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a b s t r a c t 

We propose an end-to-end trainable network that can simultaneously localize and recognize irregular text 

from images. Specifically, we find the feature incompatibility problem, which arises from the contradic- 

tion between detection and recognition tasks for feature extraction of the convolutional neural network, 

and propose to introduce the larger-scale features for the recognition part to improve the accuracy of 

recognition instead of using the same feature with the detection. To extract effective text features for per- 

spective and curved text recognition, we propose a position-sensitive network to rectify the text proposal 

features in the recognition branch. The position-sensitive network, which is trained in a weak supervi- 

sion way, takes the proposal detection feature as input and outputs the feature rectification information. 

Experiments demonstrate that the proposed method can achieve state-of-the-art or highly competitive 

performance compared with baselines on a number of benchmarks. 

© 2021 Elsevier B.V. All rights reserved. 

1

o

r

t

n

t

w

i

t

t

o

g

p

h

s

t

o

i

n

(

c

b

d

t

t

f

i

g

s

t

o

m

n

t

r

t

s

i

a

r

w

d

h

0

. Introduction 

Traditional optical character recognition (OCR) pipeline meth- 

ds generally consist of two components, text detection and text 

ecognition. The goal of text detection is to spot text instances in 

he input image and get their bounding boxes, while text recog- 

ition aims to recognize the detected text region by decoding its 

extual content. Although existing text detectors and recognizers 

ork well on horizontal texts, it still remains as a challenge when 

t comes to spotting curved text instances in scene images. 

Classical two-step pipelines deal with curved samples from the 

wo aspects of text detection and recognition. To recognize curved 

exts in an image, many detectors [1–4] try to predict complex ge- 

metry or apply complicated post-processing techniques to get the 

eometric attributes of curved texts, and the recognizers [5,6] ap- 

ly multi-directional encoding or take rectification modules to en- 

ance the accuracy of the recognizer on curved texts. In the two- 

tep pipeline, the performance of text recognition heavily relies on 

ext detection results. Each model in the pipeline depends on the 

utputs of the previous step, which makes it hard to jointly max- 

mize the end-to-end performance, and fine-tune the engine with 

ew data or adapt it to a new domain. 
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Scene text spotting/end-to-end recognition is a task that com- 

ines the detection and recognition tasks which overcome those 

isadvantages and thus have recently started gaining traction in 

he research community [7–9] . The detector and recognizer share 

he same CNN feature extractor in the end-to-end recognition 

ramework. The detector and recognizer are jointly optimized dur- 

ng training and then predict locations and transcriptions in a sin- 

le forward pass at inference time. However, different feature de- 

criptions are required in the detection task and the recognition 

ask. The detector tends to extract the common features of the text 

r the overall characteristics of the text area to implement the seg- 

entation task of text area and detection of text, while the recog- 

izer needs more detailed information to achieve better classifica- 

ion effect. Due to the different tasks between text detection and 

ecognition, there is a contradiction between the two tasks for fea- 

ure extraction of convolutional neural networks. Meanwhile, the 

cale of features for text recognition is also a key bottleneck for 

mproving the performance of the recognition branch. We denote 

bove problem features incompatibility between text detection and 

ecognition. The feature incompatibility problem makes the net- 

ork be trained more difficult and struggle to generalize and pro- 

uce convincing results on more challenging datasets with curved 

ext. 

In this paper, we propose a simple and flexible end-to-end OCR 

odel to read irregular text from images, especially for perspec- 

ive and curved cases. Fig. 1 shows the concept of the proposed 

ethod. By sharing the convolutional layers, we can compute the 

hared feature maps from the input image only once and imple- 
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Fig. 1. Concept of the proposed method. We use different scale features for detection and recognition respectively in order to deal with the feature incompatibility problem 

and propose a feature rectification module to rectify the text proposal features in the recognition branch. 
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ent text detection and recognition simultaneously. Different from 

he existing methods in which the text detection branch and recog- 

ition branch using the same size convolutional features in the 

ackbone architecture, we use different scale features for detec- 

ion and recognition respectively in order to deal with the fea- 

ure incompatibility problem. Specifically, we combine larger scale 

eatures in the recognition part to ensure the detailed informa- 

ion needed for recognition, which further improves the accuracy 

f recognition. 

The text detection branch is built on the feature map for detec- 

ion to predict the results of detection bounding boxes. The RoIRo- 

ate operator extracts text proposal features corresponding to the 

etection results from the feature map for detection and the fea- 

ure map for recognition respectively. The text proposal features 

rom detection are used as the input of the position-sensitive net- 

ork (PSN) to learn the feature rectification information. The text 

roposal features from recognition are rectified with the rectify in- 

ormation and then are fed into Recurrent Neural Network (RNN) 

ncoder and attention-based sequence recognition network for text 

ecognition. The whole system is designed as an end-to-end train- 

ble network as all the modules in the network are differentiable. 

The contributions of this paper are listed as follows: 

• We propose a flexible and powerful end-to-end trainable 

framework that can simultaneously localize and recognize both 

regular and irregular text in one model. 
• We find the feature incompatibility problem, which arises from 

the contradiction between detection and recognition tasks for 

feature extraction of the convolutional neural network, and pro- 

pose to introduce the larger-scale features for the recognition 

part to improve the accuracy of recognition instead of using the 

same feature with the detector. 
• To extract effective text features for perspective and curved text 

recognition, we propose PSN to rectify the text proposal fea- 

tures in the recognition branch. The PSN, which is trained in a 

weak supervision way, takes the proposal detection feature as 

input and outputs the feature rectification information. 
• Experiments on datasets demonstrate that the proposed 

method can achieve comparable or state-of-the-art perfor- 

mance on a number of text detection and text spotting bench- 

marks. 

. Related work 

In this section, we briefly review the related works including 

ext detection, text recognition and end-to-end text reading and 

potting. 
2 
.1. Scene text detection 

The goal of text detection is to spot the text instances in the in- 

ut image and get their bounding boxes. With the development of 

onvolutional Neural Networks (CNNs), the state-of-the-art object 

etection frameworks such as Faster-RCNN [10] and SSD [11] have 

een widely applied to text detection field. Generally, these meth- 

ds can be divided into two categories: Regression-based meth- 

ds and segmentation-based methods. Regression-based methods 

12–15] take words or text lines as a special case of object and 

im to directly regress the bounding boxes of the text instances. 

egmentation-based text detectors [1,3,4] are built on Fully Con- 

olutional Networks [16] , by generating text score maps or pro- 

ucing pixel-wise prediction of text or non-text. Nevertheless, 

mong these methods, most of the regression-based methods of- 

en require complex anchor design and cumbersome multiple 

tages, while segmentation-based methods need complicated post- 

rocessing steps to get final detection results during inference. 

heng et al. [17] points out that existing approaches could not keep 

 good balance between accuracy and speed and then proposes 

yrboxes to detect multi-scale scene texts with proper speed and 

ccuracy model. 

.2. Scene text recognition 

Text recognition aims to recognize the detected text regions by 

ecoding its textual content. Recent scene text recognition meth- 

ds can be grouped into two main categories, regular text recog- 

ition and irregular text recognition. Shi et al. [18] propose CRNN 

hich takes LSTM models to encode the CNN features and adopts 

TC to decode the encoded sequence to recognize scene text im- 

ges. After CRNN, multiple variants have been proposed to improve 

erformance. Furthermore, attention based methods [19,20] focus 

n informative regions to achieve better performance. Suman et al. 

20] introduce a LSTM-based visual attention model for uncon- 

trained scene text recognition. Cheng et al. [21] propose the Fo- 

using Attention Network that employs a focusing attention mech- 

nism to automatically draw back the drifted attention. Zhao et al. 

22] propose an adversarial learning based attentional scene text 

ecognizer to solve the distortion problem of scene text image. 

hang et al. [23] propose a scale-aware hierarchical attention net- 

ork (SaHAN) to solve the character scale-variation problem in 

cene text recognition. To handle irregular input images, transfor- 

ation modules [5,6] have been proposed to normalize text im- 

ges. 
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Fig. 2. Schematic overview of our end-to-end OCR model architecture. 
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.3. End-to-end scene text reading 

The basic idea behind end-to-end text reading is to have the de- 

ector and recognizer share the same CNN feature extractor. FOTS 

7] concatenates popular detection and recognition methods by in- 

roducing RoIRotate to share convolutional features between detec- 

ion and recognition. In Textnet [9] , the detector outputs quadrilat- 

rals and an attention-based model is used to decode the textual 

ontent. Mask TextSpotter [24] takes advantage of the designed 

nified model to treat the recognition task as a semantic seg- 

entation problem. CharNet [8] directly outputs bounding boxes 

f words and characters, with corresponding character labels. Qin 

t al. [25] propose an end-to-end OCR model which is based on 

ask R-CNN [26] and attention decoder. All these approaches can 

e trained in an end-to-end fashion. The detector and recognizer 

re jointly optimized during training and then predict locations 

nd transcriptions in a single forward pass at inference time. How- 

ver, the detector tends to extract the common features of the text 

r the overall characteristics of the text area to implement the seg- 

entation task of text area and detection of text, while the recog- 

izer needs more detailed information to achieve better classifica- 

ion effect. Due to the different tasks between text detection and 

ecognition, there is a contradiction between the two tasks for fea- 

ure extraction of convolutional neural networks. 

. Methodology 

In this section, we describe the proposed method in detail. The 

verall architecture of our end-to-end OCR model is schematically 

llustrated in Fig. 2 . Our main objective is to precisely localize and 

ecognize text in natural images. To this end, the overall network 

rchitecture consists of four building blocks: the backbone net- 

ork, the text detection branch, the position sensitive network, 

nd the text recognition branch. 

We employ a fully convolutional network architecture based on 

esNet [27] and Feature Pyramid Network [28] as our backbone for 

ur framework. By sharing the convolutional layers, we can com- 

ute the shared feature maps from the input image only once and 

mplement text detection and recognition simultaneously. Different 

rom the existing methods in which the text detection branch and 

ecognition branch use the same size convolutional features in the 

ackbone architecture, we use different scale features for detec- 

ion and recognition respectively in order to deal with the feature 

ncompatibility problem. Specifically, we aggregate the multi-scale 

eatures into 1 
4 and 

1 
2 resolution of the input image for the de- 

ection and recognition separately. The detector part of the model 

s based on EAST which has been widely used in scene text de- 

ection and other related tasks. The text detection branch can di- 

ectly predict the locations of text in quadrangles. In order to ob- 

ain feature information from quadrangle proposals for recognition, 

e develop a RoIRotate layer to convert the features of quadrangle 

roposals into fixed-height features while keeping the original re- 

ion aspect ratio and a Position Sensitive Network (PSN) to rectify 
3 
he text proposal features using the features for detection as in- 

ut. Finally, the text recognition branch recognizes words in region 

roposals. The overall architecture containing both detection and 

ecognition branches can be jointly trained in an end-to-end man- 

er. 

.1. Text detection module 

A fully convolutional network is adopted as the text detector. 

e upscale and merge the feature maps from 1/32 to 1/4 size of 

he original input image. After extracting the detection features, 

ne convolution is applied to output dense per-pixel predictions 

f words. 

The output of the text detection branch consists of two parts: 

he rotated box (RBox) for predicting the text bounding box and 

he score map for computing the probability of each pixel being 

 positive text. For each positive sample in the score map, the ro- 

ated box is represented by four channels for predicting the dis- 

ance of a positive pixel to the top, bottom, left, right sides of the 

ounding box that contains the positive pixel, and one channel for 

redicting the orientation of the related bounding box. Finally, the 

ext detection results in quadrangles are produced by NMS (Non- 

aximum Suppression) in the predicting stage. 

During the training stage, the detection branch loss function is 

omposed of two terms: text classification term and bounding box 

egression term. The whole detection loss can be written as: 

 detect = L reg + λc L cls (1) 

here L reg and L cls represent loss for regression loss and text clas- 

ification loss, respectively. λc is the hyper-parameter to control 

he balance among losses. We set λc = 0 . 01 in our experiments. 

Text classification loss: The text classification term can be seen 

s pixel-wise classification loss between text and non-text. To au- 

omatically balance the loss between positive and negative classes, 

e use class-balanced cross-entropy loss function. The loss func- 

ion for classification can be formulated as: 

 cls = 

1 

| R | 
∑ 

x ∈ R 
(−βp ∗x log p x − (1 − β)(1 − p ∗x ) log (1 − p x )) (2) 

here β = 

| R −| 
| R + | , | R + | and | R −| denote the number of elements in

ext and non-text ground truth label sets, R = | R + | ⋃ | R −| . p x is the

rediction of score map and p ∗x is the binary label that indicates 

ext or non-text. | · | represents the number of elements in a set. 

Bounding box regression loss: As for the regression loss, we 

dopt the IoU loss and the loss of rotation angle for the bounding 

ox regression loss. The overall regression loss is the weighted sum 

f IoU loss and angle loss, computed as 

 reg = 

1 

| R | 
∑ 

x ∈ R 
−log IoU (R x , R 

∗
x ) + λθ (1 − cos (θx − θ ∗

x )) (3) 

here −log IoU (R i , R 
∗
i 
) is the IoU loss between the predicted 

ounding box R x and the ground truth R ∗x . The second term is the 

oss of rotation angle. θx is the prediction of the rotation angle and 

∗
x represents the ground truth. λθ is set to 10 in our experiments. 
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Table 1 

Architecture of the PSN. 

Type Configurations [kernel, stride, padding] Out Channels 

conv_bn_relu [3,1,1] 64 

conv_bn_relu [3,1,1] 32 

max-pool [2,2,0] 32 

conv_bn_relu [3,1,1] 16 

conv_bn [1,1] 2 

Tanh – 2 

unpool ×4 2 
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Table 2 

The detailed structure of the text recognition branch. 

Type Configurations [kernel, stride, padding] Out Channels 

conv_bn_relu [3,1,1] 64 

conv_bn_relu [3,(2,1),1] 64 

conv_bn_relu [3,1,1] 128 

conv_bn_relu [3,(2,1),1] 128 

conv_bn_relu [3,1,1] 256 

max-pool [(2,1),(2,1)] 256 

conv_bn_relu [3,(2,1),0] 256 

bi-directional lstm 256 hidden units –

bi-directional lstm 256 hidden units –

GRU 256 hidden units –
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.2. Position sensitive network 

In this stage, a RoIRotate layer is adopted to crop out text in- 

tance features with fixed height and unchanged aspect ratio using 

redicted rotated rectangles or quadrilaterals. With the RoIRotate 

ayer, the extracted features are reshaped to be a sequence of fea- 

ures V d from the detection branch and a sequence of features V r 
rom the recognition branch. The height of the text instance feature 

s set to 8 in V d and 16 in V r . We use different scale features ex-

racted from the backbone network for detection and recognition 

espectively. Specifically, for the input of the recognition branch, 

onvolution features are 1/2 resolution of the input image but 1/4 

or the detection branch. The height 8 in the detection branch or 

6 in the recognition branch could be considered to correspond to 

he original cropped text image with a height of 32. This scale can 

dapt to the size change of different text images and is also the 

ost commonly used scale in the scene text recognition methods 

5,6,18] . 

The detailed architecture of the PSN is given in Table 1 . Each 

onvolutional layer is followed by a batch normalization layer and 

 ReLU layer except for the last one. The PSN takes the features 

n V d as input and predicts the offsets of each part of the text in-

tance features. Specifically, the PSN branch is a stack of convolu- 

ional layers, which is composed of two 3 × 3 convolutional layers, 

ollowed by a max-pool layer and another 3 × 3 convolutional layer 

nd a 1 × 1 convolutional layer. The offsets are predicted by the 

SN branch in parallel with text detection branch. The offset val- 

es are activated by T anh (·) , resulting in values within the range of

−1 , 1) . There are two channels in the offset maps for each v d in

 

d , which denote the x-coordinate and y-coordinate respectively. 

s the predicted offsets are used to rectify the recognition features, 

e apply bilinear interpolation to smoothly resize the offset maps 

o the size of the corresponding v r in V r . The output offset maps

re the same size as the recognition corresponding features. 

In our method, different scale features in the shared convolu- 

ional neural network are used in the detection branch and the 

ecognition branch to solve the feature incompatibility problem be- 

ween the two different tasks. The position-sensitive network is 

esigned to connect the detection and recognition branches and 

ectify the text proposal features in the recognition branch. The 

osition-sensitive network increases the information transmission 

ath between the detection branch and the recognition branch so 

hat the model can more effectively use the complementary infor- 

ation between text detection features and text recognition fea- 

ures. 

.3. Text recognition module 

The text recognition branch aims to predict text contents from 

he text region features. As mentioned above, the text regions 

re converted into fixed-height features V r from the recognition 

ranch via the RoIRotate layer. Then PSN is employed to rectify the 

hared feature maps V r to regular ones V r . 
4 
In our framework, we take advantage of the shared convolu- 

ional layers to process feature extraction. Thus, these text instance 

eature maps are directly fed into sequence modeling and tran- 

cription layers. Our recognition network employs a sequence-to- 

equence model with an attention mechanism. It consists of an 

ncoder and a decoder. The detailed network structure is given 

n Table 2 . The major structure of the recognizer is a CNN-BLSTM 

ramework. The encoder takes high-level semantic features as in- 

ut. Each convolutional layer is followed by a batch normaliza- 

ion layer and a ReLU layer. Then, two layers of bidirectional LSTM 

ith 256 hidden units are applied for further feature fusion. The 

ecoder is an attention-based sequence prediction model which 

utomatically captures the information flow within the input se- 

uence to predict the output sequence. It is based on an RNN and 

irectly generates the target sequence (y 1 , y 2 , ... ) . The details are

s follows: at t-step, the decoder predicts an output y t as 

 t = sof tmax (W o s t + b o ) (4) 

here s t is the hidden state at time step t in the GRU, W 0 and b 0 
re trainable parameters. State s t is computed as 

 t = GRU(y t−1 , c t , s t−1 ) (5) 

here c t represents the context vector,calculated as 

 t = 

I ∑ 

i =1 

αt,i h i (6) 

here H = h 1 , ..., h I denotes the sequential feature vectors from the 

ormer encoder stage and I is the length of the feature maps. αt,i 

s an attention weight and computed by 

t,i = 

exp(e t,i ) ∑ I 
k =1 exp(e t,k ) 

(7) 

 t,k = T anh (W s t−1 + V h i + b) (8) 

here W , V and b are trainable parameters. 

The training is conducted by minimizing the objective function 

hat negative log-likelihood of the conditional probability of word 

abel. Let D = { X i , Y i } , i = 1 ...N denotes the training set, the objec-

ive function L recog in the recognition stage is calculated as 

 recog = −
N ∑ 

i =1 

| y i | ∑ 

t=1 

log p(Y i | X i ) (9) 

.4. End-to-end training and loss function 

The network is able to jointly optimize the detector and recog- 

izer with an end-to-end training strategy. Thus the total multi- 

ask loss is defined as the combination of detection and recogni- 

ion: 

 = L detect + λr L recog (10) 

here λr > 0 is the trade-off parameter. λr is set to 1 in our ex- 

eriments. 
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Fig. 3. Results of the proposed method. (a) ICDAR-15. (b) ICDAR-13. 
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. Experiments 

To validate the performance of the proposed model, we conduct 

xperiments on several standard benchmarks and compare results 

ith other state-of-the-art methods. We evaluate the performance 

f our model on a horizontal text set ICDAR2013, an oriented text 

et ICDAR2015, and a curved text set Total-Text. 

.1. Datasets 

ICDAR-13: ICDAR 2013 [29] consists of 229 images for training 

nd 233 images for testing. Text instances in ICDAR-13 dataset are 

ostly horizontal and annotated in words with word-level bound- 

ng box annotations and text labels. 

ICDAR-15: The ICDAR 2015 Incidental Text dataset [30] includes 

0 0 0 training images and 500 testing images. Text in the dataset 

an be in arbitrary orientations, or suffer from motion blur and 

ow resolution. 

Total-Text: The Total-Text dataset [31] is a collection of irregular 

ext with 1255 images in the training set, and 300 images in the 

est set and consists of a lot of curved text. 

.2. Implementation details 

In the experiments, we adopt the ResNet-50 as the backbone of 

he network. The backbone is followed by the FPN to further en- 

ance features. The detection branch outputs the predicted bound- 

ng boxes of possible texts for later sequential recognition. For each 

ext region, its features of shape 16 × 50 are extracted from the 

hared convolutional features by RoIRotate and rectified by PSN. 

hen the rectified features are encoded by a CNN-LSTM based net- 

ork and decoded by RNN-based attention, where the number of 

idden units is set to 256. The total number of symbols is 94, 

hich covers digits, upper and lower cases of English characters, 

umbers, and special characters. The network can be trained end- 

o-end using the standard error back-propagation and ADAM opti- 

izer. The whole training process contains two stages: pre-trained 

n SynthText and fine-tuned on the real-world data. At the first 

tep, the model is trained on the SynthText dataset [45] for 10 

pochs. Then we further train the network on target datasets. We 

ake use of similar data augmentation and online hard example 

ining (OHEM) as [7] . Data augmentation is a classical and neces- 

ary way to improve the robustness of deep neural networks, espe- 

ially when the number of real data is limited. We observe that on 

he ICDAR2015 datasets without data augmentation the result de- 

otes a 2.76% relative reduction in F-1 score from 88.19% to 85.43%. 

As text recognition is very sensitive to the detection result, 

 small error in the predicted result of text detection could cut 

ff several characters, which is harmful to the recognition branch 

raining. We first train the detection and recognition branches us- 

ng ground truth text regions instead of predicted text regions un- 

il it almost converges to a steady point, and then jointly train the 

hole network simultaneously in which the recognition branch is 

rained using the predicted text regions. This training procedure is 

ffective to achieve the final convergence and both text detection 

nd recognition can benefit from each other. 

.3. Experimental results on straight text 

In this section, we perform experiments on ICDAR-15 and 

CDAR-13 databases and compare our models with the existing 

ethods. Note that we only use a single scale input. During infer- 

nce, we resize the longer side of the input to 1280 for ICDAR-15 

nd 920 for ICDAR-13. The IoU (intersection-of-union) threshold is 

.5 as the default value to decide whether it is a true positive sam- 

le or not. The results are summarized in Tables 3 and 4 . There are
5 
any methods evaluated on these two datasets, but only some of 

he best results are shown. Our proposed method achieves signif- 

cant increase in performance when compared with the previous 

tate-of-the-art works, which illustrates that our method can ef- 

ectively deal with horizontal or oriented text. 

In the detection only task, we achieve 90.53% F-measure on 

CDAR-13 and 88.19% F-measure on ICDAR-15, respectively. Our 

ethod surpasses the best single scale model with text-instance- 

evel annotations. Note that the CharNet [8] needs character-level 

nnotations. For end-to-end performance, our method outperforms 

he highest single scale model. 

Compared with the detection model without recognition 

ranch, the end-to-end trained model of the proposed method can 

chieve significant F-measure improvement. It demonstrates that 

he joint trainable model with text recognition supervision branch 

an help improve the representation power of the features for 

ext detection. As the text recognition supervision can force the 

odel to consider fine details of characters and learn the differ- 

nce among characters and background that have similar patterns, 

hich makes our model be able to avoid some mistakes of detect- 

ng background regions as text or missing some text regions. Some 

ualitative results on ICDAR-13 and ICDAR-15 datasets are shown 

n Fig. 3 . 

.4. Experimental results on curved text 

We conducted an experiment on the curved text dataset called 

otal-Text and compare our models with the existing methods. The 

valuation protocol for detection is based on [46] , the one for end- 

o-end recognition is based on the end-to-end evaluation protocol 

f ICDAR15. At inference time, the shorter side of each image is 

esized to 600 pixels. We compare the results of our model with 

revious work in Table 5 . Our method outperforms the previous 

orks by a large margin in end-to-end evaluations. In the end- 

o-end recognition task, our model surpasses the previous highest 

y 5.8%. Our method also achieves better performance in the de- 

ection task compared with other end-to-end methods. However, 

here is still a big gap in the performance of curved text detection 

etween the proposed end-to-end method and methods specially 

esigned for curved text detection. 

.5. Ablation study 

In this part, we conduct experiments to verify the effect of our 

rchitecture. We do comparative experiments to show the text de- 

ection and end-to-end recognition performance on the perspective 

ataset (ICDAR-15) and irregular dataset (Total-Text). As the detec- 

ion branch in the proposed method is not specially designed for 
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Table 3 

Results on ICDAR-15 test set. “P”, “R”, “F” represent “Precision”, “Recall”, “F-measure” respectively. “S”, “W”, “G”

represent recognition with “Strong”, “Weak”, “Generic” lexicon respectively. R-50 represents the backbone network 

using ResNet-50. 

Method Detection Method End-to-End Recognition 

R P F S W G 

SegLink [32] 76.8 73.1 75.0 TextSpotter [33] 54.0 51.0 47.0 

EAST [34] 78.33 83.27 80.72 TextProposals + DictNe [35] 53.30 49.61 47.18 

RRPN [36] 77.13 83.52 80.20 HUST_ MCLAB [18,32] 67.9 – –

PixelLink [1] 82.0 85.5 83.7 He et al. [37] 82.0 77.0 63.0 

Mask TextSpotter [24] 81.0 91.60 86.0 Mask TextSpotter [24] 79.30 73.0 62.40 

TextNet [9] 85.41 89.42 87.37 TextNet [9] 78.66 74.90 60.45 

FOTS(R-50) [7] 85.17 91.0 87.99 FOTS(R-50) [7] 81.09 75.90 60.80 

CharNet(R-50) [8] 88.30 91.15 89.70 CharNet(R-50) [8] 80.14 74.45 62.18 

Ours(R-50) 85.53 91.02 88.19 Ours(R-50) 83.04 76.41 63.85 

Table 4 

Results on ICDAR-13 test set under ICDAR-13 evaluation. 

Method Detection Method End-to-End Recognition 

R P F S W G 

TextFlow [38] 75.89 85.15 80.25 Deep2Text II + [39] 81.81 79.47 76.99 

SSTD [40] 86.0 88.0 87.0 StradVision-1 [29] 81.28 78.51 67.15 

TextEdge [15] 84.13 91.85 87.82 Li et al. [39] 91.08 89.81 84.59 

TextNet [9] 89.39 93.26 91.28 TextNet [9] 89.77 88.80 82.96 

FOTS(R-50) [7] – – 88.23 FOTS(R-50) [7] 88.81 87.11 80.81 

Ours(R-50) 88.51 92.64 90.53 Ours (R-50) 92.14 90.85 85.03 

Table 5 

Results on Total-Text. No lexicon is used in end-to-end evalua- 

tion. 

Type Detection E2E 

R P F 

DeconvNet [31] 33.0 40.0 36.0 –

Textboxes [14] 45.5 62.1 52.5 36.3 

TextSnake [41] 74.5 82.72 78.4 –

MSR [42] 73.0 85.2 78.6 –

TextField [43] 79.9 81.2 80.6 –

FTSN [44] 78.0 84.7 81.3 –

Mask TextSpotter [24] 55.0 69.0 61.3 52.9 

TextNet [9] 59.45 68.21 63.53 54.0 

Ours(R-50) 61.95 68.44 65.03 59.80 

Table 6 

The end-to-end performance comparisons on ICDAR-15 and Total- 

Text. “DFS” is the abbreviation of “Different Features Strategy”. The 

E2E results on ICDAR-15 is tested with generic lexicon. 

Dataset Type Detection E2E 

R P F 

ICDAR 2015 Baseline 84.52 88.65 86.54 60.43 

With PSN 85.26 89.10 87.14 61.27 

With DFS 85.46 89.64 87.50 62.90 

ALL 85.53 91.02 88.19 63.85 

TotalText Baseline 56.82 65.72 60.95 53.18 

With PSN 57.13 66.92 61.64 56.12 

With DFS 58.40 67.15 62.47 57.74 

ALL 61.95 68.44 65.03 59.80 
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rregular or curved text, the performance is inferior to those meth- 

ds which need specially designed modular or character level an- 

otations. Our focus is on the behaviors of the detection and recog- 

ition branch in our framework and experiments are done to verify 

he effectiveness of the structure we designed. 

Impact of the Position Sensitive Network In this section, 

e study how Position Sensitive Network(PSN) affects the perfor- 

ance of the recognizer by training a separate network without 

SN. Table 6 shows the effect of using PSN on benchmark datasets. 
6 
ithout PSN, the performance drops on all the datasets, especially 

n the curved dataset (TotalText). This implies that the PSN im- 

roves the performance of the recognizer when dealing with ir- 

egular texts. This is principally because the PSN is able to rectify 

eatures of text to the regular ones, particularly for the irregular 

ext, which decreases the difficulty of recognition and enables the 

equence recognition network to read irregular text more easily. 

Strategy to deal with the Features Incompatibility In our 

ramework, different scale features are used for detection and 

ecognition respectively in order to deal with the feature incom- 

atibility problem. To demonstrate the effectiveness of our strat- 

gy to deal with the features incompatibility, we also train a base- 

ine network with the same shared features. As shown in Table 6 , 

ur strategy can significantly improve the end-to-end results. The 

mprovement proves that using different layer features of the con- 

olutional neural network can reduce the contradiction between 

etection and recognition tasks in feature extraction and a larger- 

cale feature is more effective for the recognition part to improve 

he accuracy instead of using the same feature with the detection. 

.6. The speed and model size 

To evaluate the speed of our model, we calculate the average 

ime cost during the testing stage. For images from the ICDAR- 

5 dataset (with resolution 1280 × 720 ), the end-to-end inference 

ime is 387ms on a single GeForce GTX 1080ti GPU with the 

esNet-50 backbone. The corresponding inference time is 274ms 

f only run the detection branch and 68ms for the recognition 

ranch. The rest of the time is spent in the RoIRotate and PSN, 

hich is about 45ms. 

The total number of parameters of the proposed end-to-end 

ethod is about 34M. The backbone network ResNet-50 includes 

3M parameters taking the most of parameters in the proposed 

odel. By sharing the backbone network, the proposed method 

an not only reduces the time cost during predicting stage but 

lso save almost half of parameters compared with two-stage sys- 

em, in which text detection and recognition models are trained 

eparately. Thus, for scene text images, the computational cost of 

he recognition branch is reduced. Sharing the same CNN feature 
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xtractor makes the end-to-end model more computationally effi- 

ient than two-step methods. 

. Conclusion 

In this paper, we propose a novel framework for scene text 

ocalization and recognition scene text. The model is trained for 

oth text detection and recognition in a single training frame- 

ork. Different from the existing methods in which the text de- 

ection branch and recognition branch using the same size convo- 

utional features in the backbone architecture, we combine larger 

cale features in the recognition part to ensure the detailed infor- 

ation needed for recognition, which further improves the accu- 

acy of recognition. To extract effective text features for perspec- 

ive and curved text recognition, the Position Sensitive Network is 

ntroduced to rectify the text proposal features in the recognition 

ranch. Experiments on standard benchmarks have demonstrated 

he effectiveness of our method. 
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