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ABSTRACT
In this paper, a new nonparametric Bayesian model called
Sticky Multimodal Dual Hierarchical Dirichlet Process Hid-
den Markov Model (SMD-HDP-HMM) is proposed for min-
ing activities from a collection of time series. An activity
is modeled as an HMM where each state corresponds to an
atomic activity. By extensively using Dirichlet Process (DP),
multiple HMMs sharing a common set of states are learned
and the numbers of HMMs and states are both automatically
determined. Each time series is modeled to be generated
by one of the HMMs such that all time series are clustered
into activities. Simultaneously state sequences for time series
are learned and each of them is decomposed into a sequence
of atomic activities. Experimental results on KTH activity
dataset demonstrate the advantage of our method.

Index Terms— Dirichlet process, HMM, HDP, activity
mining, time series

1. INTRODUCTION

In this paper, we address the problem of mining activities
from time series. This general problem is frequently encoun-
tered in the field of computer vision, for activities is natu-
rally represented by time series of visual features extracted
from video sequences. Given a dataset of complex time se-
ries that may have multiple multimodal observations per time
step, our goal is to 1) cluster them into different activities
without the true number of categories known a priori, and
2) simultaneously learn a hierarchical probabilistic explana-
tion in which an activity is composed by atomic activities and
different categories have different rules of time dependencies
between them. This probabilistic model has many potential
applications such as activity classification, abnormality de-
tection, video segmentation and video annotation.

We propose a novel nonparametric Bayesian model,
Sticky Multimodal Dual Hierarchical Dirichlet Process Hid-
den Markov Model (SMD-HDP-HMM), based on Dirichlet
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Process (DP) [1, 2, 3] and its extension Hierarchical Dirichlet
Process (HDP) [4, 5]. Through our model, arbitrary number
of HMMs each with arbitrary number of states are learned.
Each HMM corresponds to a category of activity and each
state to an atomic activity. All the HMMs share a common
set of states. Different HMMs have different subsets of states
and transition matrices. A time series is generated by one
of the HMMs so clustering can be realized. The transition
matrices of the HMMs are regularized by a stickiness prior,
which makes the learned sequences of states vary smoothly
and the model more robust to the variation among frames of
the same atomic activity. For each state, a multimodal emis-
sion with arbitrary number of modes can be learned. In this
way, complex time series with multiple multimodal observa-
tions per time step are allowed. Gibbs sampler is developed
to learn SMD-HDP-HMM. Our method is evaluated on KTH
activity dataset [6] and achieves convincing performance.

Related work. There exists plenty of research work for activ-
ity mining. They can be roughly divided into two categories:
similarity-based models and Bayesian models.

Lots of similarities for time series are proposed, such as
Euclidean distance [7] and Dynamic Time Warping (DTW)
[8]. These similarities are employed by clustering methods
such as KMeans and spectral clustering. The performance of
different similarities and clustering methods are experimen-
tally compared by [9] and [10]. Similarity-based methods are
simple and achieve good performance in many applications,
however, their limitations are obvious: 1) they cannot deter-
mine the number of clusters automatically; 2) they can do
nothing more than clustering/classification.

Among large number of Bayesian models, topic models
have achieved great success for activity mining mainly be-
cause topics are naturally related with activities or atomic ac-
tivities. Latent Dirichlet Allocation (LDA) [11] is a classical
topic model. It is applied to unsupervised learning of human
actions by [12]. This work achieves good classification per-
formance, however, it has three limitations: 1) the number
of categories has to be known a priori; 2) activities are mod-
eled as “bag of words” (BoW) where no time dependencies is
modeled; and 3) no atomic activity is modeled. [13] proposes
Dual Hierarchical Dirichlet Process (Dual-HDP) extending
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Fig. 1. Graphical model of (a) HDP, (b) another form of HDP
and (c) HDP-HMM.

HDP so that the activities are modeled in a hierarchy and the
number of clusters in each layer is automatically determined,
however, it is also a BoW model. In order to learn temporal
scene rules, [14] proposes Dependent Dirichlet Process Hid-
den Markov Model (DDP-HMM) built on HDP-HMM which
is a dynamic variant of HDP. The DDP-HMM models tempo-
ral dependencies with arbitrary number of HMMs and allows
for multiple observations per time step, but it lacks the ability
of clustering high level activities and sharing atomic activities
between different activities. [15] proposes a sticky and mul-
timodal extension of HDP-HMM that is more robust to noise
and learns state sequences more precisely.

Fusing the ideas of [13], [14] and [15], we develop a novel
model that has the ability of learning different levels of activ-
ities without cluster numbers predefined, modeling temporal
rules and handling complex noisy time series.

2. BACKGROUND

We denote a DP as DP(γ,H), where γ > 0 is the concentra-
tion parameter and H the base probability measure. A draw
from DP(γ,H) is an infinite discrete distribution G0(θ) =∑∞
k=1 βkδ (θ − θk), which can be obtained by stick-breaking

construction [16]: β′k ∼ Beta(1, γ), βk = β′k
∏k−1
l=1 (1 −

β′l), θk ∼ H(θ|λ), where the construction of β is commonly
denoted by β ∼ GEM(γ). The HDP is an extension of DP to
model multiple mixtures that share components. It contains
two levels of DPs, as shown in Fig. 1(a). At the first level, a
global distributionG0 is drawn from DP(γ,H). At the second
level, DP(α,G0) uses G0 as the base distribution and gener-
ates multiple distributions Gj(θ) =

∑∞
k=1 πjkδ(θ − θk), j =

1, . . . ,M , which have the same support {θk} and each is used
to generate a group of data Yj = {yji}. The HDP can be con-
sidered as a topic model where topics {θk} are shared among
documents {Yj}. The distribution Gj also can be obtained by
stick-breaking construction. This gives another form of HDP,
as shown in Fig. 1(b). It is described by:

β ∼ GEM(γ) kjt ∼ β π̃j ∼ GEM(α)

tji ∼ π̃j , zji = kjtji θk ∼ H(θ|λ) yji ∼ F (y|θzji).(1)

Note that tji for different i and kjt for different j and tmay be
identical so that clusters in two levels are formed. The pos-

terior distributions of tji and kjt on clusters is described as
Chinese Restaurant Franchise (CRF), where a group of data
Yj corresponds to a restaurant and an observation yji to a cus-
tomer that sits at a table tji with dish kjt. The CRF plays an
important role in the inference of HDP.

The HDP-HMM is an infinite state HMM with an HDP
prior, as shown in Fig. 1(c). It is described by

β ∼ GEM(γ) πk ∼ DP(α, β) zt|zt−1 ∼ πzt−1

θk ∼ H(θ|λ) yt ∼ F (y|θzt), (2)

where each state zt corresponds to a group in HDP and each
group-specific distribution πzt−1

contains transition probabil-
ities from zt−1 to zt. Due to the properties of HDP, the num-
ber of states is infinite.

For more details of DP, HDP and HDP-HMM, please refer
to [1, 2, 3, 4, 5].

3. SMD-HDP-HMM

3.1. Proposed Model

Our goal is to cluster time series into activities and simulta-
neously segment each of them into atomic activities. HDP-
HMM is suitable to model an activity as a sequence of atomic
activities, because each state can be considered as an atomic
activity and HDP-HMM solves the problem of complexity
selection in traditional HMM. However, when modeling mul-
tiple activities, HDP-HMM is incompetent. To solve this
problem, we construct an infinite mixture model of HDP-
HMMs where each component corresponds to an activity.
HDP-HMM still has other drawbacks: 1) the state sequences
learned through HDP-HMM tend to have redundant fast
switching states, so precise segmentation of a time series is
hard to be obtained; 2) multimodal data are not well mod-
eled. The sticky multimodal HDP-HMM proposed by [15]
is a good solution to these two problems and it’s approaches
are adopted by our model. In addition, multiple observations
are allowed to be generated at each time step in the proposed
model.

For the sake of efficient computation and easy handling,
the features in the raw time series are quantized into words
and a codebook is obtained. An encoded time series Yj =

{Yjt}
Tj

t=1 can be considered as a sequence of documents each
containing words, i.e. Yjt = {yjti}

Njt

i=1.
The proposed model is shown in Fig. 2. Its associated

equations are:

β0 ∼ GEM(γ0) βc ∼ DP(γ, β0)

πck ∼ DP(α+ κ,
αβc + κδk
α+ κ

)

ψk ∼ GEM(σ) ω ∼ GEM(ξ)

cj ∼ ω zjt|zj,t−1 ∼ πcj ,zt−1

sjti ∼ ψzjt θks ∼ Dir(λ)

yjti ∼ Discrete(θzjt,sjti). (3)
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Fig. 2. Graphical model of SMD-HDP-HMM.

In our model, each βc corresponds to an activity class and is
an infinite discrete distribution on the labels of atomic activi-
ties. Infinite number of βcs are drawn from DP(γ, β0) in or-
der to model arbitrary number of activities that share atomic
activities. For each activity c, a transition matrix {πck}∞k=1

with infinite dimension is obtained by drawing each row vec-
tor πck from DP(α + κ, αβc+κδk

α+κ )), where κ > 0 is used to
increase the self-transition prior probability, so that the states
in a sequence switch more smoothly and the model is more
robust to the variation among frames belonging to the same
atomic activity [15]. Each atomic activity k is a multimodal
distribution for words and modeled by a mixture of multino-
mials with weight vector ψk. A component of atomic activ-
ity k corresponds to a discrete distribution θks on the code-
book, which is drawn from the Dirichlet distribution Dir(λ).
The distribution ω is drawn as the prior on labels of activities.
Generating a time series Yj follows the following steps: 1) an
activity label cj is drawn from ω; 2) the cj th transition matrix
{πcjk}∞k=1 is chosen to produce a sequence of atomic activi-
ties {zjt}

Tj

t=1; 3) the component label sjti is drawn from ψzjt
for each word i at time step t in sequence j; 4) the word yjti is
finally drawn from the discrete distribution on the codebook
parameterized by θzjt,sjti .

3.2. Inference

We develop a Gibbs sampler to do inference for SMD-HDP-
HMM. It alternatively samples: {cj}, ω, {zjt}, {sjti}, {ψk},
β0, {βc}, {πck} and {θks}. We use the efficient sampling
strategy in [15] that employs a truncated approximation of DP.
The numbers of activities, atomic activities and components
of each atomic activity are limited by large numbers Kc, Kz

and Ks, respectively.
Sampling {c}. The posterior distribution of cj is given by:

p (cj = c|ω, {πck}, {zjt}) = ωc
∏
k

∏
l

π
njkl

ckl , (4)

where njkl is the number of state transitions from k to l in
instance j and can be easily computed from {zjt}.

Sampling {ω}. The discrete distribution ω is sampled by:

ω|{cj} ∼ Dir
(
n′1 + ξ/Kc, . . . , n

′
Kc

+ ξ/Kc

)
, (5)

where n′c is the number of instances that are assigned to ac-
tivity c.

Sampling {zjt}, {sjti}. First the backward messages are
computed recursively by:

mj,t,t−1(zj,t−1) ∝
∑
zjt

p(zjt|πcj ,zj,t−1
)mj,t+1,t(zjt)∏

i

∑
sjti

p(sjti|ψzjt)p(yjti|θzjt,sjti), (6)

then zjt and sjti are recursively sampled by:

p(zjt|zj,t−1, {yjti}, {πck}, {ψk}, {θks}, cj) ∝ mj,t+1,t(zjt)

p(zjt|πcj ,zj,t−1
)
∏
i

∑
sjti

p(sjti|ψzjt)p(yjti|θzjt,sjti), (7)

p(sjti|zjt, yjti, {ψk}, {θks}) = p(sjti|ψzjt)p(yjti|θzjt,sjti).
(8)

Sampling {ψk}, β0, {βc} and {πck}. The weight vector ψk
is sampled by:

ψk|{zjt}, {sjti} ∼ Dir (σ/Ks + ñk1, . . . , σ/Ks + ñkKs
) ,
(9)

where ñks is the number of observations assigned to compo-
nent s of state k. For sampling {βc} and β, first the number of
tables {mckl}, {m̄ckl} and {m′ck} in CRF with loyalty cus-
tomers are sampled as auxiliary variables [15], then we have:

β0|{m′ck} ∼ Dir
(
γ0/Kz +m′·1, . . . , γ0/Kz +m′·Kz

)
,

(10)
βc|{m̄ckl}, β0 ∼ Dir (γβ01 + m̄c·1, . . . , γβ0Kz + m̄c·Kz ) ,

(11)
where m̄c·l =

∑
k m̄ckl and m′·k =

∑
cm
′
ck. The transition

distribution {πck} is sampled by:

πck|{zjt}, {cj}, βc ∼ Dir(αβc1 +
∑
j|cj=c

njk1, . . . ,

αβck + κ+
∑
j|cj=c

njkk, . . . , αβcKz
+
∑
j|cj=c

njkKz
) (12)

Sampling {θks}. The parameter θks is sampled by:

θks|{zjt}, {sjti}, {yjti} ∼ Dir(λ1+n′′ks1, . . . , λKv +n′′ksKv
),

(13)
where n′′ksw is the number of word w assigned to the compo-
nent s of state k.

The hyper-parameters γ0, γc, α, κ, σ and ξ are given non-
informative priors and also sampled by the Gibbs sampler.
For more details, please refer to [17].
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4. EXPERIMENTS

Experiments are carried out on KTH activity dataset [6]
widely used in the field of activity recognition. In our exper-
iments, we do unsupervised learning on it. It contains 599
instances involving 6 classes, 25 persons and 4 scenarios.
The subset containing 150 instances in scenario 1 is used in
our experiments.

The features based on space time interest points (STIP)
used by [18] are extracted. A video is represented by a time
series of features and the numbers of features in different
frames are not equal. Four frames containing features from
the same video are shown in Fig. 3, where each circle corre-
sponds to a feature. A codebook of size 1000 is obtained by
KMeans and each feature is encoded by a word. The encoded
time series are used to learn an SMD-HDP-HMM model by
our Gibbs sampler.

Fig. 3. STIPs detected in four frames of the same video.

The clustering performance of our model are evaluated
and compared with KMeans (KM), Spectral Clustering (SC),
LDA and Dual-HDP. Because the labels of the learned clus-
ters are arbitrary, in order to evaluate the clustering perfor-
mance, we have to find an mapping between the estimated
labels and the true labels. This is done by maximizing the
number of instances with matched labels using Munkres al-
gorithm [19]. The ratio of the instances with matched labels
to the whole instances, which is called the correct clustering
rate (CCR) [9, 10], is then used to be the evaluation crite-
ria. For KM and SC, a video is represented by the histogram
of its visual words. The distance matrix for SC is computed
by χ2 distance. True number of activities is used for KM,
SC and LDA. LDA is also used for unsupervised learning on
KTH dataset in [12], but no clustering result is reported by
[12]. The comparison of different methods’ clustering perfor-
mance is shown in Table 1. It’s clear that our model has the
highest CCR. This result demonstrates our model’s advantage
of modeling time dependencies between different frames, be-
cause the other methods are all BoW-based. There are 8 clus-
ters produced by our model. The numbers of instances in the
two redundant clusters are 8 and 1. This bias has been pun-
ished by the CCR. The relatively high CCR of our model also
confirms its ability of finding the number of clusters.

Another advantage of our model lies in the ability of
learning atomic activities and the rules governing activities.
We find that the states of HMMs learned do correspond to
some semantically meaningful atomic activities. Fig. 4(a)(b)
show a part of the transition matrix and its corresponding
state transition diagram containing four atomic activities that
occur most often in running. Some sample frames assigned

Table 1. Clustering performance of different methods.

Method KM SC LDA
Dual-
HDP

Our
model

CCR 25.93% 55.04% 42.67% 50.67% 60.67%
Finding

the number
of clusters

No No No Yes Yes

to these states are also shown. State A and B of running
correspond to the actions of dropping a leg and lifting a leg,
respectively. State C and D have the same semantic meanings
but contrary running directions as A and B. There are con-
siderable reciprocal transition probabilities between A and B,
as well as between C and D. This fits the fact that lifting a
leg and dropping a leg alternatively occur in the process of
running. The transition relations for the seven most frequent
happening atomic activities in hand waving are shown in
Fig. 4(c)(d). A cycle of transition is formed by these states,
which reflects the repetition of waving arms up and down.
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Fig. 4. Patial transition matrices and transition diagrams for
running and hand waving.

5. CONCLUSION

A novel nonparametric Bayesian model, SMD-HDP-HMM,
has been proposed. Complex time series containing multiple
observations with multimodal distributions per time step can
be clustered into activities by SMD-HDP-HMM. The num-
bers of clusters and states of HMMs are both automatically
determined. With the stickiness prior on self-transitions, large
variation among frames belonging to the same atomic activity
is well handled, so that meaningful atomic activities and rules
governing activities are also obtained. Experiments demon-
strate that SMD-HDP-HMM has superb performance on ac-
tivity clustering and semantic learning.
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