgraph, which transforms
he whole knowledge base into a large knowledge graph. This
ay degrades performance because it allows the propagation of

rrelevant information within the large knowledge graph.
Dialogue Subgraph In order to receive the knowledge infor-

ation in the knowledge subgraph and to propagate the knowl-
dge information into the word representation of the dialogue
istory, it is necessary to construct a dialogue subgraph. Due to
he complexity of dialogues, it is infeasible to accurately identify
he knowledge information required for each word and con-
truct a specific dialogue subgraph. Therefore, in our work, we
mploy an effective dynamic construction strategy, which links
very word to each other through two relations, ‘‘forward’’ and
‘backward’’. For example, the adjacent matrix of the relation
‘forward’’ is defined as:

forward
ij =

{
1 if the word wj is in front of the word wi,
0 otherwise,

(3)

here wi and wj are two words in the dialogue history. Af-
er obtaining the relevant knowledge from the knowledge sub-
raphs, the dynamic dialogue subgraph spreads it easily to each
ord representation due to the full connection. In addition, our
ethod allocates different weights to different nodes and rela-

ions through attention mechanisms to learn the importance of
ifferent knowledge information. In our work, we tried some par-
ial connections based on prior knowledge to construct dialogue
ubgraphs, e.g., the co-reference relation or the keyword relation.
hese subgraphs usually only focus on only a few specific aspects
nd tend to introduce unexpected biases.
Cross-Subgraph Relations Last but not least, we utilize cross-

ubgraph relations to capture relevant information between the
nowledge base and the dialogue history. In our model, we
ink the co-occurring entities in the two kinds of subgraphs
hrough two relations, ‘‘Knowledge to Dialogue’’ and ‘‘Dialogue
o Knowledge’’. For example, the adjacent matrix of the relation
‘Knowledge to Dialogue’’ is defined as:

K2D
ij =

⎧⎨⎩
1 if wi in the dialogue history is an entity vj

in the knowledge base,
0 otherwise.

(4)

n the data preprocessing phase, we connect conversational words
elonging to the same entity as a whole token to match entities in
he knowledge base. The two relations provide paths for captur-
ng cross-subgraph relevant information. As shown in Fig. 2(A),
e link the restaurant ‘‘Stazione’’ in the knowledge subgraph
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o the restaurant ‘‘Stazione’’ in the dialogue subgraph through
he two relations. As a result, there is a relational path that
ropagates the attribute ‘‘Italian’’ of the restaurant ‘‘Stazione’’
nto the dialogue. The relational path also propagates the dia-
ogue information into the knowledge base. In addition, different
nowledge subgraphs are connected by the entities mentioned in
he dialogue to obtain accurate entity representations.

To propagate information from a node to itself, we link each
ode to itself via a relation ‘‘self-loop’’. The adjacent matrix of the
elation ‘‘self-loop’’ is a diagonal matrix.

In conclusion, we constructed a heterogeneous relational graph
y capturing multi-perspective relations between the knowledge
ase and the dialogue history. This graph jointly encodes the two
nput texts to capture the natural graph structure information in
he knowledge base. Based on the dialogue information, it allows
he entities to focus on dialogue-related attributes. In addition,
t facilitates dialogue understanding by accessing the knowledge
ase. In this way, we can effectively incorporate the knowledge
ase into the learning framework.

.2. Heterogeneous relational graph neural networks

Since the heterogeneous relational graph contains a large
umber of imbalanced relations, it is suboptimal to directly
eploy existing RGNNs [16–18] on the constructed graph. The
revious RGNNs suffer from overfitting and confusion problems.
e propose a shared-private parameterization and a hierar-

hical attention mechanism to alleviate these two problems.
ore specifically, we define the following propagation model to
alculate the updates of the nodes in the graph:
l+1
i = σ (

∑
r∈R

cr,lσ (
∑
j∈N r

i

ar,lij W
r,lhl

j)), (5)

where σ is the activation function. cr,l is the attention weight for
the relation r . N r

i denotes the set of neighbouring nodes of the
node i under the relation r . ar,lij is the attention weight between
two nodes i and j under the relation r . W r,l is a relation-specific
trainable matrix that projects hidden states into the relation
feature space. Intuitively, the graph encoder accumulates the
transformed features of neighbouring nodes by normalized sum-
mations. In practice, with the adjacent matrix (Ar ), the graph
encoder can be efficiently implemented using sparse matrix mul-
tiplications to avoid explicit summations and allow parallel com-
putation of each node [16]. The original representation of the
conversational words is obtained from the underlying encoding
module of the task-oriented dialogue system. And, we represent
each entity as a vector via the underlying embedding function.
We denote the original representation of all nodes as H0

=

(h0
1, h

0
2, . . . , h

0
n′ ) ∈ Rn′

×d0 , where n′ is the number of nodes and
d0 is the dimension of the original representation.

In Eq. (5), hl
j contains hidden representations of heterogeneous

nodes, including words in the dialogue history and entities in
the knowledge base. These different types of nodes are repre-
sented as individual nodes. In addition, we adopt relation-specific
matrices W r,l in Eq. (5) to handle multi-relational information.
The relation-specific matrices are constructed by the proposed
shared-private parameterization. Therefore, we call our method
heterogeneous relational graph neural networks.

4.2.1. Shared-private parameterization
In the graph encoder, the relation-specific matrixes (W r,l)

increase linearly with the number of relations. Since the hetero-
geneous relational graph contains a large number of imbalanced
relations, it is easy to overfit the model to rare relations. To

alleviate this problem, there are two previous approaches: block

5

decomposition and basis decomposition [16]. However, they are
either incapable of learning shared features from high-frequency
relations or incapable of maintaining the private features of each
relation. Therefore, we propose the shared-private parameteri-
zation to alleviate the overfitting problem by balancing shared
features and private features, which integrates the advantages
of existing works. In this subsection, we will first analyse the
shortcomings of existing works and then introduce our method.

The block decomposition represents W r,l as a combination of
block-diagonal matrixes:

W r,l
= diag(Q r,l

1 , . . . ,Q r,l
b ), (6)

where Q r,l
1 ∈ R(dl+1/b)×(dl/b) is a low-dimensional matrix. dl is

the dimension of the node representation in the lth layer. The
block decomposition adds a sparsity constraint on W r,l. It does
not contain shared parameters. The independent relation ma-
trixes assume that the relation spaces are independent, mak-
ing this approach incapable of learning efficient features from
high-frequency relations.

The basis decomposition represents W r,l as a linear combina-
tion of shared parameters:

W r,l
=

b∑
i=1

er,li Z l
i, (7)

where Z l
i ∈ Rdl+1

×dl is a shared trainable matrix and er,li is a
private trainable parameter of the relation r . Since the private
parameters (er,l) are so few compared to the shared parameters,
this approach cannot effectively capture the private features of
each relation.

In this paper, we propose a shared-private parameterization
to alleviate the overfitting problem, which decomposes W r,l as:

W r,l
= U løemb(r)(V l)T, (8)

where øemb(∗) is an embedding function. U l
∈ Rdl+1

×dr and
V l

∈ Rdl×dr are two trainable matrixes shared by all relations. The
proposed shared-private parameterization is inspired by the Sin-
gular Value Decomposition (SVD). The private relation embedding
vector is similar to the singular value. The two shared matrixes
seem like the unitary matrix. Here, we use the private relation
embedding vector and the two shared matrixes to construct a
relation-specific matrix, but do not actually perform the SVD. The
shared matrixes (U l, V l) learn the shared features between rela-
tions to alleviate the overfitting problem. The private parameters
preserve the private features of each relation. Compared to the
previous work [16–18], our method is a better way to integrate
shared and private parameters, which eventually exhibits higher
performance. The shared-private mechanism is usually adopted
in multi-task learning [44,45]. In our method, we utilize this
mechanism to construct the relation-specific matrixes.

4.2.2. Hierarchical attention mechanism
As mentioned earlier, previous RGNNs usually treat all rela-

tions as equally important, which makes it difficult for them to
capture important relational information from a large number of
relations. The attention mechanism [38] is widely used in many
other natural language processing tasks, which selects important
information by assigning different weights to different units. In
our work, we propose a hierarchical attention mechanism, which
contains a node-level attention mechanism and a relation-level
attention mechanism to capture important information.

As shown in Eq. (5), the node-level attention mechanism as-
signs different weights to different nodes under the same relation.
By amplifying or minimizing the hidden state, it accumulates

important information of neighbouring nodes under a specific
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elation into the current node representation. The node-level
ttention mechanism calculates the weights as follows:

r,l
ij =

exp((W r,lhl
i)
T(W r,lhl

j))∑
k∈N r

i
exp((W r,lhl

i)T (W
r,lhl

k))
. (9)

The relation-level attention mechanism uses a trainable parame-
ter (cr,l) to assign different weights to different relations:

cr,l =
exp(or,l)∑

r ′∈R exp(or ′,l)
, (10)

here or,l is a non-normalized parameter for the relation r .
he relation-level attention mechanism allows the heterogeneous
elational graph neural networks to pay more attention to the
ode representations under important relations. The hierarchical
ttention mechanism is inspired by other work [18,46]. Here,
e design the hierarchical attention mechanism to encode the
eterogeneous relational graph.
In general, we stack multiple layers to capture dependencies

cross multiple relational steps. In this way, our model captures
ong-term dependencies in the heterogeneous relational graph.

.3. HRGNN-based task-oriented dialogue system

In this section, we introduce how to integrate the hetero-
eneous relational graph neural networks into a task-oriented
ialogue system. The dialogue system consists of Graph-Based
ncoding and Graph-Based Decoding, which is shown in Fig. 3.

.3.1. Graph-based encoding
In the graph-based encoder, we first connect the entire dia-

ogue history (u1, s1, u2, s2, . . . , uk) word by word and represent
t as X = (x1, x2, . . . , xn), where n is the number of conversational
ords. We use a Bidirectional Gated Recurrent Unit (BiGRU [47])
o encode X as: h0,x

i = BiGRU(øemb(xi), h0,x
i−1) to obtain the origi-

al context-sensitive representation of the words. To obtain the
riginal representation of the entities, we first convert each entity
nto a vector using the entity embedding function. Then, we sum
ach entity vector with the vectors of manually specified relevant
nowledge as its original representation, which proves to be an
ffective way to enhance the entity representation [5,12].
The heterogeneous relational graph neural networks take the

riginal representation and the constructed graph as inputs to
ointly encode the knowledge base and the dialogue history. After
ulti-layer propagation, we can obtain the graph-based node

epresentation, which contains a large amount of node-level and
elation-level information. To incorporate the graph-based node
epresentation into the decoding process, we treat the graph-
ased representation as supporting information and sum them
ith the original representation in the memory networks.

.3.2. Graph-based decoding
Different from the typical sequence-to-sequence models [48,

9], a successful task-oriented dialogue system relies heavily on
n accurate knowledge retriever. We utilize the global-to-local
ointer mechanism [12] as our knowledge retriever, which shows
he best performance.

To obtain the initial state of the response decoder (i.e., the
RU decoder), we perform multi-hop reasoning in the memory
etworks to summarize the graph information. At the kth hop,
he reasoning process is computed as follows:

pk
i =

exp((qk)Tmk
i )∑

j∈N exp((qk)Tmk
j )

, (11)

ok
=

N∑
pk
i m

k+1
i , (12)
i=0

6

qk+1
= ok

+ qk, (13)

where mk
i is the hidden state of the ith node in the kth memory

layer. N is the number of nodes. The initial query vector q1 is
h0,x
n . After k-hop reasoning, qk+1 can be treated as summarized

graph information and used to initialize the decoder. Following
the previous work [12], we compute a global pointer pglobal as:
pglobal,i = sigmoid((qk)Tmk

i ), where sigmoid(∗) is the activation
function. The global pointer is used to estimate the nodes that
will appear in the system response.

The GRU decoder recurrently predicts the output token yi by
decoding the hidden state hdec

i . The hidden state is projected into
the vocabulary space as follows:

p(yi|y1, . . . , yi−1,D,G) = softmax(W v
[hdec

i , ha
i ]), (14)

where softmax(∗) is the normalized function and W v is the
trainable matrix. ha

i is the hidden state obtained by the attention
mechanism [50] on the nodes in the dialogue subgraph. The
vocabulary probability is used to predict words as output tokens.
In addition, we use a local pointer to retrieve nodes from the
graph as output tokens. The local pointer uses the hidden state
[hdec

i , ha
i ] as the initial query vector q1

local to perform multi-hop
reasoning on the graph-based memory layers. The probability of
the local pointer is calculated as follows:

plocal,i =
exp((qk

local)
Tmk

i pglobal,i)∑
j∈N exp((qk

local)Tm
k
j pglobal,j)

. (15)

hen a placeholder (e.g., ‘‘@food’’) is generated from the vocab-
lary, we choose the node with the highest probability in plocal as
he output token.

.4. Adaptive objective

In general, we can train the model with the cross-entropy
oss between the three probabilities (p(y|D,G), pglobal, plocal) and
heir targets. In this paper, we take into account the entity im-
alance problem in task-oriented dialogues. The entity imbalance
roblem can be viewed as a class imbalance problem since there
s an imbalance between different kinds of entities. Instead of
reating all entities indiscriminately, we propose a novel adaptive
bjective to balance the learning of different kinds of target
ntities.
The adaptive objective evaluates the difficulty based on the

icro F1 of each kind of entities on the validation set and adap-
ively adjusts the weight of each kind of entities during the
ptimization process. We denote the micro F1 of a kind of entities
n the validation set as F . If Ft < Fk, our model achieves poorer
erformance on the class t . We can argue that the entities belong-
ng to the class t are more difficult than the entities belonging to
he class k. Therefore, we increase the loss weight of the class t
nd decrease the loss weight of the class k to allow the model

to focus more on learning the difficult class t . Specifically, if the
ith token in the target response is an entity, its loss weight αi is
defined as:

αi =
1 − Fi∑
j∈R 1 − Fj

|R| + β (16)

here β is a hyper-parameter. |R| is the number of entity classes.
therwise, if the ith token in the target response is a word,
ts weight αi is β . In fact, β is the basic weight used to train
he dialogue system. As shown in Eq. (16), we assign higher
oss weights to entities in difficult categories, which allows the
odel to focus on learning entities in that category. The adaptive
bjective is defined as follows:

= −

d∑
αilog(p(yi|y<i,D,G)) (17)
i=1



Q. Liu, G. Bai, S. He et al. Knowledge-Based Systems 227 (2021) 107186

u
e
e
e
b

5

s
t
t
o
g
t
s
t
l

I
a
F

5

a
t
t
w
t
s
t

Fig. 3. Architecture of a task-oriented dialogue system based on heterogeneous relational graph neural networks.
Table 1
Statistics of datasets. We list the number of examples, the number of relations, and the number of nodes.
Dataset Train Valid Test Relations Nodes

SMD 6290 777 807 67 1490
Extended Multi-WOZ 2.1 8529 576 711 25 3605
The adaptive objective fits the data better by dynamically eval-
ating the difficulty in a performance-sensitive manner. When an
poch ends, the adaptive objective re-evaluates the difficulty of
ach kind of entity and updates F to ensure that the loss of hard
ntities is larger than that of simple entities. Thus, it dynamically
alances the learning of all entities during the training process.

. Experiments

In this section, we construct a series of experiments to demon-
trate the effectiveness of our proposed method. The first of
hem is to evaluate the overall performance of the HRGNN-Based
ask-oriented dialogue system. Next, we verify whether each of
ur proposed components, including the heterogeneous relational
raph, the shared-private parameterization, the hierarchical at-
ention mechanism, and the adaptive objective, can effectively
olve its corresponding problems. Finally, we manually evaluate
hese task-oriented dialogue systems to give fair evaluations. We
ist the research questions (RQ) that guide our experiments.

• RQ1. What is the overall performance of our model in end-
to-end task-oriented dialogues?

• RQ2. Is the heterogeneous relational graph effective for end-
to-end task-oriented dialogues?

• RQ3. Is the shared-private parameterization effective for
handling the overfitting problem?

• RQ4. Is the hierarchical attention mechanism effective for
handling the confusion problem?

• RQ5. Can the adaptive objective improve performance
through balanced training?

• RQ6. Can our model achieve greater improvements in dia-
logues that rely on rich knowledge?

• RQ7. Can our model outperform previous models in human
evaluation?

• RQ8. Is our model still effective when using other underlying
encoders?

n the remainder of this section, we first introduce the datasets
nd the baselines. Then, we show the experimental settings.
inally, we show the results and analysis.

.1. Datasets

We evaluate the proposed approach on the SMD dataset [9]
nd the extended Multi-WOZ 2.1 dataset [5,14,15]. Based on
he Multi-WOZ 2.1 dataset [15], Qin et al. [5] proposed the ex-
ended Multi-WOZ 2.1 dataset, where each dialogue is equipped
ith a corresponding knowledge base. The two datasets con-
ain dialogues from multiple domains. The SMD dataset is de-
igned for car assistants, which contains three domains: naviga-
ion, weather, and calendar. The extended Multi-WOZ 2.1 dataset
7

Table 2
Hyper-parameters for the SMD and Multi-WOZ 2.1 datasets.
Hyper-parameters SMD Multi-WOZ 2.1

Graph layers 2 2
Graph hidden size 128 128
Batch size 16 16
Hidden size 128 128
Embedding size 128 128
Learning rate 0.001 0.001
Dropout rate 0.2 0.0
Teacher forcing rate 0.9 0.9
Memory network layers 3 3
β 1.0 1.0

contains three domains: restaurant, attraction, and hotel. De-
tailed statistics are shown in Table 1. We follow the same par-
titions in the datasets as the previous work [5,12,14]. Due to
the knowledge-rich nature and the flexible expressions, it is
extremely challenging to develop dialogue systems on the two
datasets. To save space, we follow the previous work [5] and
call the extended Multi-WOZ 2.1 dataset as the Multi-WOZ 2.1
dataset. The two task-oriented dialogue datasets provide a spe-
cific knowledge base for each dialogue, so we do not need to use
external knowledge base datasets.

5.2. Baselines

We compare our model with the following state-of-the-art
baselines.

• Mem2Seq [13]: The model separately encodes conversa-
tional words and knowledge triplets in memory networks. It
uses a pointer network to retrieve entities for the response.

• DSR [10]: The model uses implicit dialogue states to en-
hance the ability of knowledge retrieval.

• KB-Retriever [30]: The model utilizes a special retriever to
ensure that the predicted entities are in the same row of the
knowledge base.

• GLMP [12]: The model retrieves entities through the global-
to-local pointer mechanism, which can filter out the infor-
mation that appears in the system response.

• DFNet [5]: The model uses shared-private parameters to
explore the relations between different domains.

5.3. Experimental settings

Following the previous work [5], we use the Adam opti-
mizer [51] to train our model with an initial learning rate of
0.001. The learning rate decays by half every 2 epochs if there
is no improvement on the validation set. The dimensional size
of the embedding layer and the graph layers is 128. To improve
generalization, we adopt a dropout ratio from [0.0, 0.1, 0.2, 0.3],
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ain results. The numbers with † indicate that the improvement of our method is statistically significant with p < 0.01 under the t-test over the previous strong
odels, GLMP and DFNet. The numbers with * indicate that the improvement of our method is statistically significant with p < 0.05.
Model SMD Multi-WOZ 2.1

BLEU F1 Navigate Weather Calendar BLEU F1 Restaurant Attraction Hotel
F1 F1 F1 F1 F1 F1

Mem2Seq [13] 12.6 33.4 20.0 32.8 49.3 6.6 21.62 22.4 22.0 21.0
DSR [10] 12.7 51.9 52.0 50.4 52.1 9.1 30.0 33.4 28.0 27.1
KB-retriever [30] 13.9 53.7 54.5 52.2 55.6 – – – – –
GLMP [12] 13.9 60.7 54.6 56.5 72.5 6.9 32.4 38.4 24.4 28.1
DFNet [5] 14.4 62.7 57.9 57.6 73.1 9.4 35.1 40.9 28.1 30.6
HRGNN-AO 16.5† 65.2† 58.6† 62.8* 75.1† 10.1* 38.0† 41.7† 33.8* 35.2†
Table 4
Effectiveness of the knowledge subgraph.
Model SMD (BLEU) SMD (Entity F1) Multi-WOZ 2.1 (BLEU) Multi-WOZ 2.1 (Entity F1)

Test ∆ Test ∆ Test ∆ Test ∆

HRGNN-AO 16.5 – 65.2 – 10.1 – 38.0 –
with A Large KG 15.7 −0.8 64.1 −1.1 9.8 −0.3 37.2 −0.8
w/o Knowledge Subgraph 15.3 −1.2 63.4 −1.8 9.5 −0.6 36.1 −1.9
which is the same as the previous work [5]. We did not observe
further improvements when using other dropout ratios. The batch
size is selected from [16, 32] because we could deploy the model
under these batch sizes on a single GPU (GeForce RTX 2080Ti)
and obtain acceptable runtimes. We found that the entities in
the system responses are often within two hops from the entities
mentioned in the dialogue history. Therefore, we explore the
number of graph layers from [1, 2, 3, 4]. All hyper-parameters
are selected based on the validation set through a grid search.
We show more details in Table 2.

For the task-oriented dialogue systems, the Micro Entity F1
etric is used to evaluate whether the predicted system re-
ponses contain accurate entities. Besides, we use BLEU [52] to
valuate the language quality of the predicted system responses.

.4. Main results

We address the RQ1 in this subsection. We conduct exper-
ments on the two datasets to compare our proposed method
ith the above baselines. The results are shown in Table 3. Since
u et al. [12] reported Macro Entity F1 as Micro Entity F1, Qin

t al. [5] reran the GLMP model and reported the new results
n their paper. Therefore, we follow Qin et al. [5] and show the
ew results in Table 3. We also list separate results for different
omains in this table. From the results, we can observe that:
(1) Our method outperforms the baselines by a large margin

n both datasets. On the SMD dataset, compared with the model
FNet, our method achieves 2.1% and 2.5% improvements in
erms of BLEU and Entity F1, respectively. It indicates that our
ethod can generate more fluent responses and our method
as a better ability to retrieve accurate entities. On the Multi-
OZ 2.1 dataset, we observe the same trend of improvement,

.e., our model improves by 0.7% and 2.9% on BLEU and entity F1
ver the previous best model. Our method is more effective for
ask-oriented dialogues than the baselines.

(2) For each domain in the SMD dataset, our method achieves
ignificant improvements of 0.7%, 5.2%, and 2.0% in terms of
ntity F1. The experimental results show that our method is
ffective and scalable in multiple domains. On the Multi-WOZ
.1 dataset, our method also achieves significant improvements
f 0.8%, 5.7%, and 4.6% in terms of entity F1. It indicates that
hese domains all suffer from two problems: how to effectively
ncorporate the knowledge base into the learning framework
nd the entity imbalance problem. Therefore, our method im-
roves performance in these domains, which demonstrates the
calability of our method.
8

5.5. Effectiveness of our method

We study the advantages of our method from several aspects.
First, we perform several experiments to analyse the effect of the
heterogeneous relational graph. Next, we verify the effectiveness
of the heterogeneous relational graph neural networks. Finally,
we evaluate the validity of the adaptive objective to understand
how it improves performance.

5.5.1. Strategy of building the heterogeneous relational graph
In this subsection, we assess the RQ2. To gain more insights

into the structure of the heterogeneous relational graph, we ex-
plore different strategies to build the graph.

Table 4 shows the results of the models using different strate-
gies to construct the knowledge subgraph. When representing
the knowledge base as a large knowledge graph (‘‘with A Large
KG’’), the model achieves a performance drop by 1.1% and 0.8% in
terms of entity F1. In addition, this model reduces the language
quality with a drop by 0.8% and 0.3% on BLEU. The results are
consistent with our description in Section 4.1. For tabular KBs
in task-oriented dialogue datasets, irrelevant information from
other rows adversely affects the entity representation and ul-
timately degrades performance. In our model, only knowledge
rows with entities mentioned in the dialogue history are con-
nected. These rows are usually related to the dialogue topic and
contain relevant information to other rows. When removing the
knowledge subgraph (‘‘w/o Knowledge Subgraph’’), the model
achieves a significant drop by 1.8% and 1.9% in terms of entity
F1. It shows that the knowledge subgraph is critical for capturing
the graph structure information.

Table 5 shows the results of the models with different strate-
gies to construct the dialogue subgraph. When the dialogue his-
tory is represented as partial connection graphs, the performance
of the model is significantly degraded. For ‘‘with Keyword DG’’,
we construct a dialogue subgraph that links entities, relations,
and pronouns mentioned in the dialogue history to capture key-
word information. For ‘‘with Entity DG’’, we construct dialogue
subgraphs that use relations from the knowledge base to link
entities mentioned in the dialogue history. The two variants
achieve low performance. It shows that these partial connections,
constructed based on prior knowledge, are prone to introduce
unexpected biases and are not sufficiently representative. When
removing the dialogue subgraph (‘‘w/o DG’’), the model achieves
a significant drop by 1.8% and 1.6% in terms of entity F1. The
dynamic dialogue subgraph is effective in receiving knowledge
information and dynamically propagating the information to each
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Table 5
Effectiveness of the dialogue subgraph and the heterogeneous relational graph.
Model SMD (BLEU) SMD (Entity F1) Multi-WOZ 2.1 (BLEU) Multi-WOZ 2.1 (Entity F1)

Test ∆ Test ∆ Test ∆ Test ∆

HRGNN-AO 16.5 – 65.2 – 10.1 – 38.0 –
with Keyword DG 16.1 −0.4 64.3 −0.9 9.7 −0.4 37.4 −0.6
with Entity DG 15.7 −0.8 63.7 −1.5 9.6 −0.5 36.8 −1.2
w/o DG 15.4 −1.1 63.4 −1.8 9.3 −0.8 36.4 −1.6
w/o Constructed Graph 14.6 −1.9 63.0 −2.2 8.7 −1.4 35.9 −2.1
Table 6
Effectiveness of the multi-perspective relations.
Model SMD (BLEU) SMD (Entity F1) Multi-WOZ 2.1 (BLEU) Multi-WOZ 2.1 (Entity F1)

Test ∆ Test ∆ Test ∆ Test ∆

HRGNN-AO 16.5 – 65.2 – 10.1 – 38.0 –
w/o Inverse Relation 15.6 −0.9 63.6 −1.6 9.5 −0.6 36.5 −1.5
w/o Knowledge to Dialogue 15.8 −0.7 64.0 −1.2 9.9 −0.2 37.6 −0.4
w/o Dialogue to Knowledge 16.2 −0.3 63.5 −1.7 9.3 −0.8 36.9 −1.1
w/o CG Relation 15.5 −1.0 63.3 −1.9 9.6 −0.5 36.4 −1.6
Table 7
Effectiveness of the shared-private parameterization.
Model SMD (BLEU) SMD (Entity F1) Multi-WOZ 2.1 (BLEU) Multi-WOZ 2.1 (Entity F1)

Test ∆ Test ∆ Test ∆ Test ∆

HRGNN-AO 16.5 – 65.2 – 10.1 – 38.0 –
with Block Decomposition 15.4 −1.1 64.0 −1.2 9.6 −0.5 37.2 −0.8
with Basic Decomposition 15.9 −0.6 63.8 −1.4 10.0 −0.1 37.4 −0.6
w/o Shared Parameters 15.2 −1.3 63.6 −1.6 9.3 −0.8 37.5 −0.5
w/o Private Parameters 14.7 −1.8 63.5 −1.7 9.5 −0.6 36.9 −1.1
O
e
(
C
n

t
t
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word through the attention mechanism. Removing the hetero-
geneous relational graph (‘‘w/o Constructed Graph’’) reduces the
performance by 2.2% and 2.1% in terms of entity F1. It validates
the effectiveness of the proposed graph.

We also experimentally study the effect of relations in the
eterogeneous relational graph. The results are shown in Table 6.
or ‘‘w/o Inverse Relation’’, we remove the inverse relation from
he knowledge subgraph. The performance degradation verifies
he effectiveness of propagating the graph structure informa-
ion from two directions. Removing each of the two relations,
‘Knowledge to Dialogue’’ or ‘‘Dialogue to Knowledge’’, hurts per-
ormance because they provide important relational paths for
ropagating relevant information between the knowledge base
nd the dialogue history. For ‘‘w/o CG Relation’’, we remove the
wo relations, ‘‘Knowledge to Dialogue’’ and ‘‘Dialogue to Knowl-
dge’’. The performance degradation verifies that it is effective to
imultaneously exploit the two relations.

.5.2. Effectiveness of shared-private parameterization
Next, we turn to the RQ3 in this subsection. To gain more

nsights into the proposed shared-private parameterization, we
est many variants of the heterogeneous relational graph neural
etworks. The results are shown in Table 7. When we replace the
roposed shared-private parameterization with the block or basic
ecomposition [16], the performance degrades significantly. The
esults show that the proposed shared-private parameterization
s an effective way to deal with the overfitting problem by inte-
rating shared and private parameters. Besides, for ‘‘w/o Shared
arameters’’, we test a variant that only adopts private matrixes.
he performance of this variant degrades significantly. The results
emonstrate the effectiveness of the shared parameters, which
ransfer shared features from high-frequency relations to low-
requency relations. For ‘‘w/o Private Parameters’’, the model only
dopts the shared matrixes. This model achieves low performance
ecause it treats all relations as the same, which hinders the
earning of the private features of each relation.
9

5.5.3. Effectiveness of hierarchical attention mechanism
In this subsection, we assess the RQ4. Table 8 shows the

results. To explore the importance of the proposed hierarchical
attention mechanism, we remove each level of the hierarchi-
cal attention mechanism. On the SMD dataset, removing the
relation-level attention mechanism (‘‘w/o Relation-Level Atten-
tion’’) leads to a performance drop by 1.1% on BLEU and 0.9% on
entity F1. The relation-level attention mechanism brings signifi-
cant improvements by enabling HRGNN-AO to focus on important
relational information. When removing the node-level attention
mechanism (‘‘w/o Node-Level Attention’’), the performance drops
significantly because this model does not pay attention to impor-
tant nodes under the same relation. Furthermore, removing the
hierarchical attention mechanism results in low performance. The
results demonstrate that the hierarchical attention mechanism
is effective in accumulating the node-level and relation-level
structural information. Besides, we replace our graph encoder
with the previous heterogeneous graph attention network [18] to
our tasks, which contains node-level and semantic-level attention
mechanisms. On the SMD dataset, it achieves 63.5% on Entity F1
and 15.6% on BLEU, which achieves lower performance. Due to
the lack of shared-private parameterization, the heterogeneous
graph attention network [18] suffers from weak generalization.

5.5.4. Effectiveness of adaptive objective
In this section, we assess the RQ5. The results are shown

in Table 9. To explore the importance of adjusting the weight
αi adaptively, we remove the adaptive objective (‘‘w/o Adaptive
bjective’’), which leads to a drop by 0.9% and 0.5% in terms of
ntity F1. Replacing the adaptive objective with the focal loss
γ ∈ [2, 3], [43]) leads to a drop by 0.7% and 0.6% on entity F1.
ompared with the original cross-entropy loss, the focal loss does
ot bring in significant improvements.
Fig. 4 shows the changes in entity F1 of each kind of en-

ity on the SMD dataset between the adaptive objective and
he original cross-entropy objective. We rank all entity classes
n ascending order according to their frequency. Thus, entities
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Fig. 4. Entity F1 changes between the adaptive objective and the original cross-entropy objective for each kind of entity on the SMD dataset. We rank all entity
relations in ascending order according to their frequency.
Table 8
Effectiveness of the hierarchical attention mechanism.
Model SMD (BLEU) SMD (Entity F1) Multi-WOZ 2.1 (BLEU) Multi-WOZ 2.1 (Entity F1)

Test ∆ Test ∆ Test ∆ Test ∆

HRGNN-AO 16.5 – 65.2 – 10.1 – 38.0 –
w/o Relation-level attention 15.4 −1.1 64.3 −0.9 9.7 −0.4 37.4 −0.6
w/o Node-level attention 15.5 −1.0 63.7 −1.5 9.1 −1.0 36.8 −1.2
w/o HAM 15.2 −1.3 63.3 −1.9 8.9 −1.2 36.3 −1.7
with Heterogeneous GAT 15.6 −0.9 63.5 −1.7 9.6 −0.5 37.1 −0.9
Table 9
Effectiveness of the adaptive objective.
Model SMD (BLEU) SMD (Entity F1) Multi-WOZ 2.1 (BLEU) Multi-WOZ 2.1 (Entity F1)

Test ∆ Test ∆ Test ∆ Test ∆

HRGNN-AO 16.5 – 65.2 – 10.1 – 38.0 –
w/o Adaptive Objective 16.4 −0.1 64.3 −0.9 9.4 −0.7 37.5 −0.5
with Focal Loss [43] 16.3 −0.2 64.5 −0.7 9.8 −0.3 37.4 −0.6
Table 10
Human evaluation. ‘‘Average Agreement’’ is the inter-annotator agreement (Kappa Coefficient [53]).
Model Correct Fluent Human-like

GLMP [12] 3.51 3.96 4.04
DFNet [5] 3.60 4.12 4.06
HRGNN-AO 4.17 4.35 4.39
Average Agreement 67.1% 59.8% 62.7%
belonging to the left part are relatively more difficult than those
belonging to the right part. In the model with the adaptive
objective, entities belonging to the left part achieve significant
improvements, demonstrating that the adaptive objective can
encourage the learning of low-frequency entity classes. While
the adaptive objective tends to reduce the weight of entities
belonging to the right part, these entities also benefit from the
adaptive objective. We argue that this is because the adaptive
objective learns all entities in a balanced way by dynamically
evaluating and optimizing hard target entities, thereby improving
the performance of many kinds of entities.

5.6. Dialogues relying on rich knowledge

In this subsection, we answer the RQ6. We believe that the en-
ities mentioned in the dialogue history often require knowledge
or better understanding. Therefore, the more entities a dialogue
ontains, the more knowledge it requires. We utilize the average
umber (K) of entity classes in the dialogue history to identify
ialogues that rely on rich knowledge. The average number of
ntity classes in the SMD and Multi-WOZ 2.1 test sets is 3 and
10
8, respectively. Through the average number K, we split the test
set into two parts. Fig. 5 shows the results of the models on the
two parts separately.

We can observe that, for the dialogues that rely on rich
knowledge, our method achieves considerable improvements.
This demonstrates the effectiveness of our method, which pro-
vides a great way to jointly encode the dialogue history and the
knowledge base to capture relevant information. In the dialogues
that rely on rich knowledge, there are more entities mentioned
in the dialogue history that provide more cross-subgraph paths,
which contribute to a better understanding of the semantics of
the dialogues. On the other hand, through these rich relational
paths, each entity gains more graph structure information from
the knowledge base according to the current dialogue history.

5.7. Human evaluation

We then answer the RQ7. We provide human evaluations
on our model and other baselines. We evaluated 200 responses
based on distinct dialogue histories in the SMD test set. We hire
two human experts and ask them to judge the quality of the
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Fig. 5. Test results on dialogues relying on rich knowledge and others. K is the average number of entity classes in the dialogue history.
Table 11
Results of the models that adopt different encoders.
Model SMD (BLEU) SMD (Entity F1) Multi-WOZ 2.1 (BLEU) Multi-WOZ 2.1 (Entity F1)

Test ∆ Test ∆ Test ∆ Test ∆

HRGNN-AO 16.5 – 65.2 – 10.1 – 38.0 –
with BiLSTM [54] 16.4 −0.1 64.7 −0.5 10.0 −0.1 38.1 +0.1
with Transformer [38] 16.7 +0.2 65.1 −0.1 9.7 −0.4 37.8 −0.2
responses according to ‘‘correct’’, ‘‘fluent’’, and ‘‘human-like’’ [5]
on a scale from 1 to 5. In each judgement, the expert is presented
with the dialogue history, the knowledge base, the output of an
anonymous system, and the gold response. The evaluation results
are shown in Table 10. Our model significantly outperforms GLMP
and DFNet on all metrics, which is consistent with the automatic
evaluation. The most significant improvement (‘‘correct’’) indi-
cates that our model can retrieve accurate entities from KBs to
generate system responses that match the user requests.

5.8. Selection of the underlying encoder

Finally, we study the RQ8. The results are shown in Table 11.
o select an effective encoder, we evaluate the models that re-
lace the BiGRU encoder with two other encoders, i.e., the Bidi-
ectional Long Short-Term Memory (BiLSTM) [54] and the trans-
ormer [38]. On both datasets, the two variants do not achieve sig-
ificant improvements. We argue that all these encoders are ca-
able of obtaining a good original representation of the dialogue
istory. Based on the original representation, our heterogeneous
elational graph neural networks fuse the knowledge base and the
ialogue history, which can capture graph structure information
o facilitate response generation. Existing task-oriented dialogue
ystems (e.g., GLMP, DFNet, and ours) usually represent each
ntity in the knowledge base as a whole token in the vocabulary.
uch vocabulary is of great benefit to these models, as it enables
hese models to represent each entity as an embedding vector
nd to copy the complete entity into the response. However, the
ocabulary of current pre-trained models (e.g, BERT [55]) cannot
epresent so many special tokens. Therefore, these task-oriented
ialogue systems do not adopt pre-trained encoders.

. Conclusion

In this paper, we propose heterogeneous relational graph neu-
al networks with an adaptive objective for end-to-end task-
riented dialogues. In our method, we exploit heterogeneous
elational graphs to jointly encode the dialogue history and the
nowledge base. Our method captures the graph structure infor-
ation from the knowledge base and the relevant information
etween the two texts. It is an effective way to incorporate
xternal KBs into the learning framework. In addition, we pro-
ose a novel graph encoder, which adopts the shared-private
arameterization and the hierarchical attention mechanism to
andle overfitting and confusion problems. Besides, we propose
11
an adaptive objective to address the entity imbalance problem
via balanced training. The experimental results on the SMD and
extended Multi-WOZ 2.1 datasets demonstrate the effectiveness
of the proposed method, which achieves state-of-the-art perfor-
mance. Task-oriented dialogue systems have many real-world
applications, such as Apple Siri and Microsoft Cortana. We believe
that our work is practical and may inspire many future studies.
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