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Abstract—Face recognition is one of the most important cognitive functions for humans in social activities. The
ability will be negatively affected when the face images deteriorate. However, the neural process of extracting
facial information under challenging conditions is still poorly understood. Therefore, it is necessary to further
understand the neurophysiological relevance of this effect. We examined patients with multiple subdural elec-
trodes (ECoG) monitored for clinical purposes. During the experimental task, the patients were presented with
face and house images with different noise levels and were asked to recognize the faces. We found a striking
increase in high gamma band power (HGP; 60–160 Hz) when face images were shown. We localized the face-
specific electrodes to the fusiform gyrus (FG) and surrounding cortices. For each subject, the behavioral perfor-
mance and magnitudes of the HGP for the face-specific sites significantly both fit a sigmoid function and showed
similar changes. Additionally, the curve profile of the average HGP magnitude across the face-specific sites was
almost equal to the average behavior curve; the former could precisely track the behavioral performance. In gen-
eral, these results suggest that the HGP in the FG is closely related to the performance of face image recognition.
� 2021 IBRO. Published by Elsevier Ltd. All rights reserved.
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INTRODUCTION

Face recognition is one of the most important cognitive

functions of human beings. Accurate recognition of

faces is essential for social interaction. It seems to have

a natural sensitivity to human faces and can easily

classify visual stimuli as faces in various situations.

Previous research has made significant progress in

identifying the neural basis of humans’ efficient and

effortless facial perception. But in real life, we are faced

with problems such as loss of eyesight or deterioration

of facial images, so that the face we see may be

blurred, which negatively affects our face recognition

ability. However, we still know very little about the

neural process of how to extract facial information under

challenging conditions. It is therefore necessary to
https://doi.org/10.1016/j.neuroscience.2021.06.017
0306-4522/� 2021 IBRO. Published by Elsevier Ltd. All rights reserved.

*Correspondence to: T. Jiang, Brainnetome Center, Institute of
Automation, Chinese Academy of Sciences, Beijing 100190, China.

E-mail address: jiangtz@nlpr.ia.ac.cn (T. Jiang).
Abbreviations: ECoG, electrocorticography; EEG,
electroencephalography; ERP, event-related potential; FG, fusiform
gyrus; HGP, high gamma band power.

211
investigate what happens to the human brain when it

processes face images with added noisy information.

For the past three decades, external noise has been

added to visual stimuli to study visual processing in the

fields of visual psychophysics and face perception by

utilizing electrophysiology and brain imaging (Costen

et al., 1994; Gold et al., 1999). Research studies related

to face image noise have primarily focused on face-

sensitive event-related potential (ERP) components

obtained by electroencephalography (EEG). These

showed that, with increases in the level of face image

noise, the absolute value of the amplitude of the N170

component (the negative component that peaked about

170 ms after stimulation onset) decreased linearly while

the P1 component (the positive component that peaked

about 100 ms after stimulation onset) was stable (Jemel

et al., 2003) and that the later P2 component (the positive

component that peaked about 200 ms after stimulation

onset) was enhanced (Philiastides et al., 2006). In brief,

increases in face noise level are usually considered to

lead to changes in the face-sensitive ERP.

https://doi.org/10.1016/j.neuroscience.2021.06.017
mailto:jiangtz@nlpr.ia.ac.cn
https://doi.org/10.1016/j.neuroscience.2021.06.017
https://doi.org/10.1016/j.neuroscience.2021.06.017
https://doi.org/10.1016/j.neuroscience.2021.06.017


212 W. Li et al. / Neuroscience 468 (2021) 211–219
However, it is difficult for ERP to express information

derived from induced activity, which mainly reflects high-

cognitive rather than perceptual activity and can be

retrieved by time–frequency analyses (Donner and

Siegel, 2011). Previous studies using subdural electro-

physiological recordings have indicated that high-order,

face-specific electrodes show a face recognition-related

effect at high frequency (mainly in the broadband gamma

band 30–150 Hz) (Tsuchiya et al., 2008; Fisch et al.,

2009; Engell and McCarthy, 2011; Aru et al., 2012). The

induced gamma band oscillation may be a sign of holistic

face processing supported by evidence that upright face

perception, as compared to inverted face or object per-

ception, is mediated by stronger gamma-band activity

(Bossi et al., 2020). Moreover, it has been suggested that

gamma band activity reflects the synchronization of oscil-

latory neuronal assemblies thought to underlie the forma-

tion of cortical object representations (Engel and Singer,

2001; Donner and Siegel, 2011) and may be related to

perception (Rodriguez et al., 1999) and structural encod-

ing of faces (Zion-Golumbic and Bentin, 2007; Gao et al.,

2013). In addition, such face-specific electrodes were

mainly in face-selective regions, which consisted of the

fusiform gyrus (FG) and surrounding areas of the human

ventral temporal cortex and which were identified based

on stronger responses to faces than to a variety of other

stimuli (Grill-Spector et al., 2017). Intracranial EEG places

electrodes directly within targeted neuronal populations to

collect the electrical signals of specific brain regions and

allows the investigation of face processing by providing

precise information about the temporal structure of neu-

ronal responses. Interestingly, the perceptual ability of

humans to identify face images in the presence of noise

varies nonlinearly as a function of how much noise is

introduced to the stimuli. Specifically, the accuracy holds

at a high level in the low noise range and declines rapidly

in the medium noise range (Costen et al., 1994; Perry,

2016). Although previous studies found that the ERP

components decreased with increasing noise, relatively

little is known about the link between the neural signal

and perceptual abilities in the presence of noise.

In this research, we used intracranial EEG recordings

(ECoG) to study how the signals in the human ventral

temporal cortex, especially the FG, change in the

gamma band when watching a series of face images

with different noise levels and how they correlate with

human behavior.
EXPERIMENTAL PROCEDURES

Human subjects

We studied four subjects (2 men and 2 women) who were

epileptic patients at Harborview Hospital in Seattle,

Washington. Subdural grid and platinum arrays (4 mm

diameter, 2.3 mm exposed, and 10 mm interelectrode

distances; Ad-Tech, Racine, WI) were placed in the

occipitotemporal cortex for clinical monitoring and

localization of epileptic foci. The basic information about

each subject (gender, age, handedness, and grid

location) is shown in Table 1. Before testing, all the

subjects provided written informed consent for the
study, which was approved by the Institutional Review

Board of the University of Washington (no. 12193).

Behavioral parameters, electrode positions, and

electrophysiological signals were recorded and shared

in a freely available library at https://searchworks.

stanford.edu/view/zk881ps0522 created by Kai J. Miller

et.al (Miller et al., 2017; Miller, 2019).
Electrode localization

The electrode positions and the brain regions they belong

to are described in the database. The electrode positions

were located on structural MRI images using postimplant

computed tomography (CT), utilizing the CTMR package

and FreeSurfer-rendered cortical reconstructions (Dale

et al., 1999; Hermes et al., 2010). For simplicity, the word

‘‘site” was used to represent the electrode contact. Most

sites were located in the inferotemporal gyrus, which

includes the following gyri: temporal pole, parahippocam-

pal gyrus, inferior temporal gyrus, middle temporal gyrus,

FG, lingual gyrus, and inferior occipital gyrus (Destrieux

et al., 2010). The details of the sites for each subject

are shown in Fig. 1B and Table 2.
Experimental design

The details of the experimental paradigm were described

by Miller et al. (2017). In brief, all four subjects completed

two experiments, a basic task and a noisy task. In the

basic task, the subjects watched grayscale pictures of

faces and houses, which were displayed in random order,

one picture in a trial, for 400 milliseconds with a 400 mil-

liseconds blank screen inter-stimulus interval (ISI;

Fig. 1A). A total of 300 stimuli were shown to each sub-

ject, 100 stimuli for each run. Stimuli were balanced for

the number of face and house pictures.

In the noisy task, the subjects were asked to perform a

face-recognition task using phase-scrambled images of

faces and houses. These stimuli images all had an

identical frequency power spectrum but with graded

amounts of phase noise (ranging from 0 to 100% noise,

in 5% increments). Each image was shown for 1000 ms

with no ISI. The subjects were instructed to press button

the ‘‘F” key if they believed the picture to be that of a

face. A total of 630 stimuli were shown to each subject,

105 stimuli for each run. The stimuli were randomly

interleaved and balanced for noise level and number of

face and house images (Fig. 1A).
Statistical analyses

The significant differences between experimental

conditions (face images vs. house images) were

determined by a non-parametric cluster-based

permutation test (Maris and Oostenveld, 2007). Cluster-

level statistics were computed by taking the sum of the t

values within a cluster. The distribution of cluster-level

statistics under the null hypothesis was constructed by

randomly permuting condition labels for 1000 times, and

the maximum cluster-level statistic in each permutation

was extracted. The nonparametric statistical significance

was obtained by calculating the proportion of surrogates

https://searchworks.stanford.edu/view/zk881ps0522
https://searchworks.stanford.edu/view/zk881ps0522


Table 1. Basic information for each subject. The gender, age, handedness, and grid location

Subject Gender Age Handedness Grid Location

S1 F 27 Right L Fronto-temporal-parietal

S2 M 32 Right L Fronto-temporal-parietal

S3 F 45 Right L Frontotemporal

S4 M 37 Unknown Subtemporal / Occipital

Fig. 1. Face-recognition experiment, electrode localization and task performance. (A) Left panel: Basic task, grayscale pictures of faces and

houses were shown in random order for 400 ms each with a 400 ms ISI of blank screen. Right panel: Noisy task, for each noise level (ranging from 0

to 100% noise in 5% increments), phase-scrambled pictures of faces and houses were displayed in random order for 1 s each with no ISI; the

subjects were required to press a key when they believed that the picture showed a face. Adapted from Miller et al. (2017). (B) Electrode positions in

all 4 subjects are displayed on ventral left and right view of a MNI cortex. Orange shadow represents the FG. Each dot presents a site, and the sites

of different subjects are distinguished by different colors (S1: dark blue; S2: light blue; S3: yellow; S4: red). Most of the sites were located in the

inferotemporal gyrus. (C) Electrode positions of the face-specific sites. which were determined by contrasting the responses to face images with

those to house images. (D) Plots of face recognition accuracy for varying noise levels in each of the four subjects. Black cross symbol represents the

actual data. Black line shows the best fitting sigmoid function (R2 for each fit is given in each plot). (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article.)
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within the permutation distribution that exceeded the

observed cluster-level statistics (e.g., p = 0.05 observed

data exceed 95% surrogate data). Nonlinear regression
was used to fit the observed behavioral and electrophys-

iological data, and a v2 square goodness-of-fit test was

carried out to test the degree and significance of the fit



Table 2. Details of the sites for each subject. Number of cortical sites and FG sites after rejecting sites with significant artifacts. Region and response

properties of the face-specific sites. Each row represents a face-specific site

Subject Number of cortical sites Number of FG sites Region of face-specific sites Fit of sigmoidal (R2)

S1 58 5 FG

FG

0.86

0.65

S2 37 5 FG

Lingual

MOG

0.48

0.48

0.91

S3 53 2 FG 0.69

S4 40 2 FG

FG

0.77

0.97

FG: fusiform gyrus; MOG: middle occipital gyrus; Lingual: lingual gyrus.
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between the original data and the function. The relation-

ship between the gamma band power and face recogni-

tion accuracy was analyzed using a Spearman

correlation test. The stronger the correlation between

the two variables, the greater the absolute value of Spear-

man coefficient. All data analysis was conducted using

Matlab (The MathWorks, Inc., Natick, Massachusetts).

ECoG data analysis
Preprocessing. Electrical potentials were sampled at

1000 Hz with an instrument-imposed bandpass filter

from 0.15 to 200 Hz. In the basic task, we first filtered

the data for line noise (between 58 and 62 Hz) and

harmonics (118–122 Hz and 178–182 Hz) using 3rd-

order Butterworth band-stop filters. The sites underwent

an automatic quality assessment to reject artifacts: sites

with signal variances five times larger or smaller than

the average variance across the sites were considered

as pathological. Sites with three times more ‘‘jumps”

(defined as changes in the signal derivative >100 lV)
than the average across the sites were labeled as spiky.

All pathological and spiky sites were excluded from

further analysis. Then the electrical potentials were re-

referenced to the average of the signal over all the

selected sites. Each epoch was extracted in the [�200

600] ms time window around the stimulus onset, and a

baseline correction was performed in the [�200 �50]

ms time window around the stimulus onset. Prior to the

time–frequency analysis, we removed the signal-

averaged ERP from the raw potential signal for each

trial. This ensured that any significant spectral

differences did not merely reflect the frequency

composition of the phase-locked ERP.

Frequency bands specifically activated by face
images. A time–frequency decomposition was then

computed using a seven-cycle Morlet wavelet, with

frequencies ranging from 1 to 200 Hz (1 Hz steps). The

power values in each frequency bin were log

transformed and normalized using the max of the log-

transformed power values. For each frequency, the

power values [50 300] ms after stimulation were

summed, and then the two-dimensional signals of

frequency and power were obtained. Paired non-

parametric permutation tests (10,000 permutations)

were used on the two-dimensional signals to assess
which frequency band was significantly activated

(p < .05) by the face images compared with the house

images. This was calculated for each site.

Power induced in the specific active frequency band by
face images at different noise levels. The preprocessing

steps for the noisy task were the same as those for the

basic task. After the data were notch filtered and re-

referenced to the average signal over all the selected

sites, each epoch was extracted in the [0 1000] ms

post-stimulus time window. Then the

electrophysiological signal was decomposed (1 Hz

steps) in the frequency band specifically activated by

the face images. The signal was finally averaged across

the face-specific frequency and smoothed with a 50 ms

width Gaussian window. To verify that this response

was stable across the trials and was not caused by an

abnormal discharge in one of the trials, we also

generated the representation of the power � time data

for all the individual face image trials and arranged

these trials in rows according to the noise levels.

Face-specific sites

In order to obtain stable face-specific sites, a site was

defined as ‘‘face-specific’’ if the magnitude of power in

the specific active frequency band for face images was

significantly greater than that caused by house images

in both basic and noisy task. During the selection of

trials in noisy task in analyzing ‘‘face-specific’’ sites,

there is a trade-off between the power benefits from

including more trials and the risk of including non-face-

processing components in trials with high noisy level.

Finally, we used images in the noise range of 0–30%, in

which the face recognition ability remained high without

a sharp reduction of performance (Fig. 1D). A

permutation test assessed the significant difference

between the magnitude of power for face images and

that caused by house images of the response at p < .05.

Fitting function

Based on the shape of the data varying with noise level, a

nonlinear regression was used to fit the recognition

accuracy and electrophysiological signals. The sigmoid

function for fitting was defined as the following function

fðxÞ ¼ a1

1þ e�a2ðxþa3 Þ
þ a4
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where ai represents free parameters, and �a3 was the

noise level for which the sigmoid curve reached its

inflexion point. The threshold range that describes the

stage where the curve declined rapidly was defined as

½�a3 � 10;�a3 þ 10�.
RESULTS

Behavior performance

For each subject, we calculated the recognition accuracy

for each noise level and found that, with a change of

noise, the accuracy follows an S-shaped curve. That

is, at a low noise level (from about 0 to 30%), the

recognition accuracy stayed high; at a high noise level

(from about 60 to 100%), the recognition accuracy was

low; and at a middle noise level (from about 35 to
Fig. 2. The specific frequency band for the individual sites activated by face i

spectrum change in response to face images and house images along the wh

task. The difference was significant at the p < .05 level in a broad range of h

by the yellow line. Lower panel: Relative power-spectrum change between

course of the high gamma band power (HGP; 60–160 Hz) in the face image

increasing noise levels. Warmer colors indicate higher activation. Most of th

course of average HGP for different noise levels of face image trials in the n

greatest changes in the HGP, as indicated by the black dotted rectangles. (F

reader is referred to the web version of this article.)
55%), the recognition accuracy showed an abrupt

change to bridge the difference.

Then, we found that for each subject the curve relating

the recognition accuracy to noise levels of face images

well fit the sigmoid function (S1 : R2 ¼ 0:87;
S2 : R2 ¼ 0:85; S3 : R2 ¼ 0:94; S4 : R2 ¼ 0:97; v2

square goodness-of-fit test) (Fig. 1D).
Power induced by face images in basic and noisy
task

In the basic task, for each subject, there were such sites

that the power in the frequency range of about [60 160] Hz

was significantly induced by face images (S1: [54 165]

Hz, p ¼ 10�4; S2: [78 167] Hz, p ¼ 3� 10�4; S3: [52

168] Hz, p ¼ :0012; S4: [80 160] Hz, p ¼ 7� 10
�4
)

(Fig. 2A). Therefore, the power induced by the noisy
mages and under different face noise levels. (A) Upper panel: Power-
ole frequency band of the individual site for each subject in the basic

igh gamma frequencies ranging from about 60 to 160 Hz, as indicated

face vs. house images of the individual site. (B) Upper panel: Time

trials in the noisy task is displayed from top to bottom in the order of

e trials at low noise levels had high activations. Lower panel: Time

oisy task. The [200 600] ms post-stimulus time window captured the

or interpretation of the references to colour in this figure legend, the
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face image was calculated in this high gamma frequency

band. The power in the frequency band at the low noise

level was more strongly activated than that of the high

noise level, and this response was stable across trials

(Fig. 2B, upper panel). After inspecting the time course

of the high gamma power (HGP) for different noise

levels of face images, the magnitude of the HGP was

calculated as the area under the curve (AUC) in the

[200 600] ms post-stimulus window, which captured the

largest changes in the HGP (Fig. 2B, lower panel). In

the end, we identified eight face-specific sites across

the subjects, six of which were located in the FG, and

all four subjects had face-specific sites in the FG

(Fig. 1C; Table 2).
Magnitudes of the HGP for face-specific sites in the
face-recognition task

We examined the face-specific sites for each subject to

see how the magnitudes of the HGP were induced by

varying the noise level of the face images. We found

that they all decreased and exhibited a nonlinear

signature with increasing noise level, similar to the

nonlinear response in the behavioral data. The

observations were confirmed statistically by fitting the

magnitudes using the sigmoid fitting function, and each

subject’s electrophysiological data were fit with the

function (S1 : R2 ¼ 0:88; S2 : R2 ¼ 0:84; S3 : R2 ¼
0:69; S4 : R2 ¼ 0:95, v2 goodness-of-fit test). In

addition, the threshold range for the magnitudes of the

HGP for each subject accuracy was close to that of

recognition accuracy (from about 35–55%). To rule out

the possibility that the curve profile was caused by the

visual noise rather than by a sensory response to the

face images, the data for these face-specific sites, but

obtained using the house images, was fit to a

sigmoidal curve. In contrast to the facial data, none of
Fig. 3. Magnitudes of the HGP for varying noise levels at face-specific sites

panel) and house images (lower panel) using the sigmoid fitting function. Colo

fitting sigmoid function (R2 for each fit is given in plot), and the shadows show

this figure legend, the reader is referred to the web version of this article.)
the house data showed a significant fit to the sigmoid

curve

(S1 : R2 ¼ 0:03 ¼ 0:16; S3 : R2 ¼ 0:07; S4 : R2 ¼ 0:22,
v2 square goodness-of-fit test) (Fig. 3).

Correlation between recognition accuracy and HGP

A Spearman correlation analysis was used to analyze the

relationship between the face recognition accuracy and

the HGP induced by the face images. The result

showed that the magnitudes of the HGP for the face-

specific sites were significantly positively correlated with

the recognition accuracy of each subject (S1 : r ¼ 0:77;
p ¼ 3:8� 10

�5; S2 : r ¼ 0:76; p ¼ 7:0� 10
�5; S3 : r ¼

0:68; p ¼ 6:8� 10
�4; S4 : r ¼ 0:83; p ¼ 3:6� 10

�6
,

Spearman correlation) (Fig. 4A).

At the group level, we pooled the face-specific sites

across the subjects to generate the average magnitudes

of the HGP for the face images and pooled the

recognition accuracy across the subjects to generate

the average recognition accuracy. The sigmoid function

was then used to fit both the average magnitudes of the

HGP and the average recognition accuracy at varying

noise levels. It turns out that both the neural signals and

the behavioral data were significantly correlated with the

sigmoid function (magnitudes : R2 ¼ 0:96; recognit

ionaccuracy : R2 ¼ 0:98, v2 square goodness-of-fit test).

In addition, the threshold range for the magnitudes of

the HGP was almost equal to that of recognition

accuracy (32–52% vs. 33–53%) (Fig. 4B).

DISCUSSION

In this paper, we studied how the high gamma signal in

FG and its adjacent cortex changes with different noise

levels in face images and its relationship with human

face recognition accuracy. First, we found a striking

increase in the high gamma frequency band (60–
. The normalized magnitudes of the HGP of the face images (upper

red cross symbol represents the actual data. Black line shows the best

the threshold range. (For interpretation of the references to colour in



Fig. 4. Relationship between recognition accuracy and the HGP of the face-specific sites. (A) Spearman correlation between recognition accuracy

and magnitudes of the HGP of face-specific sites for each subject. Each dot represents a noise level (correlation coefficient r and significance p
value are given in each plot). (B) Left panel: Time course of the average HGP for different noise levels of face images across the face-specific sites

for all subjects. Middle panel: Average magnitudes of the HGP induced by face images across face-specific sites for all subjects. Right panel:

Average recognition accuracy of the face images across all subjects. For the middle and the right panel, the sigmoid fitting function was used to fit

the magnitudes. Black cross symbol represents the actual data. Black line shows the best fitting sigmoid function (R2 for each fit is given in plot), and

the shadows show the threshold range.
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160 Hz) when face images were shown, and eight face-

specific sites were identified based on the HGP,

including six in the FG. Second, our results

demonstrated that, for the face-specific sites, the curve

of the magnitudes of the HGP induced by the varying

noise levels of the face images had a profile similar to

that of face recognition accuracy, both showing S-

shaped curves. Correlation analyses indicated that the

magnitudes of the HGP induced by face images were

significantly correlated with the subject’s performance in

the face recognition task. Finally, at the group level, we

found that the curve profile of the average magnitudes

of HGP across the face-specific sites was almost the

same as the average recognition accuracy curve. In

general, these results suggest that the HGP in the FG is

closely related to the accuracy in the face recognition

task. These findings promote our understanding of the

neural mechanism of how noise affects face recognition.

A previous study using phase-scrambled pictures of

face images showed that for the 25 participants in that

study the plots of the psychometric functions of face

detection under varying levels of phase noise all fit an

S-shaped curve well, a finding which is consistent with

the behavioral performance of the four subjects in our

study (Perry, 2016). There is no doubt that people often

have greater difficulty recognizing face images with a high

noise level than those with a low noise level, but the

recognition accuracy does not change linearly with a lin-

ear change in image ambiguity. One of the basic charac-

teristics of human perception is that small changes in
stimuli can induce changes in perceptual states, leading

to the sigmoidal shape of the psychometric curve

(Green and Swets, 1974), however, the neural mecha-

nism behind this behavior pattern has been unclear. Here

we found that in specific brain regions, signals in the high

gamma frequency band showed a change that had a sim-

ilar profile to that of behavioral performance.

Cortical oscillatory synchrony in the gamma band

(>30 Hz) has attracted increasing attention in cognitive

neuroscience in the past several decades because of

suggestions that gamma band activity represents

complex cognitive mechanisms. Gamma oscillations

(30–150 Hz) induced during face perception along the

human ventral occipitotemporal cortex (mainly in the

FG) have been discovered in previous studies using

implanted electrodes (Tsuchiya et al., 2008; Engell and

McCarthy, 2011; Aru et al., 2012). Recent MEG research

found that during stimulus processing, the gamma-band

oscillations of extra-striate (fusiform/lingual gyrus) cor-

tices in schizophrenia patients were prominently impaired,

while the baseline spectrum were intact. Importantly, the

impairment in oscillatory activity correlated with reduced

behavioral detection rates (Grent-’t-Jong et al., 2016,

2018). Our finding is in line with these studies, and they

together suggest the association between gamma-band

oscillations and behavioral performance. Additionally,

the human FG can be further parcellated into three func-

tionally distinct parts, the medial portion (FGm), the lateral

portion (FGl), and the anterior portion (FGa), using diffu-

sion tensor imaging, according to the Brainnetome atlas
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(Fan et al., 2016; Zhang et al., 2016). To locate the face-

specific sites on a more accurate scale, we registered the

FG of the Brainnetome atlas to the individual T1 MRI

images to discover the subregion in which the face-

specific electrodes were located. Interestingly, out of the

six FG face-specific sites, four of them were located in

FGl, which is responsible for categorical recognition.

The location distribution of face-specific sites supports

our conclusion as well.

A study based on fMRI found that when subjects were

presented with face images and object images with

different contrasts, the sensitivity of the fMRI signal to

the contrast gradually decreased along the lateral

occipital cortex from the primary visual cortex to the

high order cortex. Although the posterior FG showed

greater sensitivity to changes in the contrast in the

object images, it was less sensitive to changes in the

contrast in the face images, indicating that the activation

of face images in the FG was caused by facial features

rather than visual clarity (Avidan et al., 2002). On the

other hand, Engell and McCarthy (2011) compared the

response of induced gamma oscillations between 30

and 100 Hz in the ventral occipitotemporal gyrus to simple

faces, complex faces, and greebles (nonface control stim-

ulus, similar to faces along several dimensions). His

results suggested that the higher induced gamma signal

in response to complex stimuli might support high-order

processing rather than an obligatory response to simple

face features in that the signal induced by simple faces

did not differ from the greeble stimuli and that both were

significantly smaller than the signal induced by complex

faces. We speculate that the amount of high-order infor-

mation in face images extracted by the high gamma signal

of the FG remains unchanged in the low noise range

(about 0–30%), therefore, the magnitude of the HGP in

the FG remained unchanged within the low noise range.

Our results confirmed that there was a correlation

between the HGP in the FG and the face-recognition

performance in four subjects. This finding occurred in

each subject. This result also raised the possibility that

disrupting the high gamma activity in the FG may

reduce the accuracy in face recognition tasks. Future

studies using invasive techniques can be used to test

these hypotheses in further studies to understand the

causal relationship between them.
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