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Graph neural networks (GNNs) apply deep learning techniques to graph-structured data and have
achieved promising performance in graph representation learning. However, existing GNNs rely heavily
on labeled data or well-designed negative samples. To address these issues, we propose a new self-
supervised graph representation method: deep graph bootstrapping (DGB). DGB consists of two neural
networks: online and target networks, and the input of them are different augmented views of the initial
graph. The online network is trained to predict the target network while the target network is updated
with a slow-moving average of the online network, which means the online and target networks can
learn from each other. As a result, the proposed DGB can learn graph representation without negative
examples in an unsupervised manner. In addition, we summarize three kinds of augmentation methods
for graph-structured data and apply them to the DGB. Experiments on the benchmark datasets show the
DGB performs better than the current state-of-the-art methods and how the augmentation methods
affect the performances.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Graph neural networks (GNNs) have made remarkable advance-
ments in representation learning for graph-structured data [1–3].
Combining modeling the rich topology of graphs and unparalled
expressive ability of deep learning, GNNs learn low-dimensional
embeddings from variable-size and permutation-invariant graphs.
The success of GNNs has also benefited a wide range of applica-
tions, such as in social networks [1], molecules [4], robot designs
[5] and knowledge graphs [6].

Like other deep learning methods, many existing GNNs and
their variants are mainly based on semi-supervised setting so they
need a certain number of labeled data. However, requiring enough
quality labeled data may meet some challenges in the real applica-
tion scenarios. For instance, biology graphs represent specific con-
cepts [7], so it is difficult and expensive to annotate the graphs; in
addition, the reliability of the given labels may sometimes be ques-
tionable [8].

Though the present unsupervised graph representation algo-
rithms do not need labels, they rely heavily on negative samples.
For example, random walk-based methods [9,10] consider node
pairs that are ‘‘close” in the graph are positive samples, meanwhile,
take node pairs that are ‘‘far” in the graph as negative samples. The
loss function lets ‘‘close” node pairs have more similar representa-
tions than ‘‘far” node pairs. In addition, deep graph informax (DGI)
[11] maximizes mutual information between local representations
and corresponding graph-level representations while taking the
corruption graph as negative samples. The performances of these
methods are highly dependent on the choices of negative samples,
but in the wild negative pairs are not easy or computationally
expensive to acquire. Consequently, how to obtain high-quality
graph representation without supervision or negative examples
becomes necessary for a number of practical applications, which
motivates the study of this paper.

Recently, BYOL (bootstrap your own latent) [12] introduces
bootstrapping mechanism to visual representation learning and
learns from its previous version, which has achieved state-of-the-
art results without negative examples. Nevertheless, BYOL is based
on image data, and to the best knowledge of us, no work has
applied bootstrapping mechanism to graph-structure data. In this
work, we extend BYOL to graph-structured data and propose deep
graph bootstrapping (DGB). DGB relies on two neural networks:
online and target networks. During one time training, the target
network is fixed, then the online network is updated by gradient
descent to predict the target network; after training, the target net-
work parameters are updated with a slow-moving average of the
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online network parameters. Such training mechanism can make
the online and target networks learn from each other, hence,
DGB no longer needs labeled data or negative examples.

Data augmentations play an important role in DGB, but how to
design efficient augmentation methods for graph-structured data
is still challenging. In this paper, we systematically summarize
three kinds of augmentation methods: node augmentation, includ-
ing node feature dropout and node dropout; adjacent matrix aug-
mentation, including personalized PageRank (PPR) [13] and heat
kernel [14]; and the combination of them. We also apply these
augmentation methods to DGB and show how augmentation
methods help to improve the performances of DGB.

In conclusion, we propose a new unsupervised graph represen-
tation learning method without negative examples and systemati-
cally summarize three augmentationmethods for graph-structured
data. The main contributions of this paper are as follows:

� We first generalize bootstrapping mechanism to graph-
structured data and propose an unsupervised graph representa-
tion learning method DGB without negative examples.
� The experimental results of the benchmark datasets show the
DGB model is superior to the present supervised and unsuper-
vised graph representation models.
� We systematically summarize three kinds of augmentation
methods for graph-structured data, and apply them to DGB then
analyze how data augmentations affect the performances of
DGB.

2. Related works

Graph Representation Learning To mine the rich semantic and
structure information in real-world graphs and networks, graph
representation learning methods are proposed to embed nodes or
edges into low-dimensional vectors on the basis of preserving
the graph structure information. There are two classical kinds of
models for graph representations: random-walk based models
and graph neural network models. Random walk-based methods
[9,10,15] generate random walks across nodes, and then apply
neural language models to get network embedding. They empha-
size proximity information while ignoring structural information
[11,16]. GNNs apply deep learning techniques to non-Euclidean
data, and the main idea of GNNs is to combine the neighborhood
node information with the center node, which helps to perserve
the graph structure [17–19].

Target Networks Target networks have a wide range of applica-
tions in deep reinforcement learning [20]. As one of the two impor-
tant components of deep Q-network [21], target networks make
the training process more stable and alleviate oscillations or diver-

gence. In deep Q-network, the target network bQ is obtained by

copying the network Q every C updates, and bQ is used to get the
Q-learning targets for the following C updates. Target networks
are extended to soft target updates, rather than directly copying
the weights in [22], as a result, the target values have to change
slowly, which can improve the stability of learning.

Self-supervised Learning Unlike supervised learning, self-
supervised learning utilizes input data itself as supervision [23].
To be specific, self-supervised learning can obtain labels from the
input data via a semi-automatic process and predicts other part
of the data from the known parts. Many self-supervised learning
models can be divided into two categories: generative or discrim-
inative [24,25]. Generative models are to build a distribution over
the data and latent representations and contain auto-regressive
models [26,27], flow-based models [28,29] and auto-encoding
models [30,31]. However, the weakness of generative models is
requiring lots of computing resources. As the recently popular dis-
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criminative models, contrastive models employ a scoring function
that enforces a higher score on positive pairs and a lower score on
negative pairs [11,32]. Some recent works adapt contrastive ideas
in image representation learning to unsupervised graph learning
[11,7]. Deep graph informax [11] extends deepInfomax(DIM) [33]
and contrasts node and graph embedding to learn node embed-
dings; in addition, InfoGraph extends DIM to learn graph
embeddings.

Bootstrapping Methods Different from contrastive methods’
requiring many negative examples to work well [34,25], bootstrap-
ping methods can learn representations without negative exam-
ples in an unsupervised manner. DeepCluster [35] produces
targets for the next representation by bootstrapping the previous
representation; it clusters data points based on the prior represen-
tation and uses the clustered index of each example as a classifica-
tion target to train the new representation. Predictions of
Bootstrapped Latents(PBL) [36] apply bootstrapping methods to
multitask reinforcement learning. PBL predicts latent embeddings
of future observations to train its representations, and the latent
embeddings are themselves trained to be predictive of the afore-
mentioned representations. BYOL [12] uses two neural networks,
known as online and target networks; the outputs of the target
network serve as targets to train the online network and the
parameters of the target network can be updated by weighted
summation between the previous target network parameters and
the online network parameters.
3. Unsupervised graph representation learning

A graph can be represented as G ¼ X;Af g, where
X ¼ ~x1;~x2; . . . ;~xnf g represents the node features, n is the number
of nodes in the input graph and ~xi 2 Rd means the feature vector
of node i;A 2 Rn�n is an adjacency matrix, Aij ¼ 1 represents there
exists an edge from node i to node j and Aij ¼ 0 otherwise.

The objective of DGB is to learn an encoder,

E : Rn�d � Rn�n ! Rn�d0 , as a result we can get

H ¼ E X;Að Þ ¼ ~h1;
~h2; . . . ;~hn

n o
;~hi 2 Rd0 represents the final learned

embedding for node i, which is for the downstream tasks, such
as node classification or node cluster.
4. Deep graph bootstrapping

In this section, we introduce the proposed DGB model in detail.
DGB model is inspired by BYOL [36], which learns visual represen-
tations by bootstrapping the latent representations. The DGB
model learns node embeddings by predicting previous versions
of its outputs, without leveraging negative examples. As is shown
in figure1, DGB refers to two neural networks, online network
and target network. We train the online network by predicting
the target network output, and update the target network by an
exponential moving average of the online network [22]. To be
specific, DGB model consists of the following components:

� Graph convolution network as graph encoders to get node
representations.
� Data augmentations for graph-structured data including node
augmentation and graph diffusion.
� A bootstrapping mechanism to make the online network and
target network learn from each other.

4.1. Graph neural network encoder

GNNs learn representations through transforming and aggre-
gating from topological neighbors iteratively. In this paper, for
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simplicity and generalization, we opt for the commonly used graph
convolution network(GCN) [1] as our encoders:

H lþ1ð Þ ¼ r ~D�
1
2~A~D�

1
2H lð ÞW lð Þ

� �
ð1Þ

where ~A ¼ Aþ IN is the adjacency matrix of the input graph G with

added self-connections, IN is the identity matrix and ~Dii ¼
P

j
~Aij is

the degree matrix, H lð Þ 2 RN�D is the representation in lth layer,

r �ð Þ is a non-linear activation function, W lð Þ is a trainable weight
matrix, which is our final goal to learn.

4.2. Graph-structured data augmentations

Recent successful self-supervised learning approaches in visual
domain learn representations by contrasting congruent and incon-
gruent augmentations of images [12]. Nevertheless, unlike images
with standard augmentation methods, how to get effective aug-
mentation methods for graph-structured data has no consensus.
Considering there are actually two kinds of information in the
graph: node information and adjacent information, in this paper,
we introduce three kinds of graph data augmentations: node aug-
mentation and graph diffusion network for adjacent matrix aug-
mentation and the combination of them.

4.2.1. Node augmentation
For the node information, considering feature matrix X 2 Rn�d;n

is the number of nodes and d is the dimensionality of features. Fol-
lowing [37] we use node dropout (ND) and node feature dropout
(NFD): node dropout denotes randomly zeroes one node’s entire
features with a pre-defined probability, i.e. dropping the row vec-
tors of X, randomly; while node feature dropout means randomly
discards each element of X. The specific formulation of ND and
NFD are

X
�
i ¼

~�i
1� dnd

Xi ð2Þ

X
�
ij ¼

~�ij
1� dnfd

Xij ð3Þ

where dnd and dnfd are the dropout probability of ND and NFD
respectively, ~�i and ~�ij seperately draws from Bernoulli(1 - dnd), Ber-
noulli(1 - dnfd). The factor 1= 1� dndð Þ and 1= 1� dnfd

� �
are to make

the perturbed feature matrix ~X equal to X in expectation. To note
that, NFD and ND are only used during training. After training, we
use initial node features to calculate representations.

4.2.2. Adjacent matrix augmentation
For the adjacent matrix augmentation, we consider graph diffu-

sion networks [38]. In previous GNNs, there exists one obvisious
problem: edges are often not clean enough or defined with an
inappropriate threshold [39]. Graph diffusion networks(GDN)
[38] are proposed to tackle the problem. GDN combines spatial
message passing with a sparsified form of graph diffusion which
can be regarded as an equivalent polynomial filter.

For a graph G ¼ X;Af g, the generalized graph diffusion is for-
mulated as:

S ¼
X1
k¼0

hkT
k ð4Þ

where T 2 Rn�n denotes the generalized transition matrix, hk is the
weighting coefficient which determines the ratio of global–local
information. In order to guarantee convergence, two conditions
are considered:

P1
k¼0hk ¼ 1; hk 2 0;1½ �; ki 2 0;1½ � where ki are eigen-

values of T.
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There are two classic examples of the graph diffusion: personal-
ized PageRank (PPR) [13] and heat kernel [14]. For an adjacency
matrix A 2 Rn�n and a degree matrix D 2 Rn�n;T in Eq. (4) is defined

as T ¼ AD�1; hk ¼ a 1� að Þk for PPR and hk ¼ e�ttk=k! for heat kernel,
where a 2 0;1ð Þ is teleport probability and t is the diffusion time.
The specific formulation is showed in Eqs. (5) and (6) [16]:

Sheat ¼ exp tAD�1 � t
� �

ð5Þ

Sppr ¼ a In � 1� að ÞD�1=2AD�1=2
� ��1

ð6Þ

In the ‘‘augmentation” part of Fig. 1, we apply NFD to the first
view, and NFD + graph diffusion to the second view. Comparing
with the initial graph, we can easily see how these augmentation
methods work. For simplicity, we do not scale the augmented node
features in Fig. 1. We apply different combinations of the augmen-
tation methods above to DGB, and the results and discussions will
be in Section 5.

4.3. Bootstrapping process

The bootstrapping process is the core of the DGB model. As is
shown in Fig. 1, there are three steps in the online network: one
graph convolution network layer called GNNh, one multilayer per-
ceptron for projection MLPpro

h , and one multilayer perceptron for
prediction MLPpre

h ; similar to the online network, the target net-
work has corresponding GNNe and MLPpro

� . For simplicity, in the
following, we use h to denote the parameters of GNNh;MLPpro

h ,
and use e to denote the parameters of GNNe;MLPpro

� . The reason
for using a multilayer perceptron for projection has been proved
to improve performances [25], and we will have a further discus-
sion in the ablation study.

During each epoch training, we first fix the parameters of the
target network, and the regression loss between the online net-
work outputs q zð Þ and the target network outputs Z0 are used to
update the online network parameters. After one epoch training,
the target network parameters e are updated using an exponential
moving average of the h [22,36]. Specifically, after one epoch train-
ing, for a given target decay rate p 2 0;1½ �, this paper uses the fol-
lowing updating process:

n pnþ 1� pð Þh ð7Þ
when p ¼ 1, the target network will be never updated and remains
at a constant value; when p ¼ 0, the target network will be updated
to the online network at each step. Therefore, we need a trade-off
value for p to update the target network at a proper speed.

4.4. Training method

As is shown in Fig. 1, the loss function in DGB is the mean
squared error between online network predictions q zð Þ and target
network projections z0. Before calculating the error, we first ‘2-
normalize the predictions and projections:

q zð Þ , q zð Þ= q zð Þk k2 ð8Þ

�z0 , z0= z0k k2 ð9Þ
The loss function is:

LDGB
h , q zð Þ � �z0k k22 ð10Þ
After getting LDGB

h , we seperately feed the second view aug-
mentation to the online network and the first view augmentation

to the target network to compute L
�

DGB
h . During each epoch



Fig. 1. The proposed deep graph bootstrapping model for graph representation learning. The model consists of online network and target network. The input of online and
target networks are two augmented views of the initial graph. We feed the first view to a graph convolution network (GCN) in order to obtain node representations, then the
representations are fed to two MLPs successively to get the projections and predictions; for the target network, the second view is fed to a GCN and one MLP to get
representations and projections. The objective function of the model is to minimize the regression loss between the predictions of the online network and the projections of
the target network. To note that, the parameters of the target network are not updated by gradient descent. After training, we only use the GCN layer of the online network to
get node representations for downstream tasks.
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training, LDGB
h + L

�
DGB
h is used to minimize via stochastic optimiza-

tion with respect to the parameters of GNNh;MLPpro
h and MLPpre

h .
After training, we only keep the GNN layer of the online net-

work GNNh, and use GNNh to compute the representations for
downstream tasks.
5. Experiments

5.1. Datasets

In this section, we implement experiments to prove the effec-
tiveness of the DGB model. The datasets in our experiments are
three standard benchmark citation network datasets, namely Cora,
Citeseer, and Pubmed [40]. In the three datasets, nodes represent
documents, edges correspond to citations, and each node has a fea-
ture vector corresponding to the bag-of-words representation.
Each node can be divided into one of the several classes. More
details about the three datasets are in Table 1. Following the exper-
imental setup in [1], we use the same data splits.
5.2. Evaluation protocol

We train the DGB model to get each node’s low dimensional
representation based on the node features and the interactions
between nodes. After the training process of the DGB model, we
use a linear evaluation to prove the effectiveness of the learned
representations. Following DGI [11], we show the mean classifica-
Table 1
Statistics of benchmark datasets.

Dataset Nodes Edges

Cora 2708 5429
Citeseer 3327 4732
Pubmed 19717 44338
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tion accuracy on the test nodes after 50 runs of training followed
by a linear model.

To note that, the standard deviation of 50 runs in our experi-
ments is very small so we don’t list it in Table 2.

5.3. Baselines

To comprehensively evaluate the proposed DGB model, we
compare it with six supervised methods and eight unsupervised
methods in Table 2.

� LP [41] combines a Gaussian random field model and a
weighted graph representing labeled and unlabeled data for
semi-supervised learning.
� PLANETOID [42] proposes joint training of class label prediction
and neighborhood context prediction for each node.
� CHEBYSHEV [43] proposes a formulation of convolutional neu-
ral networks with the help of spectral graph theory.
� GCN [1] generalizes traditional convolution network to graph
structure data.
� GAT [3] puts attention mechanism into GCN.
� GWNN [44] leverages graph wavelet transform instead of graph
fourier transform.
� RAW FEATURES method trains the node features using a logistic
regression classifier and gives the results on the test node fea-
tures [8].
� DEEPWALK [9] learns representations via random walks and
skip-gram models on graphs.
Features Classes

1433 7
3703 6
500 3



Table 2
Mean classification accuracy in percent for supervised and unsupervised models on three benchmark datasets. We list the data available to each model during training in the third
column. X, A, and Y represent node features, adjacency matrix and node labels, respectively.

METHOD Available Data Cora Citeseer Pubmed

LP A, Y 68.0 45.3 63.0
PLANETOID X, Y 75.7 62.9 75.7
CHEBYSHEV X, A, Y 81.2 69.8 74.4
GCN X, A, Y 81.5 70.3 79.0
GAT X, A, Y 83.0� 0.7 72.5�0.7 79.0�0.3
GWNN X, A, Y 82.8 71.7 79.1

RAW FEATURES X 56.6�0.4 57.8�0.2 69.1�0.2
DEEPWALK X, A 70.7�0.6 51.4�0.5 74.3�0.9
EP-B X, A 78.1�1.5 71.0�1.4 79.6�2.1
GMI-mean X, A 82.7�0.2 73.0�0.3 80.1�0.2
GMI-adaptive X, A 83.0�0.3 72.4�0.1 79.9�0.2
DGI X, A 82.3�0.6 71.8�0.7 76.8�0.6
GMNN(with qh) X, A 78.1 68.0 79.3
GMNN(with qh and p/) X, A 82.8 71.5 81.6
DGB(ours) X, A 83.9 74.3 82.3
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� EP-B [45] learns node representations by passing label repre-
sentations and gradients between neighboring nodes.
� GMI [8] maximizes the mutual information between node fea-
tures and topological structure.
� DGI [11] maximizes mutual information between local patch
representations and the global representation.
� GMNN [46] combines the advantages of graph neural network
and the statistical relational learning to learn node
representations.

The results of LP and DEEPWALK are taken from [1], and the
results of RAW FEATURES and CHEBYSHEV are taken from [8,16]
respectively. We take the results of other methods from their orig-
inal papers.
5.4. Experiments setup

We implement all the experiments in Pytorch [47] on a single
GPU Tesla K80 with 11 GB memory size. We use Glorot initializa-
tion [48] to initialize the parameters of the model. We also perform
row normalization on the three datasets for preprocessing. For
graph convolution encoder, we use one layer on the three datasets.
The optimizer we use for training is Adam optimizer [49] and the
initial learning rate is 0.001 for Cora and Pubmed, 0.0001 for
Citeseer.

In DGB model, the data augmentation methods play an impor-
tant role. Consequently, we conduct extensive experiments that
apply different data augmentation combinations to DGB, and the
results are listed in Table 3. In these experiments, after training,
we only feed the initial node features and the adjacent matrix
without any data augmentation to the GCN encoder then we get
node representations for classification task.
5.5. Experiment analysis

From Table 2, it is apparent that DGB can perform the best
among the recent state-of-the-art methods. For example, on Cora,
DGB can improve GMI-adaptive by a margin 0.9%, and improve
GMI-mean by a margin 1.3% on Citeseer.

We consider this improvement benefitting from two points:
one is that the DGB model can learn from its previous version
and does not need well-designed negative examples; the other is
that node augmentation methods generate multiple node feature
matrixes in different epochs, which alleviates overfitting to some
extent and improves the DGB’s robustness.
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5.6. Results under different graph data augmentations

In order to demonstrate the relationship between different
graph data augmentations and the performances of the DGBmodel,
we combine different augmentations in DGB and show the results
in Table 3. In node augmentation experiments, we only use the
adjacent matrix; while in adjacent augmentation experiments,
we use the initial node features without node dropout or node fea-
ture dropout. For fairness, the experiments on one dataset in
Table 3 are under the same hyperparameters except for the drop-
out rate. We select the best dropout rate in node dropout and node
feature dropout from 0.1 to 0.9 with step 0.1. After training, we
feed the feature matrix and adjacent matrix without augmentation
to get representations for node classification.

Experimental results in Table 3 show the performances under
different graph data augmentations in DGB on Cora, Citeseer, and
Pubmed. From Table 3, we obtain several observations as follows:

� The results on the three datasets show that node augmentation
and adjacent augmentation can both improve the performances,
and combining the two augmentations can achieve higher per-
formances overall.
� For node augmentation, it is apparent to see NFD does better in
improving performance than ND. We suspect randomly drop-
ping one node’s entire features may lose too much information
and is difficult to predict for the other view.
� There is a clear trend: more combinations of data augmenta-
tions bring better performances. For node augmentation group,
the combination of NFD & ND can beat the other combinations
on the three datasets. Similarly, for node + adj augmentation
group, the combination of NFD + ADJ & ND + DIFF and
ND + ADJ & NFD + DIFF are better than other combinations.
� Since the graph diffusion brings more connections to the nodes,
the combination of ND + DIFF does not hurt the graph informa-
tion too much compared with ND + ADJ. As a result, the combi-
nation of NFD + ADJ & ND + DIFF is superior to the combination
ND + ADJ & NFD + DIFF.
� Though node augmentation and adjacent augmentation can
both benefit the model’s performance, node augmentation is
superior to adjacent augmentation. The results of NODE aug-
mentation group are much better than ADJ augmentation group
on all the three datasets. This may be because node augmenta-
tions can generate different node feature matrixes in each
epoch because of the randomness of the Bernoulli distribution,
while the diffusion matrix is the same across different epochs.
The randomness improves the performance and robustness of
the DGB model.



Table 3
Mean node classification accuracy under different combinations of data augmentations. In DGB model, two different augmentations of graph data learn from each other. For the
first column, we list one initial graph data and three kinds of graph data augmentations, NO, NODE, ADJ, NODE + ADJ represent no augmentation, node augmentation, adjacent
matrix augmentation, and the combination of node and adjacent matrix augmentation. For the second and third columns, we present the specific data augmentation
combinations. IN, NFD, ND, ADJ, DIFF denote initial node, node feature dropout, node dropout, initial adjacent matrix, and diffusion matrix, respectively.

First view Second view Cora Citeseer Pubmed

NO IN + ADJ IN + ADJ 68.4 60.7 68.0

NODE IN NFD 82.2 70.1 78.2
IN ND 79.8 69.1 78.7
NFD ND 82.6 71.1 79.6
NFD NFD 82.0 70.5 77.9
ND ND 79.0 68.4 78.0

ADJ DIFF ADJ 69.2 65.6 74.5

NODE + ADJ IN + ADJ NFD + DIFF 82.1 72.7 79.8
IN + ADJ ND + DIFF 80.5 66.6 79.6
NFD + ADJ IN + DIFF 82.8 72.5 78.9
ND + ADJ IN + DIFF 80.0 71.3 79.3
ND + ADJ ND + DIFF 80.9 70.1 78.4
NFD + ADJ NFD + DIFF 83.2 72.9 79.1
ND + ADJ NFD + DIFF 83.5 73.0 80.1
NFD + ADJ ND + DIFF 83.9 74.3 82.3
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5.7. Ablation study

In this section, we consider the function of a multilayer percep-
tron for projection in our DGB model and how the bootstrapping
mechanism helps the DGB model. We conduct experiments on
the three datasets with and without a multilayer perceptron for
projection. For analysizing the bootstrapping mechanism, we
seperately let p = 0 and p = 1. When p = 0, the target network will
copy the parameters of the online network after each epoch train-
ing; meanwhile the target network parameters will remain con-
stant values when p = 1.

As is shown in Table 4, the performances of the DGB model with
and without MLP have a big difference on the three datasets. Keep-
ing the target network parameters constant or changing them to
the online network parameters totally both hurt the performances.

We also visualize the node representations of the online net-
work using t-sne [50] on Cora dataset in Fig. 2. In Fig. 2, there
are four subgraphs: the representations of the DGB model, the
DGB model without a projection layer, the DGB model with p = 0
and p = 1.

Comparing the four subgraphs, we can see different classes of
the representations without the projection layer become tighter
and are not easy to distinguish. When p = 0, the representations
are better than the representations with p = 1, but they are both
worse than the representations with slow-moving average mecha-
nism. Not changing the target network parameters or changing
them totally are both not the best choice, and there is a trade-off
between the two choices.

5.8. Baselines with data augmentations

Data augmentations play an import role in the performances of
the DGB model. To analyse how the data augmentations affect the
performances in DGB and other baseline models, we apply the data
Table 4
Ablation study results

Cora Citeseer Pubmed

DGB 83.9 74.3 82.3
without projection 74.7 71.7 70.7
p ¼ 0 80.9 71.9 80.0
p ¼ 1 75.9 70.2 74.9
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augmentation methods, including node feature dropout, node
dropout and graph diffusion, to five representative baseline meth-
ods: GCN [1], GAT [3], GMNN(with qh and p/) [46], GMI [8] and DGI
[11]. To note that, in their release codes, GCN, GAT and GMNN all
utilize node feature dropout, so we apply node dropout and graph
diffusion to them. In the DGB model, data augmentation methods
are only leveraged during the training process. To get the final
node embeddings for node classification, we use the initial node
features and graph structures. For fair comparsion, data augmenta-
tion methods are only used during training in the augmented GCN,
GAT, GMI, GMNN and DGI. We first reproduce the results of the five
models and change the dropout rate from 0.1 to 0.9 with step 0.1,
then report the best results among different dropout rates.

From Tables 5–9, we can see the influence of data augmenta-
tions on DGB model and baseline methods are totally different.
For the five baseline methods, data augmentation methods have
limited improvement in several cases, and they hurt the perfor-
mances in most cases. However, from Table 3, data augmentation
methods can efficiently improve the performances in a regular
manner.

This is due to the fact that different methods learn representa-
tions based on different internal mechanisms. For instance, for
supervised models such as GCN and GAT, it is the label information
that supervises models to learn discriminative representations. The
core of DGI is maximizing the mutual information between the
high-level summaries and patch representations, which helps
DGI to learn efficient representations. For GMNN, it treats neigh-
borhood nodes as pseudo labels and models the joint distribution
of node labels. For GMI, it is mainly maximizing the mutual infor-
mation between the input of node features and topological struc-
ture and the corresponding output. When applying node dropout
and node feature dropout to GMI, we find it is hard to converge,
and the performances drop heavily.

However, many self-supervised learning methods are sensitive
to the choice of data augmentations. For instance, SimCLR [25]
and BYOL [12] both have a big performance decrease when impro-
per data augmentation methods are selected. As for DGB, the main
point is to let the representations of one augmented view predic-
tive of another augmented view of the same graph. Based on the
mutual predictions of different augmented views of the same
graph, effective representations can be learned. As a result, data
augmentations play a more important role in the performances
than other baseline methods.



Table 5
The performances of GCN model with data augmentations

Cora Citeseer Pubmed

Report 81.5 70.3 79.0
Reproduce 81.7 70.6 79.0
Add ND 83.1 71.4 78.2
Add Diffusion 81.6 65.4 78.9
Add Diffusion & ND 82.8 70.0 78.7
DGB 83.9 74.3 82.3

Table 6
The performances of GAT model with data augmentations

Cora Citeseer Pubmed

Report 83.0 72.5 79.0
Reproduce 82.9 72.5 79.0
ADD ND 83.5 72.4 78.8
Add Diffusion 71.3 63.8 73.5
Add Diffusion & ND 72.4 64.8 74.2
DGB 83.9 74.3 82.3

Table 7
The performances of GMNN(with qh and p/) model with data augmentations

Cora Citeseer

Report 82.8 71.5
Reproduce 82.7 71.7
Add ND 82.2 70.3
Add Diffusion 79.2 57.6
Add Diffusion & ND 78.3 60.0
DGB 83.9 74.3

Table 8
The performances of GMI-mean model with data augmentations

Cora Citeseer

Report 82.7 73.0
Reproduce 82.8 72.0
Add ND 31.9 23.1
Add NFD 31.9 23.1
Add Diffusion 79.8 70.7
Add Diffusion & NFD 15.7 23.1
Add Diffusion & ND 31.9 23.1
Add Diffusion & NFD & ND 31.9 23.1
DGB 83.9 74.3

Fig. 2. The visualization of the representations on Cora dataset.
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Table 9
The performances of DGI model with data augmentations

Cora Citeseer Pubmed

Report 82.3 71.8 76.8
Reproduce 82.3 71.8 77.0
Add NFD 83.7 72.9 77.9
Add ND 79.6 64.1 71.4
Add NFD & ND 80.0 63.6 71.3
Add Diffusion 82.2 73.2 76.3
Add Diffusion & NFD 81.8 73.3 76.4
Add Diffusion & ND 80.5 66.2 71.7
Add Diffusion & NFD & ND 80.5 70.9 71.5
DGB 83.9 74.3 82.3

F. Che, G. Yang, D. Zhang et al. Neurocomputing 456 (2021) 88–96
6. Conclusion

In this paper, we introduce a new self-supervised graph repre-
sentation learning method DGB. DGB relies on two neural net-
works: online network and target network, and the input of each
neural network is an augmentation of the initial graph. With the
help of the bootstrapping process, the online network and target
network can learn from each other. As a result, DGB does not need
negative examples and can learn representations in an unsuper-
vised manner. Experiments on three benchmark datasets show
DGB is superior to state-of-the-art methods. In addition, we sys-
tematically conclude different graph data augmentation methods:
node augmentations, adjacent matrix augmentations and the com-
bination of them. We also apply different data augmentation types
to DGB and experiment results show how different augmentation
methods affect the performances of the DGB. As we only apply
DGB to the homogeneous network, we will focus on how to gener-
alize the DGB model to heterogenous information networks in the
future.
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[3] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph
attention networks, arXiv preprint arXiv:1710.10903..

[4] D.K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-
Guzik, R.P. Adams, Convolutional networks on graphs for learning molecular
fingerprints, in: Advances in Neural Information Processing Systems, 2015, pp.
2224–2232..
95
[5] T. Wang, Y. Zhou, S. Fidler, J. Ba, Neural graph evolution: Towards efficient
automatic robot design, arXiv preprint arXiv:1906.05370..

[6] S. Vivona, K. Hassani, Relational graph representation learning for open-
domain question answering, arXiv preprint arXiv:1910.08249..

[7] F.-Y. Sun, J. Hoffmann, J. Tang, Infograph: Unsupervised and semi-supervised
graph-level representation learning via mutual information maximization,
arXiv preprint arXiv:1908.01000..

[8] Z. Peng, W. Huang, M. Luo, Q. Zheng, Y. Rong, T. Xu, J. Huang, Graph
representation learning via graphical mutual information maximization,
Proceedings of The Web Conference (2020) 259–270.

[9] B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social
representations, in: Proceedings of the 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2014, pp. 701–710.

[10] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei, Line: Large-scale information
network embedding, in: Proceedings of the 24th International Conference on
World Wide Web, 2015, pp. 1067–1077.

[11] P. Velickovic, W. Fedus, W.L. Hamilton, P. Liò, Y. Bengio, R.D. Hjelm, Deep graph
infomax., in: ICLR (Poster), 2019..

[12] J.-B. Grill, F. Strub, F. Altché, C. Tallec, P.H. Richemond, E. Buchatskaya, C.
Doersch, B.A. Pires, Z.D. Guo, M.G. Azar, et al., Bootstrap your own latent: A
new approach to self-supervised learning, arXiv preprint arXiv:2006.07733..

[13] L. Page, S. Brin, R. Motwani, T. Winograd, The pagerank citation ranking:
Bringing order to the web, Tech. rep, Stanford InfoLab, 1999.

[14] R.I. Kondor, J. Lafferty, Diffusion kernels on graphs and other discrete
structures, in: Proceedings of the 19th International Conference on Machine
Learning, vol. 2002, 2002, pp. 315–22..

[15] A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 855–864.

[16] K. Hassani, A.H. Khasahmadi, Contrastive multi-view representation learning
on graphs, arXiv preprint arXiv:2006.05582..

[17] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, M. Sun, Graph neural
networks: A review of methods and applications, arXiv preprint
arXiv:1812.08434..

[18] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S.Y. Philip, A comprehensive survey on
graph neural networks, IEEE transactions on neural networks and learning
systems..

[19] Z. Zhang, P. Cui, W. Zhu, Deep learning on graphs: A survey, IEEE Transactions
on Knowledge and Data Engineering..

[20] H. Van Hasselt, Y. Doron, F. Strub, M. Hessel, N. Sonnerat, J. Modayil, Deep
reinforcement learning and the deadly triad, arXiv preprint arXiv:1812.02648..

[21] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, A.
Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, et al., Human-level control
through deep reinforcement learning, Nature 518 (7540) (2015) 529–533.

[22] T.P. Lillicrap, J.J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, D.
Wierstra, Continuous control with deep reinforcement learning, arXiv preprint
arXiv:1509.02971..

[23] X. Liu, F. Zhang, Z. Hou, Z. Wang, L. Mian, J. Zhang, J. Tang, Self-supervised
learning: Generative or contrastive, arXiv preprint arXiv:2006.08218 1 (2)..

[24] C. Doersch, A. Gupta, A.A. Efros, Unsupervised visual representation learning
by context prediction, in: Proceedings of the IEEE International Conference on
Computer Vision, 2015, pp. 1422–1430.

[25] T. Chen, S. Kornblith, M. Norouzi, G. Hinton, A simple framework for
contrastive learning of visual representations, arXiv preprint
arXiv:2002.05709..

[26] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, Improving language
understanding by generative pre-training..

[27] A. v. d. Oord, N. Kalchbrenner, O. Vinyals, L. Espeholt, A. Graves, K.
Kavukcuoglu, Conditional image generation with pixelcnn decoders, arXiv
preprint arXiv:1606.05328..

[28] L. Dinh, D. Krueger, Y. Bengio, Nice: Non-linear independent components
estimation, arXiv preprint arXiv:1410.8516..

[29] L. Dinh, J. Sohl-Dickstein, S. Bengio, Density estimation using real nvp, arXiv
preprint arXiv:1605.08803..

[30] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching word vectors with
subword information, Transactions of the Association for Computational
Linguistics 5 (2017) 135–146.

[31] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep
bidirectional transformers for language understanding, arXiv preprint
arXiv:1810.04805..

[32] Y. Li, C. Gu, T. Dullien, O. Vinyals, P. Kohli, Graph matching networks for
learning the similarity of graph structured objects, arXiv preprint
arXiv:1904.12787..

[33] R.D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A.
Trischler, Y. Bengio, Learning deep representations by mutual information
estimation and maximization, arXiv preprint arXiv:1808.06670..

[34] K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for unsupervised
visual representation learning, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020, pp. 9729–9738.

[35] M. Caron, P. Bojanowski, A. Joulin, M. Douze, Deep clustering for unsupervised
learning of visual features, in: Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 132–149.

[36] D. Guo, B.A. Pires, B. Piot, J.-B. Grill, F. Altché, R. Munos, M.G. Azar, Bootstrap
latent-predictive representations for multitask reinforcement learning, arXiv
preprint arXiv:2004.14646..

http://refhub.elsevier.com/S0925-2312(21)00515-4/h0040
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0040
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0040
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0045
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0045
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0045
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0045
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0050
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0050
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0050
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0050
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0065
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0065
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0065
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0075
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0075
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0075
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0075
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0105
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0105
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0105
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0120
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0120
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0120
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0120
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0150
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0150
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0150
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0170
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0170
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0170
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0170
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0175
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0175
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0175
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0175


F. Che, G. Yang, D. Zhang et al. Neurocomputing 456 (2021) 88–96
[37] Y.D.Y.H.H.L.Q.X.Q.Y.J.T. Wenzheng Feng, Jie Zhang, Graph random neural
network, arXiv preprint arXiv:2005.11079..

[38] J. Klicpera, S. Weißenberger, S. Günnemann, Diffusion improves graph
learning, Advances in Neural Information Processing Systems (2019) 13354–
13366.

[39] Y.-H. Tang, D. Zhang, G.E. Karniadakis, An atomistic fingerprint algorithm for
learning ab initio molecular force fields, The Journal of Chemical Physics 148
(3) (2018) 034101.

[40] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, T. Eliassi-Rad, Collective
classification in network data, AI Magazine 29 (3) (2008) 93.

[41] X. Zhu, Z. Ghahramani, J.D. Lafferty, Semi-supervised learning using gaussian
fields and harmonic functions, in: Proceedings of the 20th International
conference on Machine learning (ICML-03), 2003, pp. 912–919.

[42] Z. Yang, W. Cohen, R. Salakhudinov, Revisiting semi-supervised learning with
graph embeddings, in: International Conference on Machine Learning, 2016,
pp. 40–48.

[43] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on
graphs with fast localized spectral filtering, in: Advances in Neural Information
Processing Systems, 2016, pp. 3844–3852..

[44] B. Xu, H. Shen, Q. Cao, Y. Qiu, X. Cheng, Graph wavelet neural network, arXiv
preprint arXiv:1904.07785..

[45] A.G. Duran, M. Niepert, Learning graph representations with embedding
propagation, in: Advances in Neural Information Processing Systems, 2017, pp.
5119–5130..

[46] M. Qu, Y. Bengio, J. Tang, Gmnn: Graphmarkov neural networks, arXiv preprint
arXiv:1905.06214..

[47] N. Ketkar, Introduction to pytorch, in: Deep Learning with Python, Springer,
2017, pp. 195–208..

[48] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward
neural networks, in: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, 2010, pp. 249–256.

[49] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint
arXiv:1412.6980..

[50] L. v. d. Maaten, G. Hinton, Visualizing data using t-sne, Journal of Machine
Learning Research 9 (Nov) (2008) 2579–2605..

Feihu Che, born in 1996, he received the B.S. degree
from School of Automation, China University of Geo-
sciences in 2017. He is currently a PHD student in the
National Laboratory of Pattern Recognition, Institute of
Automation, Chinese Academy of Sciences, Beijing. His
main research covers graph representation learning,
knowledge graph and data mining.
Guohua Yang received her Ph.D. degree from the Bei-
jing University of Posts and Telecommunications in
2019. Now she is an assistant professor of National
Laboratory of Pattern Recognition (NLPR), Institute of
Automation, Chinese Academy of Sciences. Her research
interests include Natural Language Processing and
Machine Learning. She is a member of the Human-
Machine Interaction Committee of the Chinese Society
of Image and Graphics, the Chinese Information Society
of China, and the Natural Language Understanding
Committee of China Artificial Intelligence Society.
96
Dawei Zhang received PhD from Institute of Automa-
tion, Chinese Academy of Sciences in 2017. He is now an
associate professor of National Laboratory of Pattern
Recognition (NLPR), Institute of Automation, Chinese
Academy of Sciences. His research interests include
pattern recognition, natural language processing and
knowledge reasoning. He has published tens of papers
on MTA, AAAI, ICASSP, ICPR, JCAD, etc.
Jianhua Tao, received PhD from Tsinghua University in
2001. He is Winner of the National Science Fund for
Distinguished Young Scholars and the deputy director in
NLPR, CASIA. He has directed many national projects,
including ‘‘863”, National Natural Science Foundation of
China. His interests include speech synthesis, affective
computing and pattern recognition. He has published
more than eighty papers on journals and proceedings
including IEEE Trans. on ASLP, and ICASSP, INTER-
SPEECH. He also serves as the steering committee
member for IEEE Transactions on Affective Computing
and the chair or program committee member for major
conferences, including ICPR, Interspeech, etc.
Tong Liu received Phd from Shanghai Jiao Tong
University in 2018. He is now the assistant professor in
NLPR, CASIA. His interests include online big data
analysis, decision support systems, knowledge graph,
and natural language processing. He has published
many papers on core academic journals include Data
Analysis and Knowledge Discovery, System Engineering
Theory and Practice, Application Research of Computers
etc.

http://refhub.elsevier.com/S0925-2312(21)00515-4/h0190
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0190
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0190
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0195
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0195
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0195
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0200
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0200
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0205
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0205
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0205
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0205
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0210
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0210
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0210
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0210
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0240
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0240
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0240
http://refhub.elsevier.com/S0925-2312(21)00515-4/h0240

	Self-supervised graph representation learning via bootstrapping
	1. Introduction
	2. Related works
	3. Unsupervised graph representation learning
	4. Deep graph bootstrapping
	References


