
 Fast Feature Selection and Training for AdaBoost-based
Concept Detection with Large Scale DataSets

Shi Chen1, 2, Jinqiao Wang1,2, Yang Liu1,2, Changsheng Xu1, 2, Hanqing Lu1,2
1National Lab of Pattern Recognition, Institute of Automation, CAS, Beijing 100190, China

2China-Singapore Institute of Digital Media, Singapore, 119615, Singapore
Email: {schen, jqwang, liuyang, csxu, luhq}@nlpr.ia.ac.cn

ABSTRACT
AdaBoost has been proved a successful statistical learning method
for concept detection with high performance of discrimination and
generalization. However, it is computationally expensive to train a
concept detector using boosting, especially on large scale datasets.
The bottleneck of training phase is to select the best learner
among massive learners. Traditional approaches for selecting a
weak classifier usually run in , with N examples and T
learners. In this paper, we treat the best learner selection as a
Nearest Neighbor Search problem in the function space instead of
feature space. With the help of Locality Sensitive Hashing (LSH)
algorithm, the best learner searching procedure can be speeded up
in the time of , where L is the number of buckets in LSH.
Compared with the T (~500,000), the L (~600) is much smaller in
our experiments. In addition, through studying the distribution of
weak learners and candidate query points, we present an efficient
method to try to partition the weak learner points and the feasible
region of query points uniformly as much as possible, which can
achieve significant improvement in both recall and precision
compared with the random projection in traditional LSH
algorithm. Experimental results reveal our method can
significantly reduce the training time. And still the performance of
our method is comparable with the state-of-art methods.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing

General Terms
Algorithms, Experimentation

Keywords
Concept Detection, AdaBoost, Local Sensitive Hashing.

1. INTRODUCTION
Semantic concept detection is an essential and general
classification task that determines whether an image or a video
segment is relevant to a given concept. To detect multiple high
level concepts, various features were utilized and exhibited
excellent performance. However, with the increasing number of
features, the bottleneck of computation complexity is gradually

prominent. In [1, 2], bag-of-visual-words (BOW) representation
was utilized for both scene categorization and object classification.
The size of visual vocabulary increased from 1,000 [1] to as high
as 20,000 [2]. Meanwhile, more discriminative and complex
features, such as geometric blur, ColorSIFT were applied in [3, 4].
In addition, the scale of datasets and number of concepts also
increased rapidly in recent years.

Large scale of datasets and rich feature sets provide a good
resource for the statistic learning model such as SVM, AdaBoost
to develop concept detectors. Particularly, AdaBoost with cascade
structure, which is faster in detection than other statistic learning
methods due to only assembling few weak learners to detect, is
regarded as a promising way for concept detection task [5, 6].
However, one of the greatest obstacles to extensive use of
AdaBoost is its time-consuming training process. All these
increments of datasets and feature sets further aggravate the time
cost in concept detection task. The main time consuming of
AdaBoost lies in training and selecting the best learner.
Traditional training algorithms usually run in , with N and
T are the example and learner numbers respectively.

Several methods have been proposed to speed up this training
process. Guyon et al. [7] filtered the feature set by using mutual-
information and Pham et al. [8] proposed a method to project
features set into several directions by some statistics information.
However, both methods cannot guarantee the selected learner to
be the best one. Wu et al. [9] introduced a method to decrease the
training time by using caching. However, the memory storage
requirement was much larger than other methods.

In this paper, we convert the best learner selection of AdaBoost to
Nearest Neighbor Search (NNS) in the function space. Thus LSH
can be used to speed up the search procedure with the time
complexity of where L is the number of buckets in LSH.
Furthermore, compared with traditional LSH, the distribution of
weak learners and candidate query points in function is more
certain and regular than the generic data. Hence, we can design a
more effective and efficient way to divide the candidate query
space and encode the features so as to achieve better detection
performance in contrast to the random projection in traditional
LSH algorithm.

The rest of this paper is organized as follows: Section 2 presents a
method to transfer the best learner selection of AdaBoost to 1-
Nearest Neighbor in function space. Section 3 describes a new
projection scheme which is more effective than random projection
in conventional LSH. The experimental results on concept
detection are reported in Section 4. In Section 5, we conclude the
paper with future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MM’10, 10 October 25-29, 2010, Firenze, Italy.
Copyright 2010 ACM 978-1-60558-933-6/10/10...$10.00.

1179

2. FROM THEN BEST LEARNER
SELECTION TO 1-NN
The basic idea of AdaBoost is to train an ensemble of T decision
stumps or weak classifiers in the form:

∑ . (1)

where are weights of weak learners. This is done by greedily
selecting and computing for tth-iteration from 1 to T. It is
proved [10] that selection of the best learner at tth-iteration in Eq.2
can minimize the upper bound of training error.

 ∑ (2)

where and are the label of sample and the weight of at
the tth-iteration. Actually, before selecting the best one in all
learners, we must choose a best threshold for each learner on
current distribution of sample weights. Hence, there is a two-level
search for the best learner. The analysis of feature selection is
shown in Figure 1. We can find out that the best learner selection

 in the iteration is the bottleneck compared with to
update weights.

Figure 1.Tradition Weak Learner Selection in AdaBoost.

It is noted that both N and T are not only dominant, but also
important in constructing the weak classifiers. In this paper, we
present a method that takes a different view to address this
problem without trying to reduce either N or T. We convert the
linear search of the best learner in the feature space into the
Nearest Neighbor Search in the function space. Each learner

 in the feature space can be projected as an N-dimension
point in the function space, and we construct a query point
for each iteration t. We will prove that the nearest neighbor of
of all the P, donated as , is the best learner in Eq.2.

THEOREM 1 Assuming each learner is projected in
function space by , ,…, ,…, and
query point is built by { , , … , , … , }, the 1-
NN of in Euclid distance is the best learners in Eq.2.

Proof: The Euclid distance of and is

Dist ,

 ∑

= ∑ ∑

For , can be either in -1 or +1 in a two-class
classification. In each iteration, ∑ is constant for every
weak learner. Hence the nearest neighbor is the best learner:

 min Dist ,

= min ∑ ∑

 max ∑

Concretely, the proposed learner selection is shown in Figure 2.
Firstly, before performing AdaBoost loop, the learners are pre-

computed and indexed as follows. For each feature and possible
threshold, we construct a weak learner , where

, denotes the index and threshold of the feature. Then we get
binary classification result , (+1 or -1) by using the
weak learner , to classify the sample j. Finally, we project
each learner , to a point of the function space ,
represented by , with the form of (, ,
 , , …, ,), where N is the number of the samples.
This projection will consume where T is the number of
learners, but we only have to compute it once before the loop.
And then we index and store all the points , for query. The
store of our method is also very low for we only need store the
binary classification result , instead of the all feature
values. In the tth iteration, we first compute a virtual query point

 by { , , … , , … , } where is the weights
of sample j at the current iteration. Then we will adopt fast K-NN
algorithms to speed up the process of the best learner selection.
A lot of promising relevant work [11, 12] has been done to speed
up the Nearest Neighbor Search process. One of the most popular
approximate algorithms is Locality Sensitive Hashing (LSH) [12].
LSH can reduce the search time to , where L is the number
of LSH buckets. For example with T (~500,000) learners and
N(~2,000) examples, we only need L(~600) buckets to get the
best learner at probability of 90%.

Figure 2.Our Weak Learner Selection By LSH for AdaBoost

3. EFFICIENT LSH BY UNIFORM
PARTITION
LSH is a probabilistic technique to solve the approximate NNS
problems. Given a corresponding hash family, LSH maintains a
number of hash tables containing the points in the dataset. A
solution to the K-NN query is found by hashing the query point
and scanning the buckets to which the query point is hashed.

Although LSH achieves remarkable performances in high-
dimensional similarity search, it suffers from one drawback: its
search quality is sensitive to several parameters that are quite data
dependent. The sensitivity of data comes from the hash family
which is always defined as random projection. As shown in Fig.3,
if the data is encoded by a random linear projection followed by a
random threshold, it will generate very inefficient hash codes,
which contain both lots of collisions and empty buckets. Random
projection is the only choice if we don’t know the distribution of
data. However, we find out two statistical facts of our data which
can be used to guide the projection instead of random scheme.

Fact 1. All weak learner points locate on the grid of {-1,
+1}N, because the decision stump is either -1 or +1. Hence,
the distribution of these points are much regular than other generic
data. It’s very easily getting the data divided evenly.
Fact 2. Assume is the data label of the sample i, the query
points { , , … , } constructed in THEOREM 1 is

1180

constrained to the feasible region: =1,
for 1 and the sum of weights equals to 1. The point C
{ , , … , , … , } will be the center of this feasible region.

Figure 3.Comparison of two projection methods in LSH

In [14], Weiss et al. proposed several rules for perfect encoding.
One of most importance rules is to require each bit to enjoy equal
chances of being -1 or +1, which means the encoding or
projection should be divided evenly as much as possible. Inspired
by this rule and the two facts, we design the projection as follows.

Firstly, we randomly choose two points of the learner and a
perpendicular hyper plane of the line connecting these two points
is chosen to divide the weak learner data efficiently. Then we
make this hyper plane through the central point C to make feasible
region is evenly divided.

A toy example in 2D shown in Figure 3 can illuminate the
efficiency of our methods. Assume query point is Q, and weak
learner points are P1, P2. The encoding of random projection R1 is
inefficient because P1, P2 are collision. Though R2, R3 make an
efficient divided of whole function space, these projections are
still not good enough for they do not make divided for all possible
query points in feasible region, which means that for all possible
query points, they will recommend the same points (P2, P1
respectively). Compared with the random projection, our evenly
divided projection makes a better and efficient encoding for trying
to divide both the weak learner points and feasible region evenly.
The algorithm for the best learner selection is sketched in
Algorithm1.

Algorithm 1. Efficient LSH by Uniform Partition
Given the training data , , … , , , where and
 1, 1 .

Indexing Process:

Construct weak learner , and use it to classify all the
samples to get , in function space by { , ,

, , … , }.
For 1, … , :
 Randomly choose two weak points , in dataset. Calculate

the direction of perpendicular hyper plane by (
, , … , ,) and calculate

the shift to make this hyper plane through { , , … , }.
 Encode all points by this perpendicular hyper plane.
End

Query Process:

Encode the query points { , , … , }.
Get all similar points P in the same buckets with .
Compute all dot product of P with and select the minimum one

as the best learner.

4. EXPERIMENTS
To evaluate the performance, we conduct thorough experiments
on TRECVID 2008 dataset.The dataset contains about 200 hour

videos and is divided into two parts: the training(development)
dataset and the test (evaluation) dataset and both contains 219
video files.

Basically, we conduct two experiments to evaluate our proposed
approach. In Experiment 1, with large scale extracted features, our
LSH-based algorithm is compared with classic AdaBoost
algorithm, the training time and performance of selection of weak
learner is reported on the selected concept in TRECVID 2008 due
to unbearably long time training for original AdaBoost. In
Experiment 2, to compared with the state-of-the-art concept
detectors [2, 6], our fast AdaBoost algorithm is utilized to train all
20 concept detectors.

4.1 Experimental Setup
For each keyframe, we use BOW [1] to represent and use k-means
clustering to generate visual vocabularies. The size of vocabulary
is 10,000, which generates the best result through a
comprehensive study [2]. In addition, we get 50 thresholds by
dividing the range of each feature into 50 sub-range evenly.
Hence, a set of 500,000 weak learners is built to generate an
optimal classifier in each iteration. In addition, for all LSH-based
algorithm, we use the method in [13] to selection the number of
the buckets. The Experiments were done on a 2.4G Intel Xeon PC
Server with 16G memory.

4.2 Comparison of Training Time
To verify the training speed of proposed approaches, we compare
our approach with original AdaBoost algorithm using the five
concepts that occur most frequently. The training time is reported
in Table.1. We can observe that our method achieves about 12-23
faster in the running time than traditional AdaBoost by converting
the best learner selection to the Nearest Neighbor search by LSH.

Table 1. The report training time of two methods

Concept #Learners #Samples
Traditional
AdaBoost

Our
method

Speedup

Ratio

Two
People

500,000 7,000 156.35s 7.63s 22.28

Hand 500,000 4,500 110.42s 5.43s 20.32

Street 500,000 2,000 46.34s 2.48s 18.65

Boat_ship 500,000 860 17.54s 1.42s 12.87

Nighttime 500,000 800 14.34s 1.25s 11.91

4.3 Comparison of Detection Performance
In Fig.4, we further compare the detection performance of three
learning methods with the same number of weak learners on the
concept of ‘two people’ for it contains the most examples in
TRECVID 2008. We set the maximal number of weak learners to
500. In addition, due to the training dataset is very imbalanced, we
use the method in [6] to under-sample of negative examples to get
the size of the negative examples equal to twice size of the
positive samples.

From the testing error curves, we can see that the detection
performance of the proposed method is almost the same as the
original AdaBoost. However, the test error of Random LSH is
higher than ours by 2%~3% because the discriminative ability of
the learner selected in random LSH sometimes is much lower than
the best ones (verified in Fig.5). In Fig.5 the training error of
selected learner in three methods at each iteration are compared.
For the sake of fairness, the number of buckets is set to 200 for

1181

two LSH-based methods, and in each iteration, all three methods
all add the best learner of whole learners to make the same weight
distribution for the next iteration. We can observe that the training
error of our method is almost as the same as the original
AdaBoost. However, the Random LSH is much lower than the
best learner for its inefficient encoding scheme.

Figure 4. Comparisons of Detection rates of three AdaBoost

Based methods on the Concept “Two-people”

Figure 5. Comparisons of Detection Performance of Weak

Learner on the Concept “Two-people”

4.4 Comparison with Other Approaches
We use our fast LSH-based AdaBoost method to train detectors
for all 20 concepts in HLFE task of TRECVID 2008. We compare
our method with some state-of-the-art methods in TRECVID 2008
as shown in Figure 6. In [2], Jiang use the same BOW features
and kernel SVM to classifier the concepts. [6] is one of best
results using AdaBoost in TRECVID 2008. We can conclude that
our method can achieve comparable results with the state-of-the-
art methods with extremely fast training speed. In addition, our
method achieves better performance for concepts with more
samples, such as Two People, Street and Boat, which shows that
our approach is very useful for large scale training dataset.

5. CONCLUSION
We have presented a fast method to train and select the best
learner for AdaBoost in concept detection on large scale datasets.
It speeds up the weak classifier training time from O(NT) to
O(NL). By substantially reducing the training time, this method

empowers researchers to conduct more quickly experiments and
explore solutions to other important research issues in this area.

6. ACKNOWLEDGEMENT
The research is supported by National Natural Science Foundation
of China (Grant No.: 60903146, 60905008, 60833006,90920303),
and National Basic Research Program (973) of China under
contract No.2010CB327905.

7. REFERENCES
[1] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid, “Local

features and kernels for classification of texture and object
categories: A comprehensive study,” IJCV 2007.

[2] Y-G. Jiang, J. Yang, C.-W. Ngo and A. G. Hauptmann,
“Representations of Keypoint-Based Semantic Concept
Detection: A Comprehensive Study,” IEEE Transactions on
Multimedia, 2010.

[3] S. Petrov, A. Faria, P. Michaillat, A. Berg, D. Klein, and et
al., “Detecting categories in news video using acoustic,
speech, and image features,” in TRECVID workshop, 2006.

[4] C. G. M. Snoek, K. E. A. van de Sande, O. de Rooijand et al.,
“The MediaMill TRECVID 2009 semantic video search
engine,” in TRECVID workshop, 2009

[5] W. Jiang, S.-F. Chang and A. C. Loui, “Kernel sharing with
joint boosting for multi-class concept detection”, CVPR
Workshop, 2007.

[6] Y. Peng and J. Yao “AdaOUBoost: adaptive over-sampling
and under-sampling to boost the concept learning in large
scale imbalanced data sets”. Multimedia Information
Retrieval 2010

[7] I. Guyon and A. Elisseeff. “An introduction to variable and
feature selection”. J. Mach. Learn. Res., 2003.

[8] M.T. Pham and T.J. Cham. “Fast training and selection of
Haar features using statistics in boosting-based face
detection”. In ICCV 2007.

[9] J. Wu, S.C. Brubaker, M.D. Mullin and J. M. Rehg. “Fast
asymmetric learning for cascade face detection.”
PAMI,2007.

[10] R.E. Schapire and Y. Singer, “Improved boosting algorithms
using confidence-rated predictions,” in ACCLT, 1998.

[11] J. L. Bentley. “K-d trees for semi dynamic point sets.” In
SCG , 1990.

[12] P. Indyk and R. Motwani. “Approximate nearest neighbors:
towards removing the curse of dimensionality.” In STOC
’98:

[13] A. Andoni and Piotr Indyk “E2LSH 0.1User Manual”
http://www.mit.edu/~andoni/LSH/manual.pdf

[14] Y. Weiss, A. Torralba, R. Fergus.“Spectral Hashing.” In
NIPS, 2008.

Figure 6. Concept Detection Performance onTRECVID 2008

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

AdaOUBoost [6]

Our Method

Jiang's method [2]

1182

