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Abstract—Behavior analysis across multi-cameras becomes 
more and more popular with the rapid development of camera 
network in video surveillance. In this paper, we propose a 
novel unsupervised graph matching framework to associate 
trajectories across partially overlapping cameras. Firstly,
trajectory extraction is based on object extraction and tracking 
and is followed by a homographic projection to a mosaic-plane. 
And we extract appearance and spatio-temporal features for 
trajectory description. Then a robust graph matching 
algorithm based on reweighted random walk is adopted for 
trajectory association. The association is formulated as node 
ranking and selection on an association graph whose nodes 
represent candidate correspondences of trajectories. Finally, 
the pairs of corresponding trajectories in overlapping regions 
are fused by an adaptive averaging scheme, in which 
trajectories with more observations and longer length is given 
higher weight. Experiments and comparison on real scenarios 
demonstrate the effectiveness of the proposed approach.  

Keywords-trajectory association; fusion; trajectory projection; 
graph matching;  camera-network; reweighted random walk 

I. INTRODUCTION

Due to limited vision scope but low cost of single camera, 
the cooperative camera-network system for video 
surveillance in a broad area, e.g., airport, coast, and road, has 
attracted increasing attention recently. In the camera-network 
system, how to construct the global trajectory of moving 
objects across multiple cameras becomes an essential 
research topic. However, there are various possible 
disturbances in the task, such as false moving objects, object 
re-entrances and occlusion. Thus, how to perform trajectory 
association robustly and efficiently under such complex 
scenarios is challenging and difficult.  

Previous methods [5, 7, 8, 12, 18] often model trajectory 
association as a point-wise matching problem. They ignore 
the structural or context information among trajectories and 
cannot obtain an optimal association sets from a global view. 

To overcome this shortcoming, graph matching had been 
adopted in performing trajectory association for multiple 
cameras [4, 13]. They constructed an undirected bipartite 
graph for two cameras. The vertex in bipartite graph denotes 
the trajectory in camera, and the weight of edge denotes the 

affinity of two trajectories. The maximum matching of the 
bipartite graph is found by Hopcroft and Karp [15]. However 
the graph matching algorithms, which are adopted in 
trajectory association, focused on exploiting relatively weak 
unary and pair-wise attribute and didn’t aim at optimizing a
well defined objective function [10]. Instead, based on
Integer Quadratic Programming (IQP), graph matching 
formulation can take into consideration both unary and pair-
wise terms. Since IQP is known to be NP-hard, approximate 
solutions are required. And graph matching by random walk 
in an association graph is a good approximate solution. 

In this paper, to independent on the calibration 
knowledge and inter-topology of cameras, we consider the 
problem of inferring the correct object association across 
partially over-lapping cameras using local trajectories, which 
are extracted from individual cameras. Then we perform the
association using the projected trajectories on the mosaic-
plane, which is computed by the background images of the 
neighboring two cameras.  Graph matching algorithm based 
on reweighted random walk is adopted to recover the optimal 
association sets. The reweighted step can strengthen the 
effect of reliable nodes in random walk by adopting a jump 
or teleport. Consequently, it can be more robust to noise and 
outliers.  For the similarity estimation in graph construction, 
we attempt to combine appearance correlations and spatio-
temporal correlations between any pair of trajectories. Then 
candidate associations are established using reweighted 
random walk on the affinity graph. After association, the 
pairs of corresponding trajectories in overlapping regions are 
fused by adaptive averaging, in which trajectory with more 
observations and longer length is given higher weight. Figure 
1  illustrates the framework of the proposed approach. 

The rest of the paper is organized as follows. The related 
work about object association across multiple cameras is
overviewed in Section 2. The pre-processing for trajectory 
association is given in Section 3. The details of our proposed 
algorithm are discussed in Section 4. Section 5 presents the 
experimental evaluations. The conclusions are given in 
Section 6. 
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II. RELATED WORK

Trajectory association approaches can be categorized into 
three main classes, namely appearance based, geometry 
based and hybrid approaches.  

Appearance based approaches [1 - 4, 13] adopt color 
information to match trajectories across cameras. Kim [3] 
adopted a tracking method based on template matching and 
on color histogram back-projection to solve occlusion 
problem. Kuo [4] proposed an on-line learned discriminative 
appearance affinity model for associating tracks across 
multiple non-overlapping cameras. Appearance based 
methods generally suffer from illumination variation. 

Geometry based approaches [2, 5 - 8, 14, 18] established
association between objects generally by exploiting epipolar 
geometry, homography correlation and camera calibration. 
Junejo [5] proposed a linear approach to auto-calibrate 
cameras through an unsupervised learning. After auto-
calibrating a camera and metric rectifying the input 
trajectories, path models are constructed from these 
trajectories and similarity measure is adopted to compare the 
input trajectory with the path model for abnormal activity 
detection. Ariel [6] proposed an approach using spatial 
information for associating trajectories from multiple views, 
which are represented as consecutive points of a joint ground 
plane in the world coordinate system. Methods based on pure 
geometric constraints heavily rely on the accuracy during the 
correspondence process.  

Hybrid methods [8, 9, 12, 13] combined appearance and 
geometry approached in association process. Sheikh [8] 
associated trajectories across multiple views from airborne 

cameras with a statistical approach. They make two basic 
assumptions: 1) cameras are significantly high with respect 
to the ground and 2) at least one object is covered by two 
cameras simultaneously at a minimum duration. They posed 
the problem of maximizing the likelihood function as a k-
dimensional matching and used the matching result as an 
approximate association. Wei [9] proposed a framework that 
combines particle filtering and belief propagation to track 
athletes in team sports using multiple cameras. The former 
algorithms based on hybrid methods always neglect the 
robustness to noise and outlier in association. 

Our work is highly inspired by the approaches of Anjum
[12], and Javed [13]. Anjum [12] presented a trajectory 
association for partially overlapping cameras. Multiple 
features, including appearance, motion, spatial distance, etc., 
are adopted in their algorithm. But they neglected the 
temporal information between trajectories from two cameras. 
Because two objects across the overlapping region between 
two adjacent cameras exceed a maximum transition time 
can’t be corresponding object. We adopted temporal 
information in our algorithm. Javed [13] established object 
correspondence across non-overlapping cameras by using 
motion trends and appearance of objects. Then he adopted a
bipartite graph matching method to find corresponding 
trajectories between two non-overlapping cameras. However, 
this method is not so robust to noise and outliers. There are 
various possible disturbances in the association, such as false 
moving objects, object re-entrances and occlusion. So a more 
robust graph matching algorithm based on reweighted 
random walk is adopted in our algorithm to promote 
robustness and accuracy in association. 

III. TRAJECTORY EXTRACTION AND PROJECTION

In this paper, we perform association on mosaic-plane 
with trajectories from individual cameras. The 
transformation matrix is achieved in the process of mosaic-
plane construction. Also we will present the problem arise 
from the transformation of trajectories in overlapping region.  

Let C = {C1, C2, … , CN }  be a set of N partially semi-
overlapping cameras in a typical camera-network for large 
area surveillance shown in Figure 2. For clarity, in this paper, 
we only focus on the trajectory association between two 
semi-overlapping cameras, whose solution is easy to extend 
to the case of multiple cameras.  

A.  Background Subtraction and Trajectory Extraction 
Let ��  and ��  be two overlapping cameras from camera-

network. To extract object trajectories from individual 
camera, we adopt background subtraction followed by a 
graph-based tracking [17]. Let Ta = {Ta

1, Ta
2, … , Ta

n} 
represents the resulting n trajectories in local camera Ca , and 
Tb = {Tb

1, Tb
2, … , Tb

m }  represents the resulting m trajectories 
in local camera Cb . Every trajectory is a set of observations, 
e.g., Ta

i = {Ta
i (x1, y1, t1), Ta

i (x2, y2, t2), … , Ta
i (xN , yN , tN ) , 

where t represents the time of the observation and N
represents the total observation number of the trajectory. 

Figure 1. Framework of our proposed approach
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B. Trajectory Projection 
For each camera, we obtain a representative background 

image by computing a temporal median over the related 
background images. Based on the representative background 
images from two cameras, we construct a panorama image 
[11] as the virtual ground-plane (mosaic-plane) to prepare for 
trajectory association. During constructing the panorama 
image, the two homography matrices ( ��

�  and ��
� ) are 

estimated by performing bundle adjustment. The projection 
from image-plane to mosaic-plane is estimated by the 
homography matrix, e.g., 

T�b
i (x�, y� , t)= Hb

v Tb
i (x, y, t),                     (1) 

where T�b
i (x�, y� , t) is the projection of   on mosaic-plane.  

However, the projections are prone to cause the 
corresponding trajectories unaligned in the overlapping 
region (	� ,�) on the mosaic-plane (Figure 3(d)). Additionally, 
because of noise and errors in the trajectory extraction, 
existing trajectory association algorithms often fail to 
correctly associate. In next section, we will introduce our 
robust and efficient graph matching based on reweighted 
random walk to solve the trajectories association in partially 
overlapping cameras.  

IV. TRAJECTORY ASSOCIATION AND FUSION

A.  Trajectory Graph Model 
In the case of partially overlapping cameras, we need to 

establish the correspondence between the transformed 
trajectories (
��

� , 
��
� ) on the mosaic-plane. Let 
�  and 
� be

two graphs standing for camera a and b, respectively. The 
nodes in each graph are corresponding to trajectories in each 
camera (Figure 4(a)). Then a bipartite graph based on two 
graphs was constructed, and the association problem is to 
find the optimal matching set in the bipartite graph (Figure 
4(b)). However, the existing graph matching algorithms, 
such as adopted in [13], focused on exploiting relatively 
weak unary and pair-wise attributes and didn’t aim at 
optimizing a well defined objective function. 

Different from the graph matching algorithms mentioned 
above, we construct an association graph 
��  from 
� and 


�  as illustrated in Figure 5. Hence, the original graph 
matching problem between 
�  and  
�   is equivalent to node 
ranking or selection on 
�� . To select the nodes in  
�� , we 
adopt the statistics of Markov random walks. However, some 
nodes in 
��  correspond to false candidate correspondence. 
In this case, the normalization of affinity matrix can 
strengthen the adverse effect of outliers and prevent random 
walkers. To avoid this case, we adopt a jump during the 
random walk, i.e., the random walker moves by traversing an 

edge with probability α. The probability α represents the bias 
between the two possible actions, e.g., following edge or 
jumping. This method can strengthen the effects of reliable 
nodes in random walks, thus more robust to noise and 
outliers. The detailed algorithm can be referenced to the 
algorithm in [10]. 

In our reweighted random walk based graph matching 
algorithm for trajectory association, the critical issue is how  

Figure 3. Two partially overlapping cameras. (a) and (b) are accumulated 
trajectories in each view; (c) mosaic-plane of the cameras; (d) two pairs 
of trajectories which are  different on the mosaic-plane in overlapping 

region.

Figure 4. Bipartite graph matching for find corresponding trajectories.

Figure 2.  A road with N cameras and their fields of view differences on 
the mosaic-plane in overlapping region.
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 to construct the pair-wise affinity matrix W. We combine 
spatio-temporal information with appearance feature and 
velocity feature to construct the affinity matrix. The 
appearance features includes: 1) RGB color histograms are 
used to model the appearance of a trajectory. In our 
implementation, we use 8 bins for each channel to form a 24-
dimensional histogram; 2) To describe the image texture, we 
use a descriptor based on covariance matrices of image 
features proposed in [19]; 3) Shape feature: A 32-
dimentional HOG feature fHOG k  is extracted from the 
observation region.  In summary, the appearance descriptor 
of one observation in the trajectory can be written as  
Aa

k =(� fRGB k
a �, {Ck

a}, �fHOG k
a �) in camera a, where fRGB k

a  is the 
color feature, Ck

a  is the texture feature, and  fHOG k
a  is the 32D 

HOG feature, where k is the subscript of observation. In our 
design, we average appearance feature on all observations 
belong to one trajectory. So the final appearance feature is: 

β a
i = 1

N
∑ Aa

kN−1
k=0 ,                                   (2) 

where N is the total observation number in trajectory 
�
� . 

Additionally, we expand the feature set by including the 
average object velocity on mosaic-plane for helping in 
describing the rate of change of the object and calculated as: 

Va
i = 1

N
∑ (x�k+1 − x�k, y�k+1 − y�k)N−1

k=0 .              (3) 
The combined distance on appearance feature and 

velocity feature of two trajectories is calculated as:  
DFai,bj = 1

C
(�β a

i − β b
j � + λ1�Va

i − Vb
j �),        (4) 

where �  is a normalization term, �1 is empirically 
determined coefficient. The spatial distance of  trajectory i
and trajectory j is obtained by taking the absolute difference 
between the spatial coordinates of observation in overlapping 
region on mosaic-plane. Resampling is done in order to have 
equal length trajectories. The spatial distance is computed as: 

DSai,bj = ∑ �T�a
i �x�k,y�k , tk� − T�b

j (x�k,y�k , tk)�∀k in  Va ,b , (5)
Combining the two distances computed in Equation (4) and 
Equation (5), the final distance between two trajectories is:  

Di,j = λ2DFai ,bj + λ3DSai ,bj ,                    (6)
where  �2 and �3 are empirically determined coefficients. In 
our experiments, �2 and �3  are set to 0.5 to show the best 
performance.  

Let i and p be two trajectories in camera a, j and q be two 
trajectories in camera b. The node in pair-wise affinity 
matrix  W  is computed with above distance as follows: 

Wip,jq = e−�Di ,j−
a Dp ,q

b �
2

/σs
2
 .                      (7)

Let ���  and ���  be the starting and ending time of 
trajectory i. We adopt a temporal threshold T, which is a 

maximum transition time of objects across the overlapping 
region between two adjacent cameras. Empirically, we set    
T = 25 in our implementation. If trajectories i and j are close 
in temporal domain, i.e.,  

�tsi ≤ tsj ≤ tei + T� or �tsj ≤ tsi ≤ tej + T� ,   (8) 
this means that trajectory i and trajectory  j may be the same 
object since they are observed by cameras around the same 
time. If  trajectory i and trajectory j, or trajectory p and q
trajectory, are not close in temporal domain, then 

Wip,jq = 0 .                                    (9)  
 After constructing the pair-wise affinity matrix, the 

quasi-stationary distribution of this reweighted random walk 
is efficiently computed using the power iteration method. In 
the final discretization step, the Hungarian algorithm is 
adopted to cover the optimal association sets.  

B.  Global Trajectory  Fusion 
Once association is finished, the next procedure is to fuse 

pairs of corresponding trajectories in overlapping regions, 
and construct a global trajectory across the whole field on 
mosaic-plane. To fuse two corresponding trajectories 
��

�   and 
 
��

� , which are captured by two cameras ,we adopt an 
adaptive weighting algorithm: 

Tnew = "
ω 1T�a

i +ω 2 T�b
j , overlapping region

T�a
i ,               region in camera  a

 T�b
j ,              region in camera   b

� .  (10) 

The trajectory that has more observations and longer 
length will be given higher weight than other. The weights 
are calculated as function of number of observation and 
length for each trajectory: 

ω1 =
�Ta

i �+L
Ta

i

�Ta
i �+�Tb

i �+LTa
i +L

Tb
i
, ω2 =

�Tb
i �+L

Tb
i

�Ta
i �+�Tb

i �+LTa
i +L

Tb
i
,      (11) 

where |. | is the number of observations in the trajectory and 
%
   is the length of  the trajectory. The example of fusion 
result can be seen in Figure 6.  The two pairs of trajectories 
have been described in Figure 3(d), and the dotted points are 
the fusion results in overlapping region. 

V.        EXPERIMENTAL RESULTS

A.   Experimental Setting 
We evaluate the performance of the proposed algorithm 

on two real world datasets. The first dataset (D1) is outdoor 
road surveillance video sequence, which consists of 12000 
frames (images at 25 frames/sec and 704x576 resolution), 
describing a scene simultaneously recorded by two cameras 
located at different viewpoints [12]. We split it into two 
segments, namely Seg_1a and Seg_1b, with equal length. 
The second dataset (D2) is a more complex outdoor 
pedestrian activity video sequence, which consists of 9000 
frames (images at 25 frames/sec and 704x576 resolution), 
describing a scene simultaneously recorded by two cameras 
located at different viewpoints. Also, we split it into two 
segments, namely Seg_2a and Seg_2b, with equal length. In 
both datasets, the closeness of objects’ movement and 
similarity in color make the association task challenging. 

Figure 5.  Association Graph  
�� from 
� and 
�
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Projecting trajectories onto mosaic-plane with the 
homography computed will result in discrepancy between 
two trajectories belong to one object in overlapping region. 
We expect the robustness and accuracy of our algorithm,
when suffering from discrepancy of the trajectories in 
overlapping region, similarity of object’s appearance, and 
errors in trajectories extraction. 

To evaluate the association and fusion results, we adopt 
two measures, Recall (R) and Precision (P) are calculated as: 

&
R = |G∩E|

|G|

P = |G∩E|
|E|

�  ,                                (12)

where G is the ground truth pairs of trajectories, and is E the 
estimated results. 

B.  Experiment Results of Trajectory Matching 
 We compare the proposed method with standard 

Dynamic Time Wrapping (DTW) [16] (M1), and two of 
state-of-the-art approaches presented in [18] (M2) and [12] 
(M3), in term of  R and P on two datasets.  Table 1 shows the 
detailed performance. And Figure 7 and Figure 8 show the 
selected complete global trajectories of two videos on 
individual mosaic-plane. 

The results show the proposed approach is better by 22% 
and 17% for R and P, respectively, compared to M1. It 
reveals that in complex datasets such D1 and D2, where 
objects are close in time and space, trajectory statistics can 
promote the association performance tremendously. 
Compared to M2, the proposed approach outperforms 12% 
and 10% for R and P, respectively. M2 adopts geometry 
based approach. It lacks in a procedure to resolve conflict 
situations. This results in a low R and P scores, especially in 
a more complex segment in D2. Compared to M3, the 
proposed approach outperforms 6% and 5% for R and P
respectively. Although M3 adopts multiple features, it fails to 
distinguish objects with similar appearance and close spatial-
temporal feature in crowed scenario, such as Seg_2a in D2.
The results on the two real complex datasets show the high 
performance of our proposed approach. 

VI.   CONCLUSION

In this paper we presented a framework for global 
trajectory construction for partially-overlapping camera-
network and applied it to large area video surveillance. The 
proposed framework uses trajectories generated by 
individual cameras and performs trajectory association on the 
mosaic-plane by graph matching. The experimental results
demonstrate that our method is robust to noise and outliers,
and high associating accuracy can be achieved in complex
environments.  
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Figure 7. Selected trajectory fusion results on dataset 1. Each trajectory 
is shown in different color.

Figure 8. Selected trajectory fusion results on dataset 2. Each 
trajectory is shown in different color.

Figure 6.  An example of trajectory fusion: dotted line is the fusion part 
in overlapping region.
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