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   Abstract—The  paper  deals  with  the  consensus  problem  in  a
leaderless network of agents that have to reach a common velocity
while  forming  a  uniformly  spaced  string.  Moreover,  the  final
common velocity (reference velocity) is determined by the agents
in a distributed and leaderless way. Then, the consensus protocol
parameters  are  optimized  for  networks  characterized  by  a
communication  topology  described  by  a  class  of  directed  graphs
having  a  directed  spanning  tree,  in  order  to  maximize  the
convergence  rate  and  avoid  oscillations.  The  advantages  of  the
optimized consensus protocol are enlightened by some simulation
results  and  comparison  with  a  protocol  proposed  in  the  related
literature.  The  presented  protocol  can  be  applied  to  coordinate
agents such as mobile robots, automated guided vehicles (AGVs)
and  autonomous  vehicles  that  have  to  move  with  the  same
velocity and a common inter-space gap.
    Index Terms—Consensus  protocols,  directed  spanning  tree,  multi-
agent systems, networked systems, second-order consensus.
  

I.  Introduction

THE  distributed  control  problem  of  multi-agent  networks
received  tremendous  attention  in  the  last  decades  due  to

its  applications  in  different  areas  [1].  Each  agent  is  a
dynamical  system and the problem of  reaching an agreement
on all  or  some components  of  the  agents’ status  is  known as
consensus problem.  The  consensus  problem  for  first-order
multi-agent  systems  has  been  largely  studied  considering
different aspects: switching topology and time-delays [2]–[4];
nonuniform time-varying  delays  [5];  diverse  time-delays  and
jointly-connected  topologies  [6];  stabilization  problem  with
time  delay  controlled  by  a  distributed  PID  regulator  [7];
leaderless and leader-following consensus [8].

Moreover,  several  types of  nonlinear  vehicle dynamics can
not  be  feedback  linearized  into  single-,  but  into  double-
integrators and third order multiagent systems [9].  Therefore,
formal  analysis  of  consensus  problems  for  second-order
systems are provided by [10]–[16]. In particular, [15] demons-
trates  that  the  real  and  imaginary  parts  of  the  eigenvalues  of
the  Laplacian  matrix  of  the  corresponding  network  play  key
roles  in  reaching  consensus.  In  addition,  in  systems  modeled

by double-integrator dynamics, [16] investigates two kinds of
different consensus strategies for multi-vehicle systems with a
time-varying  reference  velocity  under  a  directed  communi-
cation  topology.  In  [17],  the  authors  study  a  decentralized
control action for platooning maneuvers in vehicular networks
embedding  the  spacing  policy  information  as  well  as  all  the
time-varying communication delays. Recently, a more general
class  of  high-power  multi-agent  systems  described  by  an
extension of second-order nonlinear models are studied in [18]
and  [19].  Consensus  and  distributed  control  of  multi-agent
systems  also  find  applications  in  combination  with  adaptive
neural  networks,  as  shown  in  [20]  where  the  authors
simultaneously  guarantee  practical  finite-time  stability  and
asymptotic convergence.

In  the  literature,  both  the  leaderless  consensus  and  the
leader-following  consensus  problems  have  been  studied
depending  on  whether  or  not  there  is  a  virtual  leader
specifying  the  global  information  [21].  More  precisely,  in  a
leaderless  consensus  problem,  there  does  not  exist  a  virtual
leader,  while  in  a  leader-following  consensus  problem,  there
exists a virtual leader that specifies the objective for the whole
group  [8].  For  example,  the  authors  of  [21]  study  a  leader-
follower  consensus  problem  for  a  set  of  agents  subject  to
control  input  saturation.  In  addition,  [22]  considers  a
distributed leader-following consensus for second-order multi-
agent  systems  with  nonconvex  velocity  and  control  input
constraints.  On  the  contrary,  a  leader  is  not  required  in  the
approach  proposed  by  [23],  but  it  is  mandatory  that  at  least
one agent of the network knows the reference velocity. For a
leader-following  multi-agent  system,  [24]  studies  the
consensus  control  of  such  systems  with  heterogeneous
disturbances  generated  by  the  Brownian  motion,  developing
an adaptive protocol based on Riccati inequalities. In addition,
[25] integrates the distributed sliding-mode control  algorithm
to  investigate  the  tracking  control  issue  for  second-order
leader–follower multi-agent systems subject to nonlinearities.

Some advantages of leaderless consensus with respect to the
leader-following  approach  have  been  enlightened  in  the
related  literature.  In  particular,  leaderless  consensus  typically
scales  better  and  is  more  fault-tolerant  than  leader-following
consensus  [26].  Moreover,  the  presence  of  leaders  also
decreases  the  degree  of  autonomy of  the  network  [27],  since
the  leaders  generate  global  desired  trajectories  of  agents,
whereas in many practical missions,  the agents need to reach
autonomous agreement on an a priori unknown quantity.

Furthermore,  an  important  problem  concerning  consensus
algorithms  is  their  convergence  speed  in  order  to  implement
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them in real  applications.  In linear systems, a measure of the
convergence  speed  is  the  smallest  non-zero  real  part  (for  the
continuous-time  case)  or  magnitude  (for  the  discrete-time
case) of the system eigenvalues. Some efforts in this field are
performed  also  in  [28]–[33].  The  authors  of  [28]  propose  an
iterative  algorithm  for  maximizing  the  second  smallest
eigenvalue of  a  state-dependent  graph Laplacian.  In  [29]  and
[30],  communication  time  delay  is  considered  in  the  optimal
consensus problem. Furthermore, [31] provides a closed form
for the optimal gains of some consensus protocols. Reference
[32]  is  concerned  with  the  consensus  convergence  rate  for
second  order  multi-agent  systems:  the  fastest  consensus
convergence  rate  under  the  protocol  is  derived  based  on  the
assumption that all the eigenvalues of the Laplacian matrix are
real.  In  [33],  the  explicit  expression  of  the  maximum
convergence  rate  is  established,  and  then,  the  effects  of
control parameters on the convergence rate are analyzed.

The  convergence  speed  problems  in  discrete-time  systems
are  recently  analyzed  in  [34]  and  [35].  In  [34]  the  authors
maximize the convergence speed of multi-agent systems with
discrete-time double-integrator  dynamics,  optimally  choosing
the  free  parameters  of  the  consensus  protocol.  The  same
authors in [35] optimize the consensus protocol speed subject
to a lower bound on damping.

The aim of this paper is studying a consensus protocol to be
applied  by  a  leaderless  network  of  autonomous  agents  that
have  to  reach  a  common velocity  while  forming  a  uniformly
spaced  string.  In  addition,  the  paper  objective  is  optimizing
the  protocol  parameters  to  maximize  the  convergence  speed
by  avoiding  oscillations.  This  paper  starts  from  existing
second  order  consensus  protocols,  for  instance  proposed  in
[14], [32], [36], and it considers a protocol to be applied by a
leaderless network of autonomous agents that have to reach a
common  velocity  while  forming  a  uniformly  spaced  string.
More  precisely,  the  value  of  the  final  common  velocity
(reference  velocity)  is  decided  by  the  agents  through  the
consensus  protocol,  starting  from  an  initial  desired  value  for
each  agent.  Furthermore,  the  agents  communicate  in  a
communication  network  described  by  a  directed  graph
(digraph)  having  a  directed  spanning  tree.  We  propose  and
prove  the  conditions  that  the  consensus  parameters  have  to
satisfy to guarantee the asymptotic stability of the multi-agent
system dynamics. Then, we show that the consensus protocol
parameters  can  be  optimized  in  order  to  maximize  the
convergence  speed  and  avoid  oscillations,  if  the  network
topology is described by a class of connected digraphs.

Hence,  the  new contributions  of  the  paper  are  described in
the following.

1)  We  propose  and  prove  the  conditions  that  the  two
protocol parameters and the communication topology have to
satisfy  in  order  to  ensure  that  the  proposed  second  order
consensus is achieved in the multi-agent system.

2) We optimize the protocol parameters to obtain the fastest
convergence  avoiding  oscillations  for  a  class  of  connected
digraphs  having  a  directed  spanning  tree.  To  the  best  of  our
knowledge,  few  authors  deal  with  the  problem  of  the
maximum  convergence  rate.  However,  the  contributions  of

[31]–[33]  optimize  the  convergence  by  using  only  one
protocol  parameter,  while  we  solve  the  more  complex
problem involving two protocol parameters.

3)  The  optimal  values  of  the  parameters  to  maximize  the
convergence  speed  require  that  the  communication  topology
has  a  directed  spanning  tree  and  symmetric  strong  compo-
nents. This new result is not presented in the related literature.
Moreover,  we  characterize  the  digraphs  having  a  Laplacian
matrix  whose  eigenvalues  are  all  real.  Indeed,  the  works  of
[31]–[33]  introduce  the  assumption  of  real  eigenvalues
considering indirect graphs or without providing conditions of
the topology for digraphs.

In  order  to  enlighten  the  advantages  of  the  proposed
optimized consensus protocol, simulation results are presented
and a comparison with respect to the approaches described in
[31]–[33] is analyzed.

Finally, regarding the possible applications of the proposed
leaderless consensus protocol, we remark it can be applied to
coordinate  moving  agents  such  as  mobile  robots,  automated
guided  vehicles  (AGVs)  and  autonomous  vehicles,  also  in
emergency  situations.  Indeed,  these  agents  have  to  converge
to  the  average  of  their  desired  velocities,  while  forming  a
uniformly  spaced  string.  For  example,  the  algorithm  can  be
implemented  by  automated  vehicles  on  highways,  in  foggy
conditions,  to  stay uniformly spaced with  a  constant  velocity
that  tries  to  satisfy  the  driver’s  preferences  [37].  In  other
words,  a  virtual  safety  car  concept  can  be  implemented,
without the presence of a leader that is difficult  to be elected
in emergency situations.

The  remainder  of  this  paper  is  organized  as  follows.  Sec-
tion II describes preliminary definitions and the problem formu-
lation.  Section  III  proposes  the  protocol  and  proves  the
conditions that the protocol parameters have to satisfy in order
to ensure that the multi-agent system control is asymptotically
stable.  Section  IV  proposes  a  criterion  for  choosing  the
protocol  parameters  to  optimize  the  convergence  speed  and
Section V provides numerical results to validate the proposed
method. Finally, Section VI draws the conclusions.  

II.  Preliminaries and Problem Formulation
  

A.  Preliminary About Graph Theory
In this section, some basic concepts about graph theory are

introduced [38], [39].

G = (V,E)
V = {1, . . . ,n}

E ⊆ V×V

(i, j) ∈ E

G
(i, i1), (i1, i2), . . . , (il, j) ik
k = 1,2, . . . , l

The  communication  topology  of  the  group  of  agents  is
described  by  a  directed  graph  (digraph)  that
consists of a set of n vertices  connected by a set
of edges . In this context, each vertex represents an
agent  and  each  directed  edge  represents  the  information
exchange between two agents:  if agent j can receive
information  from  agent i,  where i and j are  called  child  and
parent  vertices,  respectively.  A directed  path from  vertex j
to  vertex  vertex i in  is  a  sequence  of  edges

 in  the  digraph  with  distinct  vertices ,
. A root r is a vertex having the property that for

each vertex i different from r, there is a directed path from r to
i.  A directed  tree is  a  digraph  in  which  there  is  exactly  one
root  and  each  vertex  except  for  the  root  has  exactly  one
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G
parent.  A directed  spanning  tree is  a  directed  tree,  which
consists of all the vertices and some edges in .

N(i)
N(i) = { j ∈ V : (i, j) ∈ E}

n×n A = [ai, j] ai, j = 1
j ∈ N(i) ai, j = 0

L = [li, j]
n×n

li,i = −
∑n

j=1 ai, j

li, j = −ai, j i , j L L1n = 0n 0n
1n

µ0 = 0 L 1n

ξT 1n = 1

We  denote  the  neighborhood  of  vertex i by ,  i.e.,
.  The  adjacency  matrix  of  a  graph  is

the  matrix ,  defined  such  that  if
,  and  otherwise.  A  fundamental  matrix  that

can be associated to a graph is the Laplacian matrix ,
which  is  an  matrix  that  can  be  derived  from  the
adjacency  matrix.  Its  elements  are  defined  as 
and , .  A  property  of  is ,  where 
and  denote the n-dimensional column vectors of all 0’s and
1’s, respectively. Hence,  is an eigenvalue of  and 
is an associated right eigenvector. Moreover, let ξ indicate the
corresponding left eigenvector, chosen so that .

Now, the following result is recalled.
L

µ0 = 0
G

Lemma  1  [15]: The  Laplacian  matrix  has  a  simple
eigenvalue  and all  the other eigenvalues have positive
real parts if and only if digraph  has a directed spanning tree.

GA  digraph  is  said strongly  connected if  for  any  two
vertices i and j there is an oriented path from i to j.

G
G

G

A  strongly  connected  component  of  a  digraph  is  a  sub-
digraph  of  that  is  strongly  connected  and  is  maximal  with
this  property.  The  collection  of  strongly  connected
components  forms  a  partition  of  the  set  of  vertices  of .
Moreover, we said symmetric a strongly connected component
characterized by a symmetric Laplacian matrix.

The following remark is introduced in order to characterize
the  structure  of  the  Laplacian  matrix  in  relation  with  the
strongly connected components of a digraph [39].

GRemark 1: Once the vertices of  are partitioned in strongly
connected  components,  the  corresponding  adjacency  matrix
and  Laplacian  matrix  can  be  put  into canonical  form by
relabelling  the  rows  and  the  columns  in  a  specific  manner
[39]. The general version of the canonical form for a digraph
partitioned  in z strongly  connected  components  is  the
following:
 

T =



T1 0 0 ... 0
∗ T2 0 ... 0
...

...
. . .

...
...

∗ ∗ .... Tz−1 0
∗ ∗ .... ∗ Tz


. (1)

It is clear that the canonical form consists of square diagonal
blocks  corresponding  to  the  connections  within  strongly
connected  components,  zero  to  the  right  of  these  diagonal
blocks and some elements zero or non-zero (denoted by “*”)
to the left of each diagonal block.  

B.  Mathematical Tools
H ∈ R(n−1)×nLet  denote the following difference matrix:

 

H =


1 −1 0 ... 0
0 1 −1 0

0 0
. . .

. . . 0
0 0 .... 1 −1

 .

H+ = HT (HHT )−1
H has  full  row-rank,  so  its  (right)  Moore-Penrose  inverse

can  be  computed  as .  Moreover,  one  can

K (H) = S (1n) K S
1n

easily  check  that ,  where  and  denote  the
kernel  and  the  span  operations,  respectively,  and  is  the
vector  of n elements  equal  to  1.  Now,  we  provide  a  basic
result.

T ∈ Rn×n U ∈ Rm×n m < n
K (U) ⊆ K (T)

Proposition  1: Let  and ,  with ,  be
full  row-rank  matrices.  If ,  then  the  following
equality holds:
 

T = TU+U. (2)
Proof: Let us rewrite (2) as

 

T
(
In−U+U

)
= On (3)

On×m n×m n = m
On In n×n

where  denotes the  null matrix and when  we
write . Analogously,  denotes the  identity matrix.

U+U K⊥ (U)
K (U) In−U+U K (U) K⊥ (U)

S (
In−U+U

)
=K (U)

v ∈ Rn

It  is  known  that  is  the  projector  onto  along
 and  is the projector onto  along :

this  implies  that .  So,  for  any  vector
 we have

 (
In−U+U

)
v ∈ K (U) .

K (U) ⊆ K (T)Therefore, since , we have
 

T
(
In−U+U

)
v = 0n.

∀v ∈ RnSince  this  equation  must  hold ,  the  assertion  (3)  is
proved. ■

K (H) = S (1n) ⊆ K (L)
L

We have that ; Therefore, Theorem 1
can be applied to  and H
 

L =LH+H. (4)
L

LH+
In other words, regardless of the graph topology,  can be

decomposed  as  the  product  of  matrix  ( )  and  the
difference matrix H.  

C.  Problem Statement
i = 1,2, ...,n

xi
vi ui

The  dynamics  of  agent i for  is  described  by  a
second-order  system  where  denotes  the  position  of  the
agent,  its velocity and  the control input
 [

ẋi
v̇i

]
=

[
0 1
0 0

] [
xi
vi

]
+

[
0
1

]
ui.

Moreover, the positions, velocities, and inputs of the multi-
agent  system  are  denoted  by  the n-dimensional  vectors x, v,
and u, respectively.

Thus, the multi-agent system dynamics can be written as
 [

ẋ
v̇

]
=

[
On In
On On

] [
x
v

]
+

[
0n
u

]
. (5)

v̄
d̄

Multi-Agent  System  Control  Problem: The  multi-agent
system control problem is to attain the following behaviour of
the  agent  dynamics:  i)  Each  agent  must  reach  and  steadily
keep  a  common reference  velocity ;  ii)  All  the  agents  must
be spaced with uniform interspace gap .

d(t) = Hx(t) ∈ R(n−1)Denoting  by  the  inter-agent  distance
vector,  the  objective  of  the  multi-agent  system  control
problem can be formally denoted as follows:
 

lim
t→+∞

d(t) = d̄, lim
t→+∞

v(t) = v̄ (6)

d̄ = 1n−1d̄ v̄ = 1nv̄where  and .  
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III.  Multi-Agent System Consensus Protocol

In  this  section  we  present  the  second  order  consensus
protocol and prove the conditions that the protocol parameters
and  the  communication  topology  have  to  satisfy  in  order  to
ensure  that  the  consensus  in  the  multi-agent  system  is
achieved.  

A.  The Consensus Protocol

G
Lx Lv

The  multi-agent  system  control  problem  is  solved  by  a
consensus  algorithm.  In  particular,  if  the  communication
topology  of  the  agents  group  is  described  by , u explicitly
depends  on  and ,  which  in  the  literature  is  known  as
relative  feedback [40].  Moreover,  each  agent  can  include  its
own  velocity  value  in  the  control  law:  this  is  known  in  the
literature as absolute feedback [40].

yi(0) i = 1, . . . ,n

yi
i = 1, . . . ,n

We assume the common reference velocity that  each agent
has  to  reach  is  unknown  to  the  agents.  More  precisely,  each
agent i starts  from an initial  value  for  of  the
reference velocity and by the following consensus protocol the
agents reach a common value of the reference velocity  for

:
 

ẏi = −η
∑

j∈N(i)

ai j
(
yi− y j

)
, with η ∈ R+. (7)

Now, the following consensus algorithm is proposed:
 

ui = −
∑

j∈N(i)

ai j[(xi− x j)− d̄(i− j)−γ(vi− v j)]

− κ (vi− yi) with γ,κ ∈ R+. (8)

v̄ d̄

In  other  words,  by  using  (8),  each  agent  can  communicate
its own velocity and the relative distance with its neighbours,
such  an  assumption  is  very  common  in  the  related  literature
[16],  [34]–[36].  Assuming  that  each  agent  has  to  reach  a
common reference velocity  and the same inter-space ,  the
rationality of algorithm (8) is the following: by the first terms
each  agent  communicates  the  actual  distance  from  its
neighbour  and  the  objective  inter-space  to  be  imposed
between two nearby agents; analogously by the second terms
the  agents  communicate  the  actual  difference  between  the
velocities  of  its  neighbours  and  the  reference  velocity.
Parameters γ and κ determine the weights given to the relative
and absolute velocity feedbacks,  respectively,  with respect  to
the distance (relative) feedback. In other words, with a higher
value  of γ,  the  control  puts  more  weight  on  the  global  error.
Instead,  with  a  higher  value  of κ each  agent  becomes  more
“selfish”, giving its absolute velocity error more importance.

yi i = 1, . . . ,n

yi(0)
vi(0)

Protocol (8) makes  for  converge to a common
value,  which  depends  on  the  communication  topology  and
initial  values .  This  avoids  the  need  for  a  leader  and  is
independent of the initial velocities .

−d̄
∑

j∈N(i)(i− j)
−d̄Li i = [1, . . . ,n]T Hi =

−1n−1 −d̄Li = −d̄LH+Hi =
LH+ d̄

Let us rewrite control law (8) in vector form by denoting y
the vector of velocity references. Note that  is
the i-th  component  of ,  with .  Since 

,  then  by  Proposition  1  it  holds: 
. Therefore, control law (8) can be written as

 

u = −Lx+LH+ d̄−γLv− κ (v− y) (9)

and (7) becomes
 

ẏ = −ηLy. (10)
Substituting (9) in (5) and adding (10) in the state equations

(5), the dynamics of the multi-agent system is the following:
  ẋ

v̇
ẏ

 =
 On In On
−L − (γL+ κIn) κIn
On On −ηL

︸                                 ︷︷                                 ︸
A

 x
v
y

+
 0n
LH+ d̄

0n

 .
(11)

Matrix A can be partitioned as follows:
 

A1,1 =

[
On In
−L − (γL+ κIn)

]
, A1,2

[
On
κIn

]
A2,1 =

[
On On

]
, A2,2 = −ηL.

A
A1,1 A2,2

A1,1

The  spectrum  of  is  the  union  of  the  spectra  of  matrices
 and .  As  it  is  shown  in  [41],  the  characteristic

polynomial of  is the following:
 

pA1,1 (λ) =
n−1∏
i=0

(
λ2+ (κ+γµi)λ+µi

)
. (12)

A2,2Moreover, the characteristic polynomial of  is
 

pA2,2 (λ) =
n−1∏
i=0

(λ+ηµi) .

A1,1The eigenvalues of  are
 

λi,± =
− (κ+γµi)±

√
(κ+γµi)2−4µi

2
(13)

i = 0, . . . ,n−1for .
Note that the y dynamics is independent of the dynamics of

the rest of the multiagent system and the convergence value is
 

y(t)→ v̄1n

v̄ = ξT y(0) −ηL
ξT 1n = 1

with ,  where ξ is  the  left  eigenvector  of 
associated to its null eigenvalue, chosen so that .
  

B.  Multi-Agent System Control Problem
In order to solve the multi-agent system control problem, a

change  of  variables  of  system  (11)  is  performed  as  it  is
described by the following proposition.

p= Hx− d̄
q = v− y r = Hy

Proposition 2: Let  us define the new variables ,
 and .  Then,  the dynamics of  system (11) can

be described by the following equation:
  ṗ

q̇
ṙ

 =
 On−1 H In−1
−LH+ − (γL+ κIn) (η−γ)LH+
On−1 On−1,n −ηHLH+

︸                                                ︷︷                                                ︸
F

 p
q
r

 . (14)

Proof: We define the following new variables:
 

ṗ= Hẋ = Hv = H (q+ y) = Hq+ r

q̇ = v̇− ẏ = −Lx+LH+ d̄−γLv− κ (v− y)−ηLy

= −LH+p− (γL+ κIn) q+ (η−γ)LH+r

ṙ = Hẏ = −ηHLy = −ηHLH+Hy = −ηHLH+r.
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Equation (14) describing the system follows. ■
Note  that  the  multi-agent  system  control  problem  (6)  is

equivalent to making system (14) asymptotically stable.
Let us partition F into the following 4 blocks:

 

F1,1 =

[
On−1 H
−LH+ − (γL+ κIn)

]
, F1,2 =

[
In−1

(η−γ)LH+

]
F2,1 =

[
On−1 On−1,n

]
, F2,2 = −ηHLH+.

F1,1 F2,2
A

Now  we  prove  that  the  spectrum  of F is  the  union  of  the
spectra of  and  and we show that it coincides with the
spectrum of , up to the two null eigenvalues.

Lemma 2: The eigenvalues of matrix F are the roots of
 

(λ+ κ)
n−1∏
i=1

(λ+ηµi)
(
λ2+ (κ+γµi)λ+µi

)
= 0. (15)

F2,2 L
Proof: Let  us  start  with  the  determination  of  the

characteristic  equation of .  We transform matrix  to  its
Jordan canonical form by ponting out the null eigenvalue and
the corresponding eigenvectors
 

L = PJQ =
[

1n P′
] [ 0

J′

] [
ξ∗

Q′

]
= P′J′Q′

with
 

In = PQ = 1nξ
∗+ P′Q′.

Now, we have
 ∣∣∣λIn+ηHLH+

∣∣∣ = ∣∣∣λHInH++ηHLH+
∣∣∣

=
∣∣∣λH

(
1nξ
∗+ P′Q′

)
H++ηHP′J′Q′H+

∣∣∣
=

∣∣∣HP′
(
λIn−1+ηJ′

)
Q′H+

∣∣∣ .
F2,2So, the eigenvalues of  are the roots of

 

n−1∏
i=1

(λ+ηµi) = 0. (16)

λI2n−1−F1,1Now, let us compute the determinant of 
 ∣∣∣λI2n−1−F1,1

∣∣∣ = ∣∣∣∣∣∣ λIn−1 −H
LH+ (λ+ κ) In+γL

∣∣∣∣∣∣
= |λIn−1|

∣∣∣(λ+ κ)In+γL+LH+λ−1H
∣∣∣

= λ−1 |λ (λ+ κ) In+ (1+γλ)L| . (17)
Note that it holds

 

|λIn+L| =
n−1∏
i=0

(λ+µi) . (18)

Then, by comparing (17) with (18) we obtain
 ∣∣∣λI2n−1−F1,1

∣∣∣ = λ−1
n−1∏
i=0

(λ (λ+ κ)+ (1+γλ)µi) . (19)

L µ0 = 0Since  has  at  least  one null  eigenvalue,  i.e., ,  from
(16) and (19) equation (15) follows. ■

G
F1,1 λ0 = −κ

2n−2

Remark  2: By  Lemma  1,  if  digraph  has  a  directed
spanning  tree,  then  has  one  eigenvalue  and  the
other  eigenvalues are given by (13).

Now,  we  prove  the  conditions  that γ and κ must  satisfy  in

order  to  ensure  that  system  (14)  is  asymptotically  stable,  so
that  protocol  (9)  successfully  solves  the  multi-agent  system
control problem.

G
Theorem 1: Consider a set of agents that communicate in a

network topology described by a digraph  that has a directed
spanning tree. The dynamics of the multi-agent system (14) is
asymptotically stable if and only if it holds
 

αi
(
α2

i +β
2
i

)
γ2+

(
2α2

i +β
2
i

)
γκ+αiκ

2−β2
i > 0 (20)

i = 1, . . . ,n−1 αi = R[µi] βi = I[µi] R[c]
I[c]
for ,  with  and  (  and

) denote the real and imaginary parts of complex number
c, respectively).

G

R[λ] = −R[ηµi] < 0 ∀i = 1, . . . ,n−1

Proof (Only if): Let us consider the factors of (15). If  has
a directed spanning tree, then according to Remark 2 it holds

 . Moreover, let us consider
the remaining factors of (15)
 

λ2
i + (κ+γµi)λi+µi = 0 with i = 1, . . . ,n−1. (21)

Using  the  Routh-Hurwitz  criterion  for  second-order
polynomial with complex coefficients, we have that matrix F
is Hurwitz-stable if and only if
 

R
[
κ+γµi

]
> 0 for i = 1, . . . ,n−1 (22)

and
 

R
[
κ+γµi

]
R

[
(κ+γµi)µi

]−I [µi
]2 > 0 for i = 1, . . . ,n−1. (23)

γ,κ ∈ R+
R[µi] > 0

Condition  (22)  is  always  verified,  since  and
.

µi = αi+ jβiWriting condition (23) with , we obtain
 

(κ+γαi)
(
(κ+γαi)αi+γβ

2
i

)
−β2

i > 0. (24)

After some calculations, result (20) follows from (24).
Proof  (If): Let  us  assume  that  (20)  is  verified,  then  (24),

(23),  (22)  follow.  Hence,  by  the  Routh-Hurwitz  criterion
equation  (21)  is  Hurwitz-stable  and  system  (14)  is
asymptotically stable. ■

(γ,κ)

(γ,κ)
µi

(γ,κ)

Let  us  consider  the  plane:  Each  inequality  of  (20)
defines  a  region  of  stability  in  the  plane,  limited  by  a
hyperbola.  More  precisely,  in  order  to  obtain  stability,  the
point  must  lie  beyond  a  set  of “critical  hyperbolae”,
where the i-th hyperbola depends only on . Fig. 1 shows the
stable  and  unstable  regions  of  the  plane  that  such
inequality produces.
 

Stable

γ

κ

Unstable

 
(γ,κ)Fig. 1.     A critical hyperbola in the  plane.

 

κ = 0
Theorem 1 generalizes  the stability  conditions presented in

the  related  literature  [17],  [32]  and  [33]  that  consider .
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γ = 0
κ >

|βi |√
αi

κ = 0

γ >

√
1
αi

β2
i

α2
i +β

2
i

Indeed,  if  (no  relative  feedback  on  velocity  control),
(20)  becomes  [17].  Moreover,  if  (no  absolute

feedback  on  velocity  control),  we  get  [32],
[33].

Now  the  following  corollary  characterizes  the  digraphs
having the Laplacian matrix exhibiting real eigenvalues.

G G
L G µ0 = 0

∀γ,κ ∈ R+

Corollary  1: If  all  the  strongly  connected  components  of
digraph  are symmetric and  has a directed spanning tree,
then  of  has a simple eigenvalue  and the other ones
are real: in such a case (20) is verified .

G
L

L
G

G
G L G

µ0 = 0
∀γ,κ ∈ R+

Proof: According  to  Remark  1,  the  Laplacian  matrix  of 
can  be  put  into  canonical  form (1)  and  the  eigenvalues  of 
are the eigenvalues of the diagonal blocks of  associated to
each  strongly  connected  components  of .  Now  if  such
Laplacian diagonal blocks are symmetric, then the eigenvalues
of each block are real. Hence, we can conclude that if all the
strongly  connected  components  of  digraph  are  symmetric
and  has a directed spanning tree, then  of  has a simple
eigenvalue , the other ones are real and (20) is verified

.

−R[ηµi] < R[λi] ∀i = 1, . . . ,n−1

Finally,  we enlighten that  no constraint  on the parameter η
is necessary for stability. However, a possible choice could be
selecting η such that  .  

IV.  Eigenvalue Allocation for the Controlled Multi-
Agent System

In this section the eigenvalues of matrix F are optimized by
choosing  parameters γ and κ in  order  to  maximize  the
convergence speed and avoid large oscillations.

G

µ0 = 0 µi ∈ R+ i = 1, . . . ,n−1

To this aim we assume that the communication digraph  is
characterized  by  a  Laplacian  matrix  with  eigenvalues  such
that:  and  for  arranged  in
increasing  order  with i.  This  condition  is  satisfied  by  the
network topologies described by indirect graphs or the class of
digraphs specified by Corollary 1.

The objectives of the eigenvalue allocation problem are:
i)  Avoiding  large  oscillations  and  speeding  up  the

convergence  by  selecting  a  real  dominant  eigenvalue  and
maximizing the its absolute value;

ii)  Allocating the non-dominant eigenvalues as far away as
possible from the imaginary axis.

Λ =
{
λ |λ is an eigenvalue of F

}
Let us denote by  the set of

eigenvalues of F. We define the following function:
 

f1(γ,κ) =min
{−R [

λ(γ,κ)
] |λ ∈ Λ} for γ,κ ∈ R+.

Moreover,  let  us  introduce  the  set  of  eigenvalues  with
minimum absolute real part for given values of γ and κ
 

Λ̄ = {λ ∈ Λ | −R[λ(γ,κ)] = f1(γ,κ)}
Λ′ = Λ \ Λ̄and the set of the remaining eigenvalues .

Now, a second function is defined as follows:
 

f2(γ,κ) =min
{−R [

λ(γ,κ)
] |λ ∈ Λ′} for γ,κ ∈ R+.

Problems i) and ii) can be formally defined by the following
optimization problems P1 and P2, respectively:

maxγ,κ∈R+ f1(γ,κ) I
[
λ(γ,κ)

]
= 0P1) , s.t. ;

maxγ,κ∈R+ f2(γ,κ)P2) .
The  following  proposition  provides  a  solution  of  problems

P1 and P2 in closed form.

G

µ0 = 0 µi ∈ R+
i = 1, . . . ,n−1 G

Proposition 3: Consider a set of agents that communicate in
a  network  topology  described  by  a  digraph  that  has  a
directed  spanning  tree  and  all  the  strongly  connected
components  symmetric.  Let  and  for

 be the eigenvalues of the Laplacian matrix of 
arranged  in  increasing  order  with i.  Then  the  eigenvalues  of
the  controlled  system (14)  that  solve  P1 and P2 are  obtained
by the following values of γ, κ and η:
 

γ̄ =
2
√
µ1

µ1+µ2
, κ̄ =

2µ2
√
µ1

µ1+µ2
, η̄≫ 1

√
µ1
. (25)

Proof: The proof is in the Appendix.  

V.  Numerical Results and Comparisons

GP

In  this  section  we  provide  numerical  results  and
comparisons  to  show  the  performance  of  the  proposed
consensus  protocol.  We assume that  the  agents  communicate
by the topology  (Fig. 2) that is characteristic of a group of
agents  that  have  to  move  in  a  chain  and  do  not  include  a
leader.  By  Theorem  4  of  [42],  the  real  eigenvalues  of  the
corresponding Laplacian matrix are the following:
 

µi = 2
(
1− cos

( iπ
n

))
for i = 0, . . . ,n−1. (26)

n = 8

d(0)
v(0)

y(0)
d̄

γ̄ κ̄

η̄ = 10√
µ1

We  test  a  scenario  of  agents  that  can  be  robots  or
AGVs  in  industrial  environments.  The  agents  queue  up  to
each  other  with  the  initial  conditions  reported  in Table I that
shows  the  initial  inter-agent  distance  vector  (in  metres),
the  initial  velocities  (in  m/s),  the  initial  reference
velocities  (in  m/s)  (selected  higher  than  the  initial
velocities),  the fixed distance  (in metres) and the values of
the selected parameters  and  chosen according to (25) with

.

 

1 2 n−1 n

 
GPFig. 2.     Communication digraph .

 

 

TABLE I 

Initial Conditions of the Tested Scenario and Parameters

Parameters UM Values

γ̄ unit 1.0574

κ̄ unit 0.6194

η̄ unit 25.62

d̄ m 4

d(0) m [4.26,1.44,5.40,2.73,2.11,2.85,2.32]T

v(0) m/s [0.47,0.10,1.58,0.70,1.35,1.74,1.25,1.34]T

y(0) m/s [1.94,1.62,1.99,2.35,2.37,1.77,1.71,2.07]T
 

 264 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 9, NO. 2, FEBRUARY 2022



The  simulation  outputs  are  reported  in Figs. 3 and 4,
showing  the  position  and  velocity  trends  over  time,
respectively.
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GPFig. 3.     Positions over time for the network topology .
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GPFig. 4.     Velocities over time for the network topology .

 
GP1

GP
GP1

L γ̄ = 1.1355
κ̄ = 0.6652 η̄ = 10√

µ1

In addition, let us consider the communication topology 
obtained  from  of Fig. 2 where  two  connections  are
dropped as shown in Fig. 5. It is apparent that  has a direc-
ted  spanning  tree  and  symmetric  strongly  connected  compo-
nents.  Hence,  according to Corollary 1 and Proposition 3 the
eigenvalues  of  are  real  and  the  values  of ,

 and  are  chosen  according  to  (25).  The
results of the simulation are reported in Figs. 6 and 7, showing
how the agents reach the convergence values of positions and
velocities, respectively.
 

1 2 3 4 5 6 7 8

 
GP1Fig. 5.     Communication digraph .

 

GP1 GP2

γ̄ = 0.7429

In  order  to  show  how  the  proposed  consensus  protocol
works in situations where an increasing number of communi-
cation links are disconnected, we consider the communication
topologies  and  shown in Figs. 8 and 9,  respectively.
The  obtained  digraphs  have  a  directed  spanning  tree  and
symmetric  strongly  connected  components.  If  the  values  of
the parameters are selected according to (25) (i.e., ,

κ̄ = 0.7429 γ̄ = 0.8944
κ̄ = 0.8944

 for  the  digraph  of Fig. 8 and ,
 for  the digraph of Fig. 9),  the velocity  behaviours

resulting from the simulations are reported in Figs. 10 and 11,
showing  that  the  agents  reach  the  consensus  with  similar
convergence speeds.  

A.  Some Comparisons

µi
i = 0, . . . , (n−1)

In this subsection we compare the proposed protocol with a
similar method presented in the related literature. In particular,
we  consider  the  protocols  proposed  in  [32]  and  [33]  that  are
applied  to  undirected  graph  topologies  characterized  by
Laplacian  matrices  with  real  non-negative  eigenvalues  for

 

ui = −
∑

j∈N(i)

(
xi− x j

)
−γ1

∑
j∈N(i)

(vi− v j). (27)
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GP1Fig. 6.     Positions over time for the network topology .
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GP1Fig. 7.     Velocities over time for the network topology .
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GP2Fig. 8.     Communication digraph .
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GP3Fig. 9.     Communication digraph .
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te−
√
µ1t

√
µ1

Note that  choosing the parameter  values  according to  (25),
the  dominant  eigenvalues  of  the  controlled  system  (14)
determine  an  exponential  decay  of  type ,  so  the
convergence speed is . The maximum convergence speed
of (27) is
 √

µ1µn−1

2µn−1−µ1
=
√
µ1

√
µn−1

µn−1+ (µn−1−µ1)
<
√
µ1.

It  is  apparent  that  by  introducing  the  new parameter κ,  the
proposed protocol can reach a greater convergence speed than
protocol (27).

GP

d̄ γ̄
κ̄ η̄

Now  we  compare  the  two  algorithms  by  some  numerical
results. We test some scenarios where agents communicate by
the  network  topology  shown  in Fig. 2.  The  initial
conditions  of  protocol  (8)  are  selected  at  random  in  the
intervals shown in Table II. Moreover, the values of ,  and
 and  are shown in Table I.

d̄ = 0 y(0) = v(0)
γ1 = 3.6609

In  addition,  for  the  comparison  algorithm (9)  is  adapted  to
algorithm  (27)  by  imposing  and .
Furthermore, we set  in (27).

The  comparison  is  performed  by  defining  the  following
scalar function:
 

V(t) = ∥v(t)− 1
n

11T v(0)∥ (28)

∥(·)∥ (·) 1
n 1T v(0)being  the  2-norm  of  vector  and  the

t0.5%convergence speed value of the two protocols. We use  as
performance index, defined by
 

V(t) ≤ 0.005V(0) ∀t ≥ t0.5%.

We  run  1000  cases  for  each  of  the  two  algorithms  and
averaged out the results. By applying protocol (9), we obtain
 

t0.5% = 27.05 s
and by applying (27) the performance index is
 

t0.5% = 29.82 s.
The  benefits  of  the  proposed  protocol  with  respect  to  the

similar  protocol  (27)  are  apparent:  i)  Improved  convergence
speed;  ii)  Possibility  of  reaching  a  common  reference  velo-
city  and  a  consensus  of  the  value  of  the  common  velocity;
iii) Possibility of reaching the uniform inter-space gap.  

VI.  Conclusions

This paper  considers  a  leaderless  consensus protocol  that  a
multi-agent  system  can  apply  in  order  to  reach  a  common
velocity  while  forming  a  uniformly  spaced  string.  The
leaderless agents are able also to reach a consensus about the
value  of  the  common  final  velocity  (reference  velocity)  by
starting from an initial desired value for each agent. We prove
the conditions that guarantee the consensus control rules allow
the  agents  stably  to  achieve  the  decided  inter-vehicular
distance  and  the  common  velocity.  Moreover,  the  optimal
eigenvalues  allocation  is  obtained  in  a  closed  form  of  the
control  parameter  values  for  a  class  of  digraphs  having  a
directed  spanning  tree  and  modelling  the  communication
network topology.

The advantage of the method is that a leader is not required
and  by  the  optimized  protocol  parameters  the  fastest  rate  of
convergence avoiding oscillations is guaranteed. However, the
optimization  of  control  parameter  values  depends  on  the
communication  graph  topology:  if  the  topology  changes,  the
parameters must be updated by calculating the eigenvalues of
the Laplacian matrix.

Future  research  directions  will  focus  about  the  assessment
of  the  protocol  in  presence  of  constraints  on  agent  velocities
and  accelerations.  Moreover,  investigations  about  the  impact
on  the  stability  and  convergence  of  the  delays  of
communication  will  be  analyzed.  To  this  aim  suitable
conditions  will  be  sought  to  guarantee  correct  behaviour  and
good performance of the protocol.  

Appendix
Proof of Proposition 3

F1,1

Proof: Let  us  consider  the  eigenvalues  of  the  submatrix
. Taking into account (13), one has

 

max
γ,κ
{−R[λi+],−R[λi−]} = √µi (29)
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GP2Fig. 10.     Velocities over time for the network topology .
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GP3Fig. 11.     Velocities over time for the network topology .

 

 

TABLE II 

Initial Conditions of Tested Scenarios for the Comparison

Parameters Values

di(0) ∼U(1,10) m

vi(0) ∼U(0, 2.5) m/s

yi(0) ∼U(1.5,2.5) m/s
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A1,1 κ+γµi−2
√
µi = 0

G
G

µi

λ1+ = λ1− = −
√
µ1

i.e.,  condition  (29)  holds  when  the  dominant  eigenvalues  of
 are real and coincident ( ).  Now, if dig-

raph  has a  directed spanning tree and all  the strongly con-
nected components of  are symmetric, then, by Corollary 1,
the eigenvalues  are  real  and can be arranged in  increasing
order  with i.  Consequently,  we  choose  as  dominant  eigen-
values .

(γ,κ) γ,κ ∈ R+In order to solve P1, the -plane for  is divided
into  4  regions  (A, B, C,  and D)  by the  following straight  line
as shown in Fig. 12:
 

κ+γµ1 = 2
√
µ1. (30)

 

γ

κ

A

D

BC

μ1

μ1

1

 
(γ,κ)Fig. 12.     The -plane divided into 4 regions.

 

f1
Then,  we  determine  or  bound  the  value  of  the  objective

function  in each region.
Region A is the segment defined by (30) and

 

0 < γ ≤ 1/
√
µ1 ⇔

√
µ1 ≤ κ < 2

√
µ1. (31)

λ1,+ = λ1,− = −
√
µ1

i = 2, . . . ,n−1
In  this  region, ,  while,  by  substituting

(30) into (13) for , we get
 

λi,± = −
√
µ1−
γ (µ1−µi)

2

±

√
γ2 (µi−µ1)2+4(µi−µ1)

(
γ
√
µ1−1

)
2

.

−R[λi,±] ≥ √µ1 −R[λ0] = κ ≥ √µ1

f1(γ,κ) =
√
µ1

Imposing (31), it holds , .
Therefore,  we  conclude  that  in  region A we  have

.
Region B is the segment defined by (30) and

 

1/
√
µ1 < γ < 2/

√
µ1 ⇔ 0 < κ <

√
µ1.

−R[λ0] = κ <
√
µ1

f1(γ,κ) <
√
µ1

It  is  immediate  that ,  therefore  in  this
region .

κ+γµ1 < 2
√
µ1. λ1,±Region C is  defined  by  In  this  case, 

are complex conjugates and it holds
 

−R[λ1,±] =
κ+γµ1

2
<
√
µ1.

f1(γ,κ) <
√
µ1As a consequence, we obtain .

κ+γµ1 > 2
√
µ1 λ1,+Region D is defined by . In this case  is

a real number and it holds
 

−R[λ1,+] =
κ+γµ1−

√
(κ+γµ1)2−4µ1

2
<
√
µ1.

(γ,κ)
max f1(γ,κ) =

√
µ1

µi , µ1

We  conclude  that  P1  is  solved  when  is  in  region A
defined by (30) and (31) and . Note that the
dominant  eigenvalues  are  real  and coincident  to  avoid strong
oscillations.  Moreover,  if  different  dominant  eigenvalues  are
selected,  i.e., ,  then  a  different  straight  line  is

γ,κconsidered in the plane ( ).  However, region A provides in
any case the optimal solution of P1.

To  solve  P2,  let  us  assume  that  the  solution  is  obtained
imposing
 

R

−(κ+γµ2)±
√

(κ+γµ2)2−4µ2

2

 = −κ (32)

which is satisfied when
 

κ = γµ2. (33)
Combining (30) and (33) we obtain (25).

γ̄, κ̄)
κ = κ̄ κ < κ̄

κ > κ̄

Now,  we  show  that  the  pair  (  of  (25)  solves  P2.  Note
that three cases are possible for κ:  (case 1),  (case 2)
and  (case 3).

−R[λ2,±] = −R[λ0] = κ̄Let  us  consider  case  1: .  The  other
eigenvalues are
 

λi,± =
κ̄

2

−
(
1+
µi

µ2

)
±

√√(
1+
µi

µ2

)2

− µi (µ1+µ2)2

µ1µ
2
2

 (34)

i = 3, . . . ,n−1for .
−R[λi,±] > −κ̄ λi,±Let  us  verify  that .  If  are  complex

conjugates or real coincident, we have
 

−R[λi,±] =
κ̄

2

(
1+
µi

µ2

)
=
κ̄

2

(
2+
µi−µ2

µ2

)
> κ̄

µi−µ2 > 0 λi,±
−R[λi,+] > κ̄ −R[λi,−] > κ̄

because .  If  are  real  distinct,  we  only  have  to
check that , since  is trivially verified.
Since the inequality
 

(µi−µ2)−
√

(µi−µ2)2− µi

µ1
(µ2−µ1)2 > 0

−R[λi,+] > κ̄
f2(γ,κ) = κ̄

holds, we have that (34) implies . Thus, in case 1
we have .

κ < κ̄ f2(γ,κ) < κ̄In case 2, since , we get .
λ2,±
−R[λ2,±]

Lastly,  in  case  3  it  is  verified  that  are  complex
conjugates.  If  we  compute  the  derivative  of  with
respect to κ, we obtain
 

d
(−R[λ2,±]

)
dκ

=
1
2

(
1+µ2

dγ
dκ

)
=

1
2

(
1− µ2

µ1

)
< 0.

−R[λ2,±] < κ̄ f2(γ,κ) < κ̄
Since  the  derivative  is  negative,  we  conclude  that

 and, therefore, again we have .
F2,2

−√µ1

Finally,  we  consider  the  eigenvalues  of  the  submatrix 
provided  by  (16).  In  order  to  guarantee  that  the  dominant
eigenvalues of matrix F are equal to  we impose that
 

λi = −η̄µi≪−
√
µ1

i.e.,
 

η̄≫ 1
√
µ1

proving the proposition. ■
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