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Abstract

Along with the ever-growing Web, horror video shar-
ing through the Internet has affected our children’s psy-
chological health. Most of current horror video filtering
researches pay more attention to the extraction of glob-
al features or selection of an optimal classifier, while
neglecting the underlying contexts in a scene. In this
paper, a novel cost-sensitive sparse coding (CSC) mod-
el is proposed to address the context inside scene and
interrelations between audio-visual features simultane-
ously. The model essentially includes two aspects: one
is to construct inner contextual structure among frames
from same scene based on a ϵ-graph; the other one is to
extend the classic sparse coding technique into a cost-
sensitive sparse coding model for graph pattern classi-
fication as well as audio-visual features fusion through
graph kernel. The experiments on various video scenes
demonstrate that our method’s performance is superior
to the other existing algorithm.

1. Introduction

With the rapid development of the Internet, the open-
ness of the Web allows users to access almost all types
of information, including pornography, violence, horror
information,etc. These objectionable contects are not
appropriate for all users, especially children. To protec-
t our psychological health, lots of scientific researchers
have investigated web filters to block objectionable con-
tents automatically. Some of them, for example porno-
graphic content filters, have matured to a point where
robust recognition or filter software is available [2]. By
contrast, the research of affective semantics of horror
video is still on the stage of exploration. Therefore,

an effective horror video scene recognition algorithm
is necessary for web filtering.

1.1. Related work

The earlier work on horror video scene recognition
can be dated back to a part of affective video scene
classification whose final goal is to categorize movie
scenes based on human emotions. The horror video
is picked up if a type of fear emotion is recognized.
Most existing video scene affective classification meth-
ods [10, 1, 8] focus on mapping low-level features to
high-level emotions. Kang [4] introduces the Hidden
Markov Model (HMM) to categorize movie scenes into
three types of affective content: joy, fear, and sadness,
based on low-level visual features. The latent topic driv-
ing model is also applied to affective scene classifica-
tion [3]. As an emerging problem, horror scene recog-
nition has its own characteristics. Several researchers
begin to pay special attention to this area [11, 12, 14, 7].
Wang et al. [11] firstly use Support Vector Machines
(SVM) to identify horror scene on several holistic ef-
fective features inspired by emotional perception the-
ory. But they further find that the horror scene some-
times contain several rather than most horror frames.
The holistic features inevitably weaken the features of
the real horror frames. In order to avoid this confusion,
the multi-instance learning (MIL) is also introduced by
both Wang et al. [12] and Wu et al. [14], in which the
scene is represented as a bag of key frames with corre-
sponding independent features.

1.2. Our work

Either the holistic methods or MIL based methods
only focus on independent frames, without taking in-



to account the underlying contextual cues in the video
scene. However, as Li et al. [7] point, the horror emo-
tion recognition should benefit from the proper use of
contextual cues. The contextual cues in video scene
mainly include two parts: context among frames be-
longing to the same scene and context between visual
and audio cues. In order to effectively take advantage of
the contextual cues, we propose a novel cost-sensitive s-
parse coding (CSC) model based on the graph kernel to
represent these two contextual relationships for improv-
ing horror scene recognition. The framework of the pro-
posed method is shown in Figue 1. First, a movie scene
is divided into a series of shots via shot segmentation
and the key frame of each shot is picked out. The visual
feature of every key frame and the audio feature of the
scene, rather than shot, are extracted. Now a scene can
be represented as a bag of key frames with correspond-
ing visual feature vectors and an audio feature vector.
Second, the ϵ-graph is constructed among key frames to
represent their contextual relationship. Finally, we ex-
tend the sparse coding technique by proposing a novel
cost-sensitive sparse coding (CSC) model to represent
the context between visual and audio features. Experi-
mental results on various videos show that the proposed
CSC method is superior to the state-of-the-art methods.

Figure 1. Framework of the proposed
method

2. The proposed method

2.1. Video and audio feature representation

Given N training video scenes V1, V2, · · · , VN with
their labels y1, y2, · · · , yN (yi ∈ {−1,+1}), each video
scene Vi is divided into ni shots Si,1, Si,2, · · · , Si,ni , in
which the key frames Fi,1, Fi,2, · · · , Fi,ni

are extract-
ed. Then we extract the visual feature vi,j ∈ Rm of

the frame Fi,j . In addition, the audio feature ai ∈ Rp

of a scene Vi is also extracted. The audio feature of a
scene rather than a shot is used in this paper due to the
fact that a relatively long-time audio change expresses
a certain emotion much better than a shorter one from a
shot. MI(Mutual Information) based shot segmentation
algorithms as well as visual and audio features in [12]
are used in this paper.

2.2. ϵ-graph construction for visual context rep-
resentation

Following the video structural representation is to
define the relationships among key frames’ visual fea-
tures. Inspired by [15], the ϵ-graph, which is shown
helpful [9] in discovering the underlying manifold
structure of data, is used to model the context among
key frames in each scene. For a scene Vi, W i ∈ Rni×ni

is set as a ϵ-graph adjacency weight matrix. We com-
pute the distance of every pair of key frame nodes, e.g.
vi,k and vi,l. If the distance between vi,k and vi,l is
smaller than a pre-set threshold ϵ, then an edge is es-
tablished between these two key frame nodes, and the
weight value W i

kl is set to 1, otherwise 0. According to
the manifold property [9], i.e., a small local area is ap-
proximately an Euclidean space, we use the Euclidean
distance ∥vi,k − vi,l∥ between vi,k and vi,l to establish
the ϵ-graph. Finally, a bag of visual feature vectors of
Vi are reconstructed as a ϵ-graph Gi.

2.3. Cost-sensitive sparse coding for visual-
audio context

Besides ϵ-graph representation among key frames,
another important factor is from audio cues and its in-
terrelation with visual features. To the end, we propose
a cost-sensitive sparse representation on graph patterns.
Given a test video scene V ′, its ϵ-graph is constructed as
G′ and the audio feature a′ is extracted. Inspired by [6],
we apply a feature mapping function φ: G → Rd to
map the graph G to a higher dimensional feature s-
pace: G → φ(G). Thus, we can obtain a basis matrix
U = [φ(G1), φ(G2), · · · , φ(GN )]. The CSC coding is
formulated in a high dimensional feature space as:

min
β

∥φ(G′)− Uβ∥2 + λ∥Dβ∥1

D = diag(∥a1 − a′∥, · · · , ∥ai − a′∥, · · · , ∥aN − a′∥)
(1)

where the first term of Eq.(1) is the reconstruction er-
ror, and the second term is used to control the sparsity
of the coefficient vector β with the l1 norm. λ is reg-
ularization coefficient to control the sparsity of β. The
larger λ implies the sparser solution of β. From Eq.(1),



we can find two differences between the CSC model
and the general sparse coding model [13]: (1) the graph
patterns are used in CSC, while general vectors are used
in sparse coding. (2) A diagonal matrix D is added into
the l1 norm, which can be viewed as cost values to dif-
ferent training samples. Therefore, cost values are ac-
tually audio feature distances from the test scene to the
training scenes. Minimization of Eq.(1) targets to select
those training samples, which have lower audio feature
distances from the test scene, to reconstruct the visual
feature of the test scene. In other words, the CSC model
considers both visual and audio cues simultaneously in
the reconstruction procedure.

2.4. Optimization for CSC model

This section discusses how to optimize the objec-
t function defined in Eq.(1). Let γ = Dβ, then β =
D−1γ, the Eq.(1) can be rewritten as:

min
γ

∥φ(G′)− UD−1γ∥2 + λ
′
∥γ∥1

D−1 = diag(
1

∥a1 − a′∥
, · · · , 1

∥ai − a′∥
, · · · , 1

∥aN − a′∥
)

(2)
If we set V = UD−1, Eq.(2) can also be rewritten as:

min
γ

∥φ(G′)− Vγ∥2 + λ
′
∥γ∥1 (3)

,where

∥φ(G′)−Vγ∥2 = [φ(G′)]Tφ(G′)+γT VT Vγ−2γT VTφ(G′)
(4)

. The Eq.(3) is essentially a general sparse coding opti-
mization problem. If VT V and VTφ(G′) are given out,
the optimization in Eq.(3) can be easily and efficiently
solved by recently proposed Feature-Sign Search algo-
rithm (FSS) [5]. The Eq.(4) is actually equivalent to:

[φ(G′)]Tφ(G′) + γT (D−1)T UT UD−1γ − 2γT (D−1)T UTφ(G′)

= Kg(G
′, G′) + γT (D−1)T

Kg(G1, G1) Kg(G1, G2) · · · Kg(G1, GN )
Kg(G2, G1) Kg(G2, G2) · · · Kg(G2, GN )

· · · · · · · · · · · ·
Kg(GN , G1) Kg(GN , G2) Kg(GN , GN )

D−1γ

− 2γT (D−1)T


Kg(G1, G

′)
Kg(G2, G

′)
· · ·

Kg(GN , G′)


= 1 + γT (D−1)T KUUD−1γT − 2γT (D−1)T KUG′

(5)
where Kg() is a graph kernel function that expresses
the dot product of graphs in a high dimensional feature

space. If both kernel matrixes KUU and KUG′ are ob-
tained, the VT V and VTφ(G′) can also be easily cal-
culated. Consequently, the optimization of Eq.(3) can
also be easily solved by FSS. Many existing graph k-
ernel functions can be applied. We use the same graph
kernel function in [15]:

Kg(Gi, Gj) =

∑ni

a=1

∑nj

b=1 ωi,aωj,bK(vi,a, vj,b)∑ni

a=1 ωi,a

∑nj

b=1 ωj,b

K(vi,a, vj,b) = exp(−γ∥vi,a − vj,b∥2)
(6)

where ωi,a = 1/
∑ni

u=1 Wi
a,u, ωj,b = 1/

∑nj

u=1 Wj
b,u,

Wi and Wj are the adjacency weight matrixes for scene
Vi and Vj , respectively. In addition, K(vi,a, vj,b) is de-
fined using the Gaussian radial basis function (RBF) k-
ernel.

2.5. Scene classification

After the coefficients vector γ is obtained, the re-
construction residual rq(G′) of the test scene in class
q ∈ {−1, 1} is defined as:

rq(G
′) = ∥φ(G′)− UD−1δq(γ)∥2

= 1 + δq(γ)
T (D−1)T KUUD−1δq(γ)− 2δq(γ)

T (D−1)T KUG′

[δq(γ)]k =

{
γk, yk = q
0 yk ̸= q

(7)
where δq(γ) is a coefficient selector that only selects
coefficients associated with class q. The final class c
that is assigned to the test video scene V ′ is the one that
gives the smallest residual, as:

c = argmin
q

(rq(G
′)) (8)

3. Experiments

3.1. Data set

We download from the internet a large number of
movies which consist of 100 horror movies and 100
non-horror movies from different countries such as Chi-
na, US, Japan, South Korea, and Thailand etc. The gen-
res of the non-horror movies include comedy, action,
drama and cartoon. We get 400 horror movie scenes
and 400 non-horror movie scenes in total. The proposed
method is compared with MIL-based horror video scene
recognition methods proposed by Wang et al. [12]. In
order to validate the effect of the audio cost, the CSC
model without audio cost (denoted as SC), in which the
diagonal matrix D is fixed as D = diag(1, 1, . . . , 1),
is also used for comparison. In addition, the miGraph



Table 1. Experiment results(%)

Algorithm Precision Recall F-measure
CSC 81.62±0.72 83.38±0.87 82.46±0.19
SC 80.02±1.08 82.0±0.76 80.98±0.53
miGraph 80.01±1.59 80.82±0.92 80.4±1.06
MI-SVM 79.78 78.92 79.35
CKNN 78.85 70.54 74.46
EM-DD 77.59 72.97 75.21
SI-SVM 75.41 75.41 75.41

method [15] is also used to compare the performances
between sparse coding and Support Vector Machines
(SVM). The average accuracies of ten times 10-fold
cross validation is used as the final performances for
each method.

3.2. Results

For each data set, given the ground truth of a horror
scene set (HS) as well as recognition results (ES) of an
algorithm, the precision (P ), recall (R), and F-measure
(F1) defined in Eq.(9) are used to evaluate the perfor-
mances.

P =
|HS ∩ ES|

|ES|
, R =

|HS ∩ ES|
|HS|

, F1 =
2× P ×R

P +R
(9)

The average Precision (P ), Recall (R) and F-measure
(F1) are shown in Table 1. The methods MI-SVM,
CKNN, EM-DD, SI-SVM in Table 1 denote the MIL
based recognition methods with different MIL classi-
fiers [12]. The results in Table 1 show that the perfor-
mances of CSC, SC and miGraph methods that consider
context cues inside a scene outperform the other MIL-
based methods that consider the instances independent-
ly. The CSC has much higher value than SC. It indicates
that the visual-audio context is much important for hor-
ror scene recognition; and the CSC model can effective-
ly fuse the visual-audio features. In addition, the CSC
has lower standard deviations that imply the stableness
of CSC. Furthermore, the training free character embed-
ded in the sparse coding classifier makes it possible to
be extended as an online classifier that is necessary for
many video analysis applications.

4. Conclusion

Most existing studies on horror scene recognition ne-
glect the fact that two types of contexts, one among

frames and the other one between visual cue and au-
dio cue, play an important role in emotion expression
recognition. In this paper, we have proposed a novel
cost-sensitive sparse coding (CSC) model based on the
graph kernel to model these two contextual relationship-
s for the problem. The experimental results have shown
that our model is superior to other existing horror detec-
tion methods.

Acknowldegement This work is partly supported
by the National Nature Science Foundation of Chi-
na (No. 61005030, 60935002 and 60825204) and
Chinese National High-tech R&D Program (863 Pro-
gram)(No.2012AA012503 and No. 2012AA012504).

References

[1] A. Hanjalic and L. Q. Xu. Affective video content repre-
sentation and modeling. IEEE TM, 7(1):143–154, 2005.

[2] W. M. Hu, O. Wu, and Z. Chen. Recognition of porno-
graphic web pages by classifying texts and images.
IEEE TPAMI, 29(6):1019–1034, 2007.

[3] G. Irie, K. Hidaka, T. Satou, and et al. Latent topic
driving model for movie affactive scene classification.
ACM MM, pages 565–568, 2009.

[4] H. B. Kang. Affective content detection using hmms.
ACM MM, pages 259–262, 2003.

[5] H. Lee, A. Battle, R. Raina, and et al. Efficient sparse
coding algorithms. NIPS, pages 359–367, 2006.

[6] B. Li, W. H. Xiong, and W. M. Hu. Context-aware
multi-instance learning based on hierarchical sparse
coding. ICDM, pages 370–377, 2011.

[7] B. Li, W. H. Xiong, and W. M. Hu. Web horror im-
age recognition based on context-aware multi-instance
learning. ICDM, pages 1158–1163, 2011.

[8] Z. Rasheed, Y. Sheikh, and M. Shah. On the use of com-
putable features for film classification. IEEE TCSVT,
15(1):52–64, 2005.

[9] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A
global geometric framework for nonlinear dimensional-
ity reduction. Science, 290:2319–2323, 2000.

[10] H. L. Wang and L. Cheong. Affective understanding in
film. IEEE TCSVT, 16(6):689–704, 2006.

[11] J. C. Wang, B. Li, W. M. Hu, and et al. Horror movie
scene recognition based on emotional perception. ICIP,
pages 1489–1492, 2010.

[12] J. C. Wang, B. Li, W. M. Hu, and et al. Horror video
scene recognition via mutiple-instance learning. ICAS-
SP, pages 1325–1328, 2011.

[13] J. Wright, A. Y. Yang, A. Ganesh, and et al. Robust face
recognition via sparse representation. TPAMI, pages
210–227, 2009.

[14] B. Wu, X. Jiang, T. Sun, and et al. A novel horror scene
detection scheme on revised multiple instance learning
model. MMM, pages 377–388, 2011.

[15] Z. Zhou, Y. Sun, and Y. Li. Multi-instance learning by
treating instances as non-i.i.d. samples. ICML, pages
1249–1256, 2009.


