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ABSTRACT 
AdaBoost has been proved a successful statistical learning method 
for concept detection with high performance of discrimination and 
generalization. However, it is computationally expensive to train a 
concept detector using boosting, especially on large scale datasets. 
The bottleneck of training phase is to select the best learner 
among massive learners. Traditional approaches for selecting a 
weak classifier usually run in , with N examples and T 
learners. In this paper, we treat the best learner selection as a 
Nearest Neighbor Search problem in the function space instead of 
feature space. With the help of Locality Sensitive Hashing (LSH) 
algorithm, the best learner searching procedure can be speeded up 
in the time of , where L is the number of buckets in LSH. 
Compared with the T (~500,000), the L (~600) is much smaller in 
our experiments. In addition, through studying the distribution of 
weak learners and candidate query points, we present an efficient 
method to try to partition the weak learner points and the feasible 
region of query points uniformly as much as possible, which can 
achieve significant improvement in both recall and precision 
compared with the random projection in traditional LSH 
algorithm. Experimental results reveal our method can 
significantly reduce the training time. And still the performance of 
our method is comparable with the state-of-art methods. 

Categories and Subject Descriptors 
H.3.1 [Information Storage and Retrieval]: Content Analysis 
and Indexing 

General Terms 
Algorithms, Experimentation 
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1. INTRODUCTION 
Semantic concept detection is an essential and general 
classification task that determines whether an image or a video 
segment is relevant to a given concept. To detect multiple high 
level concepts, various features were utilized and exhibited 
excellent performance. However, with the increasing number of 
features, the bottleneck of computation complexity is gradually 

prominent. In [1, 2], bag-of-visual-words (BOW) representation 
was utilized for both scene categorization and object classification. 
The size of visual vocabulary increased from 1,000 [1] to as high 
as 20,000 [2]. Meanwhile, more discriminative and complex 
features, such as geometric blur, ColorSIFT were applied in [3, 4]. 
In addition, the scale of datasets and number of concepts also 
increased rapidly in recent years.  

Large scale of datasets and rich feature sets provide a good 
resource for the statistic learning model such as SVM, AdaBoost 
to develop concept detectors. Particularly, AdaBoost with cascade 
structure, which is faster in detection than other statistic learning 
methods due to only assembling few weak learners to detect, is 
regarded as a promising way for concept detection task [5, 6]. 
However, one of the greatest obstacles to extensive use of 
AdaBoost is its time-consuming training process. All these 
increments of datasets and feature sets further aggravate the time 
cost in concept detection task. The main time consuming of 
AdaBoost lies in training and selecting the best learner. 
Traditional training algorithms usually run in , with N and 
T are the example and learner numbers respectively.  

Several methods have been proposed to speed up this training 
process. Guyon et al. [7] filtered the feature set by using mutual-
information and Pham et al. [8] proposed a method to project 
features set into several directions by some statistics information. 
However, both methods cannot guarantee the selected learner to 
be the best one. Wu et al. [9] introduced a method to decrease the 
training time by using caching. However, the memory storage 
requirement was much larger than other methods. 

In this paper, we convert the best learner selection of AdaBoost to 
Nearest Neighbor Search (NNS) in the function space. Thus LSH 
can be used to speed up the search procedure with the time 
complexity of   where L is the number of buckets in LSH. 
Furthermore, compared with traditional LSH, the distribution of 
weak learners and candidate query points in function is more 
certain and regular than the generic data. Hence, we can design a 
more effective and efficient way to divide the candidate query 
space and encode the features so as to achieve better detection 
performance in contrast to the random projection in traditional 
LSH algorithm. 

The rest of this paper is organized as follows: Section 2 presents a 
method to transfer the best learner selection of AdaBoost to 1-
Nearest Neighbor in function space. Section 3 describes a new 
projection scheme which is more effective than random projection 
in conventional LSH. The experimental results on concept 
detection are reported in Section 4. In Section 5, we conclude the 
paper with future work. 
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2. FROM THEN BEST LEARNER 
SELECTION TO 1-NN 
The basic idea of AdaBoost is to train an ensemble of T decision 
stumps or weak classifiers  in the form: 

∑  .                                 (1) 

where  are weights of weak learners. This is done by greedily 
selecting  and computing  for tth-iteration from 1 to T. It is 
proved [10] that selection of the best learner at tth-iteration in Eq.2 
can minimize the upper bound of training error. 

 ∑                  (2) 

where  and are the label of sample  and the weight of  at 
the tth-iteration. Actually, before selecting the best one in all 
learners, we must choose a best threshold for each learner on 
current distribution of sample weights. Hence, there is a two-level 
search for the best learner. The analysis of feature selection is 
shown in Figure 1. We can find out that the best learner selection 

 in the iteration is the bottleneck compared with  to 
update weights. 

 
Figure 1.Tradition Weak Learner Selection in AdaBoost. 

It is noted that both N and T are not only dominant, but also 
important in constructing the weak classifiers. In this paper, we 
present a method that takes a different view to address this 
problem without trying to reduce either N or T. We convert the 
linear search of the best learner in the feature space into the 
Nearest Neighbor Search in the function space. Each learner 

 in the feature space can be projected as an N-dimension 
point  in the function space, and we construct a query point  
for each iteration t. We will prove that the nearest neighbor of  
of all the P, donated as , is the best learner in Eq.2.  

THEOREM 1 Assuming each learner  is projected in 
function space by  , ,…, ,…,   and 
query point  is built by { , , … , , … , }, the 1-
NN of  in Euclid distance is the best learners in Eq.2. 

Proof: The Euclid distance of  and  is 

Dist ,   

                          ∑   

= ∑ ∑  

For ,  can be either in -1 or +1 in a two-class 
classification. In each iteration,  ∑  is constant for every 
weak learner. Hence the nearest neighbor  is the best learner: 

 min Dist ,  

= min  ∑ ∑  

 max ∑  

Concretely, the proposed learner selection is shown in Figure 2. 
Firstly, before performing AdaBoost loop, the learners are pre-

computed and indexed as follows. For each feature and possible 
threshold, we construct a weak learner  ,  where 

,  denotes the index and threshold of the feature. Then we get 
binary classification result  ,  (+1 or -1) by using the 
weak learner ,  to classify the sample j. Finally, we project 
each learner ,  to a point of the function space  , 
represented by , with the form of ( , , 
 , , …, ,  ), where N is the number of the samples. 
This projection will consume  where T is the number of 
learners, but we only have to compute it once before the loop. 
And then we index and store all the points ,  for query. The 
store of our method is also very low for we only need store the 
binary classification result  ,  instead of the all feature 
values. In the tth iteration, we first compute a virtual query point 

 by { , , … , , … , } where  is the weights 
of sample j at the current iteration. Then we will adopt fast K-NN 
algorithms to speed up the process of the best learner selection. 
A lot of promising relevant work [11, 12] has been done to speed 
up the Nearest Neighbor Search process. One of the most popular 
approximate algorithms is Locality Sensitive Hashing (LSH) [12]. 
LSH can reduce the search time to , where L is the number 
of LSH buckets. For example with T (~500,000) learners and 
N(~2,000) examples, we only need L(~600) buckets to get the 
best learner at probability of 90%. 

 
Figure 2.Our Weak Learner Selection By LSH for AdaBoost 

3. EFFICIENT LSH BY UNIFORM 
PARTITION 
LSH is a probabilistic technique to solve the approximate NNS 
problems. Given a corresponding hash family, LSH maintains a 
number of hash tables containing the points in the dataset. A 
solution to the K-NN query is found by hashing the query point 
and scanning the buckets to which the query point is hashed. 

Although LSH achieves remarkable performances in high-
dimensional similarity search, it suffers from one drawback: its 
search quality is sensitive to several parameters that are quite data 
dependent. The sensitivity of data comes from the hash family 
which is always defined as random projection. As shown in Fig.3, 
if the data is encoded by a random linear projection followed by a 
random threshold, it will generate very inefficient hash codes, 
which contain both lots of collisions and empty buckets. Random 
projection is the only choice if we don’t know the distribution of 
data. However, we find out two statistical facts of our data which 
can be used to guide the projection instead of random scheme. 

Fact 1. All weak learner points  locate on the grid of {-1, 
+1}N, because the decision stump  is either -1 or +1. Hence, 
the distribution of these points are much regular than other generic 
data. It’s very easily getting the data divided evenly. 
Fact 2. Assume   is the data label of the sample i, the query 
points { , , … , } constructed in THEOREM 1 is 
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constrained to the feasible region:   =1, 
for 1  and the sum of weights equals to 1. The point C 
{ , , … , , … ,  } will be the center of this feasible region.  

 
Figure 3.Comparison of two projection methods in LSH  

In [14], Weiss et al. proposed several rules for perfect encoding. 
One of most importance rules is to require each bit to enjoy equal 
chances of being -1 or +1, which means the encoding or 
projection should be divided evenly as much as possible. Inspired 
by this rule and the two facts, we design the projection as follows. 

Firstly, we randomly choose two points of the learner and a 
perpendicular hyper plane of the line connecting these two points 
is chosen to divide the weak learner data efficiently. Then we 
make this hyper plane through the central point C to make feasible 
region is evenly divided. 

A toy example in 2D shown in Figure 3 can illuminate the 
efficiency of our methods. Assume query point is Q, and weak 
learner points are P1, P2. The encoding of random projection R1 is 
inefficient because P1, P2 are collision. Though R2, R3 make an 
efficient divided of whole function space, these projections are 
still not good enough for they do not make divided for all possible 
query points in feasible region, which means that for all possible 
query points, they will recommend the same points (P2, P1 
respectively). Compared with the random projection, our evenly 
divided projection makes a better and efficient encoding for trying 
to divide both the weak learner points and feasible region evenly. 
The algorithm for the best learner selection is sketched in 
Algorithm1. 

Algorithm 1. Efficient LSH by Uniform Partition 
Given the training data , , … , , , where   and 
 1, 1 . 

Indexing Process: 

Construct weak learner ,  and use it to classify all the 
samples to get ,  in function space  by { , , 

, , … ,  }. 
For 1, … , : 
 Randomly choose two weak points ,  in dataset. Calculate 

the direction of perpendicular hyper plane by (
, , … , , ) and calculate 

the shift to make this hyper plane through { , , … ,  }. 
  Encode all points by this perpendicular hyper plane. 
End 

Query Process: 

Encode the query points  { , , … , }. 
Get all similar points P in the same buckets with . 
Compute all dot product of P with  and select the minimum one 

as the best learner. 

4. EXPERIMENTS 
To evaluate the performance, we conduct thorough experiments 
on TRECVID 2008 dataset.The dataset contains about 200 hour 

videos and is divided into two parts: the training(development) 
dataset and the test (evaluation) dataset and both contains 219 
video files. 

Basically, we conduct two experiments to evaluate our proposed 
approach. In Experiment 1, with large scale extracted features, our 
LSH-based algorithm is compared with classic AdaBoost 
algorithm, the training time and performance of selection of weak 
learner is reported on the selected concept in TRECVID 2008 due 
to unbearably long time training for original AdaBoost. In 
Experiment 2, to compared with the state-of-the-art concept 
detectors [2, 6], our fast AdaBoost algorithm is utilized to train all 
20 concept detectors. 

4.1 Experimental Setup 
For each keyframe, we use BOW [1] to represent and use k-means 
clustering to generate visual vocabularies. The size of vocabulary 
is 10,000, which generates the best result through a 
comprehensive study [2]. In addition, we get 50 thresholds by 
dividing the range of each feature into 50 sub-range evenly. 
Hence, a set of 500,000 weak learners is built to generate an 
optimal classifier in each iteration. In addition, for all LSH-based 
algorithm, we use the method in [13] to selection the number of 
the buckets. The Experiments were done on a 2.4G Intel Xeon PC 
Server with 16G memory. 

4.2 Comparison of Training Time 
To verify the training speed of proposed approaches, we compare 
our approach with original AdaBoost algorithm using the five 
concepts that occur most frequently. The training time is reported 
in Table.1. We can observe that our method achieves about 12-23 
faster in the running time than traditional AdaBoost by converting 
the best learner selection to the Nearest Neighbor search by LSH.  

Table 1. The report training time of two methods 

Concept #Learners #Samples 
Traditional 
AdaBoost 

Our 
method 

Speedup 

Ratio 

Two 
People 

500,000 7,000 156.35s 7.63s 22.28 

Hand 500,000 4,500 110.42s 5.43s 20.32 

Street 500,000 2,000 46.34s 2.48s 18.65 

Boat_ship 500,000 860 17.54s 1.42s 12.87 

Nighttime 500,000 800 14.34s 1.25s 11.91 

4.3 Comparison of Detection Performance 
In Fig.4, we further compare the detection performance of three 
learning methods with the same number of weak learners on the 
concept of ‘two people’ for it contains the most examples in 
TRECVID 2008. We set the maximal number of weak learners to 
500. In addition, due to the training dataset is very imbalanced, we 
use the method in [6] to under-sample of negative examples to get 
the size of the negative examples equal to twice size of the 
positive samples.  

From the testing error curves, we can see that the detection 
performance of the proposed method is almost the same as the 
original AdaBoost. However, the test error of Random LSH is 
higher than ours by 2%~3% because the discriminative ability of 
the learner selected in random LSH sometimes is much lower than 
the best ones (verified in Fig.5). In Fig.5 the training error of 
selected learner in three methods at each iteration are compared. 
For the sake of fairness, the number of buckets is set to 200 for 
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two LSH-based methods, and in each iteration, all three methods 
all add the best learner of whole learners to make the same weight 
distribution for the next iteration. We can observe that the training 
error of our method is almost as the same as the original 
AdaBoost. However, the Random LSH is much lower than the 
best learner for its inefficient encoding scheme. 

 
Figure 4. Comparisons of Detection rates of three AdaBoost 

Based methods on the Concept “Two-people” 

 
Figure 5. Comparisons of Detection Performance of Weak 

Learner on the Concept “Two-people” 

4.4 Comparison with Other Approaches 
We use our fast LSH-based AdaBoost method to train detectors 
for all 20 concepts in HLFE task of TRECVID 2008. We compare 
our method with some state-of-the-art methods in TRECVID 2008 
as shown in Figure 6. In [2], Jiang use the same BOW features 
and kernel SVM to classifier the concepts. [6] is one of best 
results using AdaBoost in TRECVID 2008. We can conclude that 
our method can achieve comparable results with the state-of-the-
art methods with extremely fast training speed. In addition, our 
method achieves better performance for concepts with more 
samples, such as Two People, Street and Boat, which shows that 
our approach is very useful for large scale training dataset. 

5. CONCLUSION 
We have presented a fast method to train and select the best 
learner for AdaBoost in concept detection on large scale datasets. 
It speeds up the weak classifier training time from O(NT) to 
O(NL). By substantially reducing the training time, this method 

empowers researchers to conduct more quickly experiments and 
explore solutions to other important research issues in this area. 
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Figure 6. Concept Detection Performance onTRECVID 2008 
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