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Abstract:    It is of great significance to guarantee the efficient statistics of high-speed railway on-board equipment fault information,
which also improves the efficiency of fault analysis. Considering this background, this paper presents an empirical exploration of named
entity recognition (NER) of on-board equipment fault information. Based on the historical fault records of on-board equipment, a fault
information recognition model based on multi-neural network collaboration is proposed. First, considering Chinese recorded data char-
acteristics, a method of constructing semantic features and additional features based on character granularity is proposed. Then, the two
feature representations are concatenated and passed into the gated convolutional layer to extract the dependencies from multiple differ-
ent subspaces and adjacent characters in parallel. Next, the local features are transmitted to the bidirectional long short-term memory
(BiLSTM) to  learn  long-term dependency  information. On top of BiLSTM, the sequential conditional random  field (CRF)  is used to
jointly decode the optimized tag sequence of the whole sentence. The model is tested and compared with other representative baseline
models. The results show that the proposed model not only considers the language characteristics of on-board fault records, but also has
obvious advantages on the performance of fault information recognition.
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1   Introduction

A high-speed  railway  is  a  complex  modern  engineer-

ing  system.  As  the  center  of  traffic  safety  control,  the

train control system plays an essential role in high-speed

railway construction. The on-board equipment is the core

technical equipment in the train control system, and it is

the key factor to ensure the traffic safety and improve the

transportation  efficiency.  When  the  on-board  equipment

of  high-speed  railway  breaks  down,  the  technical  staff

needs to record the fault information in the document one

by one. The document is written in natural language and

has the characteristics of extensive data scale. Due to the

limitation of  traditional  unstructured data analysis  tech-

nology, it is difficult to retrieve and analyze this kind of

fault text data effectively. Therefore, it is very important

to recognize  valuable  and  uniformly  formatted  informa-

tion from many unstructured natural language text data

for intelligent statistics and association analysis. Fault in-

formation recognition for on-board equipment mainly ex-

tracts the valuable entity information from on-board fault

records,  including  fault  date,  time,  location,  fault  cause,

fault analysis, treatment measure, etc. Therefore, this pa-

per uses the named entity recognition (NER) technology

to extract  the  specific  domain  information  from the  his-

torical  fault  records,  thus  realizing  the  fault  information

recognition of on-board equipment.

According to the data format, data can be divided in-

to structured  data,  semi-structured  data,  and  unstruc-

tured data. Structured data refers to the data stored and

organized by relational  databases expressed by a two-di-

mensional table  structure.  Contrary  to  the  former,  un-

structured data refers to information with no pre-defined

data model  or  is  not  organized in  a  pre-defined manner.

Unstructured information typically includes photos, video

and  audio  files,  text  files,  etc.  Compared  with  the  data

stored  in  the  database  in  the  form  of  fields,  the  lack  of

structure  makes  unstructured  data  more  challenging  to
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search,  manage,  and  analyze.  Semi-structured  data  is

between  structured  data  and  unstructured  data.  This

kind  of  data  does  not  conform  to  relational  databases

such  as  structured  query  language  (SQL)  but  contains

some  level  of  organization  through  semantic  tags  or

metadata, such as hypertext markup language (HTML)[1].

The purpose  of  NER  is  to  classify  entities  in  unstruc-

tured  text  into  pre-defined  categories.  NER  has  been

widely  used  in  the  general  field[2],  as  well  as  medical[3],

military[4],  chemical[5],  and  other  specific  fields.  At

present, the  main  technical  methods  of  NER can  be  di-

vided  into  rule-based  methods,  statistics-based  methods,

and deep  learning-based  methods.  The  rule-based  meth-

od relies too much on the dictionary and rule base. This

method  has  low recognition  ability  for  ambiguous  words

and out-of-vocabulary words and poor cross-domain port-

ability[6]. Statistics-based methods mainly include the hid-

den Markov model (HMM)[7],  maximum entropy Markov

model (MEMM)[8], and conditional random field (CRF)[9].

Among them, CRF has the best performance on usability,

stability, and accuracy. CRF is a discriminative probabil-

ity  model,  which  optimizes  the  global  parameters  after

considering all possible tag sequences and the correlation

between  adjacent  tags.  CRF overcomes  the  drawback  of

the independence  hypothesis  in  HMM and solves  the  la-

bel  bias  problems  in  MEMM[10, 11]. However,  all  these

methods  are  heavily  relying  on  feature  engineering  and

external resources.  Such  task  knowledge  is  costly  to  de-

velop, making sequence labeling models difficult to adapt

to new tasks or new domains[12].

In recent years,  recurrent neural network (RNN) and

convolution  neural  network  (CNN)  are  the  two  most

commonly  used  deep  learning  models[13, 14].  In  [13],  the

long  short-term  memory  (LSTM)  network  with  memory

capability is  used  to  deal  with  time  series  high  correla-

tion in the fault diagnosis of chemical processes. This pa-

per  optimizes  the  LSTM  network  based  on  the  original

LSTM neural  network  by  adding  the  link  to  the  tradi-

tional network  to  determine  the  optimal  number  of  hid-

den layer  nodes.  In  the  leak  detection  of  the  water  sup-

ply network, Hu et al.[14] divide the network into several

leakage areas to reduce the number of categories based on

spatial  clustering.  Each  area′s  number  is  marked  as  the

category label  of  the  multiscale  fully  convolutional  net-

works (MFCN).  Then,  feature  extraction  and  classifica-

tion are realized by MFCN. In the current research, with

the support  of  computational  power  and  word  distrib-

uted representation technology, the research focus of the

NER task has gradually shifted to the deep learning field.

Collobert et al.[15] proposed a model combining CNN and

CRF to capture the depth features of  sequential  tagging

tasks.  It  uses  a  simple  feed-forward  neural  network  to

limit  the  use  of  context  to  a  fixed-size  window  around

each word,  which  discards  useful  long-distance  relation-

ships between words. The bidirectional LSTM-CRF mod-

els for sequence tagging was proposed in [16]. The model

can use bidirectional LSTM to obtain past and future in-

put characteristics. Thanks to the CRF layer, statement-

level tag information can be used.  However,  their  effect-

iveness is limited by the lack of high-quality word embed-

ding  and  deep-seated  features.  Chiu  and  Nichols[17] pro-

posed  a  hybrid  network  of  LSTM  and  CNN  to  realize

NER.  This  network  can  automatically  detect  English

words  and  character-level  features,  eliminating  the  need

for most feature engineering. Liu and Chen[18] proposed a

Bi-CLSTM model for social  media named entity relation

extraction, and this model extracts relations via a hybrid

model of LSTM and piecewise-CNN. The model takes in-

to  account  the  long-distance  dependence  of  features  and

deep-seated feature extraction. Compared with tradition-

al machine learning methods, deep learning has more ad-

vantages in  feature  learning.  It  can  reduce  the  depend-

ence on  linguistic  knowledge  and complex  feature  engin-

eering and has strong robustness and generalization abil-

ity.

Although  the  NER  in  the  general  field  has  achieved

good  results,  most  of  them  are  related  to  English,  few

achievements  have  been  made  in  Chinese.  Moreover,

there is  still  a lack of research in the high-speed railway

field, which needs continuous research and expansion. At

present, there  are  many  challenges  in  the  fault  informa-

tion  recognition  for  on-board  equipment  of  high-speed

railway. Firstly, there is a lack of annotated corpus based

on  the  on-board  equipment  field.  Secondly,  most  of  the

descriptions  in  fault  records  are  unstructured  narrative

information, which  is  not  suitable  to  extract  entity  in-

formation only by grammatical structure. Third, the fault

records contain a large number of  named entities,  which

is a kind of knowledge-intensive text,  and the density of

entity distribution is higher than that of general domain

text. Fourth, because the fault information is recorded by

different technicians, the length of the entity and the ex-

pression of technical terms are various. For example, “重

新启动(Restart)”  can  also  be  written  as  “重启(Restart)”

when  describing  the  treatment  measure,  “K2073+500”

can also be written as “2 073.500 km” when describing the

kilometer mark. Therefore, it is necessary to design input

features  and  recognition  models  according  to  the  actual

on-board fault record language characteristics.

Based  on  the  application  requirements  for  on-board

equipment  fault  information  recognition,  a  recognition

model  considering  multi-neural  network  collaboration  is

proposed in this paper. Some studies show that the word-

based model is not as good as the character-based model

in the research of Chinese named entity recognition based

on  machine  learning[19, 20]. Therefore,  the  fault  informa-

tion descriptions  are  segmented with  character  granular-

ity to  avoid  the  error  propagation  caused  by  word  seg-

mentation errors.  Considering  the  language  characterist-

ics of on-board fault records, a construction method of se-

mantic  feature  representation  is  proposed.  An additional

feature representation  based  on  character-level  is  pro-
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posed to  improve  the  adaptability  of  the  entity  recogni-

tion  model  to  fault  information.  Then,  semantic  feature

representation  and  additional  feature  representation  are

combined,  and  the  gated  convolutional  layer  is  used  to

capture local  context  information.  It  can effectively  cap-

ture  local  features  and  alleviate  the  disappearance  of

gradients in the training process. Next, feed the local con-

text features into the BiLSTM to learn long-term depend-

ency context  information.  On  top  of  BiLSTM,  the  se-

quential CRF is used to jointly decode the optimized tag

sequence of the whole sentence.

In order to verify the correctness and effectiveness of

the  model,  this  work  compares  the  model  with  several

other baseline models by using the corpus of the on-board

equipment fault field. The experimental results show that

the model has obvious advantages on the performance of

fault information recognition. 

2   Fault information recognition model
of on-board equipment

The  essence  of  the  NER  task  is  a  kind  of  sequence

tagging  problem,  so  it  is  necessary  to  transform the  on-

board equipment fault information recognition task into a

sequence tagging. Taking the character granularity as the

basic  word  segmentation  unit,  each  character  is  labeled

by the BIOES (B: begin; I: inside; O: outside; E: end; S:

single)  method.  According  to  the  characteristics  of  fault

description, two vector representation schemes of semant-

ic  features  and  additional  features  are  used.  The  multi-

neural  network  collaboration  model  based  on  BiLSTM-

CRF  combined  with  gated  convolution  is  used  as  the

fault information  recognition  model  of  on-board  equip-

ment.  The  structure  of  the  model  is  shown  in Fig. 1.  It

consists of four parts: an embedding layer, a gated convo-

lutional  layer,  a  BiLSTM layer,  and  a  CRF layer.  Each

part  of  the  model  is  described  in  detail  in  Sections

2.1−2.3. 

2.1   Fault data tagging of on-board equip-
ment

Each character  in  the  corpus  of  the  on-board  equip-

ment fault field is labeled using the BIOES method. “B-

X” represents  the  beginning  of  the  entity,  “I-X”  repres-

ents the interior of  the entity,  “E-X” represents the end

of  the  entity,  “S-X”  represents  a  single  entity,  and  “O”

represents  outside  the  entity.  Previous  studies  have

shown  that  since  the  BIOES  method  can  obtain  more

abundant sequence position information,  the labeling ac-
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CRF layer

BiLSTM

layer

Gated

convolutional

layer

Backward

LSTM

Forward

LSTM

Additional

character features

Character

embedding

Embedding

layer

Input 雷 达 故 障

(Radar fault)

Fig. 1     Structure of multi-neural network collaboration model
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curacy of the BIOES-based method is higher than that of

the BIO-based method[21].

According to the on-board fault records contents, the

fault  named entity  is  divided into  ten types:  date,  time,

train number, vehicle number, terminal number, location,

kilometer mark,  fault  cause,  fault  analysis,  and  treat-

ment  measure.  To  clearly  explain  the  fault  information

recorded  by  the  technical  staff  in  the  document,  one  of

the  records  is  taken  as  an  example  and  labeled.  Take

“5月3日G2093次列车在藁城南—辛集南间K62+951处报测

速雷达故障(Train  G2093  reported  speed  radar  failure  at

K62+951  between  Gaocheng  South  and  Xinji  South  on

May 3)” as an example.

It can be seen from Table 1 that the fault records con-

tain relatively dense entity information. Accurate recogni-

tion  of  the  fault  entity  information  can  make  sufficient

preparation for intelligent retrieval, statistics, and associ-

ation analysis. 

2.2   Representation learning of fault data
 

2.2.1   Character-level distributed representation

The on-board fault information is recorded in the form

of text, which needs to be transformed into a vector form.

In traditional machine learning methods, the bag of word

(BOW)  model  is  usually  employed  to  represent  the

vector features of words, such as the one-hot representa-

tion[22].  This model has some advantages in dealing with

discrete  data,  but  it  ignores  the  order  of  words  and  the

semantic  relationship.  In  the  past  few  years,  non-linear

neural networks  with  input  distributed  word  representa-

tions, known as word embeddings, have been broadly ap-

plied to natural language processing problems with great

success. This distributed representation can convert each

word in the statements into a low-dimensional real-value

vector. The word embedding of the current word is calcu-

lated using  the  text  context  representation  through  lan-

guage models such as N-gram[23] and neural network[24].

E ∈ Rm×|V |

m

|V |

s = {w1, w2, · · · , wn}

ei ∈ Rm

When calculating the embedding of Chinese,  the sen-

tences  are  usually  segmented  with  word  granularity.

However, the on-board fault records contain a large num-

ber  of  professional  terms  related  to  the  railway  field.  If

word segmentation is carried out, different word segment-

ation  methods  may  get  distinct  recognition  boundaries,

resulting  in  entirely  different  sequence  tagging  results.

The  subsequent  recognition  model  cannot  judge  whether

the word  segmentation  is  correct,  which  leads  to  an  en-

tity  recognition  error.  In  order  to  limit  the  influence  of

segmentation error  propagation,  fault  information  de-

scriptions  are  segmented  with  character  granularity.

Word2vec[25] is a commonly used tool for learning embed-

ding. Continuous BOW model word2vec model based on

hierarchical softmax is used to represent characters in se-

mantic feature  vectors.  After  preprocessing,  the fault  re-

cords are represented as the serialized data. The charac-

ter  embedding  matrix  of  the  whole  corpus 

can be obtained, where  is the dimension of the charac-

ter embedding,  is the size of characters in the corpus.

In the distributed vector representation based on charac-

ter granularity, for a sentence , each

character in the sentence will be mapped to an m-dimen-

sional vector, that is . 

2.2.2   Additional character-level features

The  entity  information  recognition  of  on-board  fault

records belongs  to  the  category of  natural  language  pro-

cessing. The technical terms and specific descriptions are

still in line with the railway specifications. Through some

unique  keywords  and  features,  entity  boundaries  can  be

distinguished effectively.

tagi ∈ Rk

tagi
k

In the fault records, numbers, upper case letters, and

lower case letters usually exist in the entity of fault date,

time,  vehicle  number,  train  number,  terminal  number,

and  kilometer  mark.  This  information  rarely  appears  in

the non-entity content.  Therefore,  it  is  necessary to give

additional feature labels to numbers and upper and lower

case letters. Punctuation is often included in the entity of

time, vehicle  number,  location,  and kilometer  mark.  Ad-

ditional feature labels also need to be given to the punc-

tuation in the text. The entity name of the fault location

is  usually  recorded  in  Chinese  place-name  according  to

the  railway specifications.  Location entity  names  usually

include  place-name  elements  such  as  “站(station)”  and

“南(south)”.  Tagging  the  place-name  elements  is  helpful

for the model to distinguish the boundaries of location en-

tities.  Different  additional  feature  tags  are  mapped  to  a

multi-dimensional  continuous  value  vector  by

vectorization,  where  is  the  additional  feature  vector

of the i-th character, and  is the vector dimension. Addi-

tional features and tags are shown in Table 2. 

2.3   Fault information recognition based on
multi-neural network collaboration

To recognize the entity name of the on-board fault ef-

 

Table 1    Example of character tags

Sentence Tag Sentence Tag Sentence Tag

5 B-DAT 在 O + I-KIL

月 I-DAT 藁 B-LOC 9 I-KIL

3 I-DAT 城 I-LOC 5 I-KIL

日 E-DAT 南 I-LOC 1 E-KIL

G B-TRA − I-LOC 处 O

2 I-TRA 辛 I-LOC 报 O

0 I-TRA 集 I-LOC 测 B-FAU

9 I-TRA 南 E-LOC 速 I-FAU

3 E-TRA 间 O 雷 I-FAU

次 O K B-KIL 达 I-FAU

列 O 6 I-KIL 故 I-FAU

车 O 2 I-KIL 障 E-FAU
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fectively,  a  multi-neural  network  collaboration  model

based on  BiLSTM-CRF  combined  with  gated  convolu-

tion called GC-BiLSTM-CRF is proposed, which is illus-

trated  in Fig. 1.  The  embedding  layer  converts  input

characters into  embedding  according  to  distributed  rep-

resentation  and  converts  characters  into  feature  vectors

according to additional tags. These vectors are concaten-

ated  and  fed  to  the  gated  convolutional  layer  for  each

character to  extract  the  global  dependencies  from differ-

ent multiple subspaces and arbitrary adjacent characters.

The  formed  features  are  then  fed  into  a  bidirectional

LSTM to extract context features and generate a feature

matrix.  On  the  basis  of  BiLSTM,  a  sequential  CRF  is

used to jointly decode the tags for the whole sentence. 

2.3.1   Gated convolutional layer

Convolutional  neural  networks  are  widely  used  in

NER tasks  to  extract  local  information  of  text  features.

Pooling  operation  is  used  in  most  convolutional  neural

network models[17]. However, it is sensitive to pooling op-

erations  when  extracting  short  text  features.  Li  et  al.[26]

and Tang et al.[27] have verified through experiments that

the  pooling  operation  will  cause  information  loss  of  the

local position and sequence structure in the process of se-

quence modeling. In order to avoid the destruction of text

sequence information by down-sampling, this paper uses a

gated convolutional  layer  to  capture  local  correlation in-

formation between contexts in parallel on the sequence[28].

ei ∈ Rm

n

The  sentence  is  convoluted  based  on  the  character′s
granularity.  Let  be  the m-dimensional  vector

corresponding to  the i-th  character  in  the  sentence.  The

character-level  distributed  representation  constructed  by

a sentence of length  can be expressed as

e1:n = [e1, e2, · · · , en]T (1)

e1:n ∈ Rn×m T
tagi ∈ Rk

n

where ,  is  the  transpose  operation.  Let

 be  the  additional  feature  representation

corresponding  to  the i-th  character  in  the  sentence.  An

additional  feature  matrix  of  a  sentence  with  length  is

expressed as follows:

tag1:n = [tag1, tag2, · · · , tagn]T (2)

tag1:n ∈ Rn×k

x ∈
Rn×(m+k)

where .  For  each  sentence,  these  vector

representations  are  concatenated  into  a  matrix 

 and fed to the gated convolutional layer.

x = e1:n ⊕ tag1:n (3)
⊕where  is  the  concatenation  operation.  In  this

experiment, the length threshold of the sentences is set to

maxlen,  and  the  sentences  whose  length  is  less  than

maxlen are supplemented with 0.

Dauphin  et  al.[29] proved  that  reasonable  use  of  the

gating  mechanism  can  effectively  enhance  the  effect  of

natural language processing. The gated convolutional lay-

er incorporates the gated unit into the traditional convo-

lutional  layer.  Gated  units  control  the  path  through

which  information  flows  in  the  network.  Compared  with

traditional  convolution,  gated  convolution  retains  the

ability of non-linear operation and filters useless informa-

tion. Compared with LSTM, gated convolution is a paral-

lel hierarchical structure that can better capture abstract

hierarchical features. Compared with the chain structure,

the hierarchical structure reduces the number of non-lin-

earities of  a given context size,  thus alleviating the van-

ishing gradient problem and simplifying learning[30].

x ∈ Rn×(m+k)For matrix , the gated convolutional lay-

er output can be expressed as

mi = (xi:i+h−1 ∗ wi + bi)⊗ σ(xi:i+h−1 ∗ vi + ci) (4)

wi ∈ Rh×(m+k)×l bi ∈ Rl vi ∈ Rh×(m+k)×l ci ∈ Rl

h l

m+ k

∗ σ

⊗

where , , , 

are  learned  parameters,  is  the  filter  window  size,  is

the number of  filter windows,  is  the dimension of

the input vector,  denotes convolution operator,  is the

sigmoid  function,  and  is  the  element-wise  product

between matrices.

LFor  filters, the feature matrix can be obtained:

M = [m1,m2, · · · ,mL]. (5)
 

2.3.2   BiLSTM layer

LSTMs are variants of RNNs, which can alleviate the

problem of  gradient disappearance by incorporating past

information[31, 32]. The basic structure of the LSTM unit is

shown in Fig. 2. The LSTM unit  consists  of  three multi-

plication gates that control the proportion of information

forgotten  and passed  to  the  next  time step.  These  gates

are helpful to learn the long-distance dependence between

contexts  and  solve  the  problem  of  association  between

word orders.  Therefore,  LSTM  is  used  to  learn  the  de-

pendencies between text sequences.

 

Table 2    Example of additional features and tags

Tag Name Example

Num Number G2093

Low Lower case letter 62.950 km

Upp Upper case letter CRH380B-5 648

Pun Punctuation (，/：/+/./−) K1285+600

Pne
Place-name element (站(station)/所(block)/

场(yard)/东(east)/南(south)/西(west)/北(north))
鸿宝线路所 (Hongbao block post),

徐兰场 (Xulan yard), 北京南 (Beijing south)

Oth other /
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Formally,  the  formulas  to  update  an  LSTM  unit  at

time  are

it = σ(Wi[ht−1, xt] + bi) (6)

ft = σ(Wf [ht−1, xt] + bf ) (7)

ot = σ(Wo[ht−1, xt] + bo) (8)

gt = tanh(Wc[ht−1, xt] + bc) (9)

ct = ft × ct−1 + it × gt (10)

ht = ot × tanh(ct) (11)

σ

xt t

ht

t it ft ot
t

ct t Wi Wf Wo

Wc ht

bi bf bo bc

where  is the element-wise sigmoid function and × is the

element-wise product.  is the input vector at time  and

 is  the  hidden  state  vector  storing  all  the  useful

information at time . ,  and  represent the outputs

of  input  gate,  forget  gate,  and  output  gate  at  time ,

respectively.  is the state vector at time . , , 

and  are  the  weight  matrices  for  the  hidden state .

, ,  and  denote the bias vectors.

A single  LSTM  only  considers  the  past  context  in-

formation, which is not affected by future context inform-

ation.  However,  for  the  named  entity  recognition  task,

the  past  and  future  information  impacts  its  recognition

accuracy.  Therefore,  a  bidirectional  LSTM layer  is  used

in  this  model.  The  principle  is  to  use  the  forward  and

backward hidden states to extract the past and future in-

formation  and  then  connect  the  two  hidden  states  in

series as the final output.

M = [m1,m2, · · · ,mL]

F =

[f1, f2, · · · , fL] f1 m1

f2 ∀fi ∈ F mi ⊕ fi−1

B = [b1,

b2, · · · , bL] b1 m1

b2 ∀bi ∈ B mi ⊕ fi−1 mk

pk pk = fk + bk
P ∈ RL×T L

The  matrix  obtained  by  the

gated  convolutional  layer  is  fed  into  the  BiLSTM layer.

The  output  sequence  for  forward  LSTM  is 

,  where the input of  is ,  and starting

from , the input of  is . Similarly, the

output  sequence  for  backward  LSTM  is 

, where the input of  is , and starting from

,  the  input  of  is .  Then,  can  be

calculated by the  BiLSTM neural  network to  get  the  fi-

nal output matrix , and . Finally, the mat-

rix generated by BiLSTM layer is , where  is

Tthe number of features and  is the category of tags. 

2.3.3   CRF layer

Named entity  recognition  can  be  regarded  as  a  se-

quence labeling task. A common method is to add a soft-

max  layer  on  top  of  the  BiLSTM  layer  to  decode  the

probability of each tag category[17]. The sequence tagging

task  can  be  completed  by  outputting  the  tag  with  the

highest probability. Although this model uses BiLSTM to

learn the  dependencies  between  contexts,  the  tags  de-

coded by the softmax layer are independent of each other.

The softmax layer only outputs the tags with the highest

probability  value  based  on  the  current  time  and  cannot

learn the constraint relationship between the tags, result-

ing  in  an output  of  invalid  tag sequences.  In  the  named

entity recognition  task,  the  entity  tag  of  a  word  is  af-

fected  by  both  the  word  context  and  the  word  context

tag. There are strong dependencies between tags. For ex-

ample, the tag “B-X” cannot be followed by another tag

“B-X”.

Therefore,  in  the  proposed  model,  the  CRF  layer  is

used to consider the dependencies between tags in neigh-

borhoods rather than using the output of a softmax layer

to make independent tag decisions. The CRF layer uses a

state transition matrix as a parameter, which can effect-

ively use past and future tags to predict current tags, ob-

tain  the  global  optimal  tag  sequence  by  the  relationship

between  adjacent  tags,  and  add  constraints  to  the  final

predicted  tags.  The  constraints  involved  include:  1)  The

first  word  in  the  sentence  begins  with  the  tag  “B-”  or

“O-”, and the  tag  starting  with  “O-” cannot  be  connec-

ted with the tag “I-” or “E-”. 2) The tag “B-X1, I-X2, E-

X3”,  X1,  X2  and  X3  should  belong  to  the  same  entity.

These constraints can reduce the probability of unreason-

able sequences in tag sequence prediction.

s = {w1, w2, · · · , wn}
P ∈ RL×T

pi,j
i j

A ai,j

i j

y = {y1, y2, · · · , yn}

Formally,  is  used to represent a

generic input sentence. The matrix  is the out-

put  of  the  BiLSTM  layer,  where  is  the  probability

value  of  row  and  column  in the  matrix.  The  trans-

ition  matrix  is  defined  as ,  where  represents  the

probability value of tag  transferring to tag . The score

function  for  generating  prediction  tags  sequence

 can be expressed as

score(s, y) =

n∑
k=1

pk,yk+

n+1∑
k=0

ayk,yk+1 (12)

pk,yk

yk ayk,yk+1

yk
yk+1

score(s, y)

y

where  is  obtained  from  the  output  matrix  of

BiLSTM  and  represents  the  probability  that  the k-th

character  in  the  sentence  belongs  to  tag . 

represents  the  probability  of  transfer  from tag  to  tag

.  The  softmax  function  is  used  to  normalize

,  the  probability  of  generating  the  prediction

tag sequence  can be obtained as

p(y|s) = escore(s,y)∑
ỹ∈Ys

escore(s,ỹ)
(13)

 

×

×
×

+

σ σ σ

ht

ht

xt

ft it gt Ot

CtCt−1

ht−1
tanh

tanh

 
Fig. 2     Architecture of LSTM layer
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ỹ Yswhere e is  Euler number,  is  the true tag,  is  all  the

sequence tags possible for the input.

p(y|s)

p(y|s)

During training,  needs to be maximized to ob-

tain the optimal prediction tag sequence. It can be solved

according to the maximum likelihood estimation, and the

likelihood function of  can be obtained according to

(14).

log p(y|s) = score(s, y)− log
∑
ỹ∈Ys

escore(s,ỹ). (14)

While decoding, the sequence with the highest output

probability is used as the prediction sequence:

y∗ = arg max
ỹ∈Ys

score(s, ỹ). (15)
 

3   Experiment

To verify the effectiveness of the proposed model GC-

BiLSTM-CRF, the  model  is  compared  with  the  main-

stream baseline  model  on  the  corpus  of  on-board  equip-

ment. The performance of the proposed model in the on-

board  information  recognition  task  is  evaluated  from

three aspects: 1) Discuss the influence of model paramet-

ers  on  experimental  results.  2)  Compare  the  proposed

model with several strong baselines to evaluate the effect-

iveness of  the  model.  3)  The  effect  of  introducing  addi-

tional features into the model is verified. 

3.1   Dataset and evaluation metrics

Through the collation of the data, the on-board equip-

ment corpus is obtained. The corpus information is shown

in Table 3.

The data  sets  are  divided  into  training  sets,  valida-

tion  sets,  and  test  sets  according  to  the  ratio  of  8:1:1.

And  Python  was  used  to  implement  the  model  through

the Keras.

Generally, the  performance  of  NER  tasks  can  be  es-

timated  by  calculating  the  correct  entities  identified  by

the  model  and  the  total  named  entities  available  in  the

corpus.  In  this  research,  the  performance  of  the  model

was evaluated by precision (Macro-P), recall (Macro-R),

and F1 score (Macro-F1), which can be computed by

Macro-P =
1

K

K∑
i=1

Pi (16)

Macro-R =
1

K

K∑
i=1

Ri (17)

Pi Ri iwhere  and  represent  the  precision  and  recall  of .

F1  score  is  a  combination  of  recall  and  precision  and

helps  to  understand  the  results  much  better  than  the

other metrics, as shown in (18). It is given by

Macro-F1 =
1

K

K∑
i=1

Fi =
1

K

K∑
i=1

2PiRi

Pi +Ri
. (18)

 
Table 3    Corpus entity statistics

Entity type Number of entities Number of characters

Date 411 4 286

Time 370 1846

Train number 398 1879

Vehicle number 348 2 829

Terminal number 321 614

Location 366 2 208

Kilometer mark 237 1977

Fault cause 736 5 413

Fault analysis 295 1967

Treatment measures 681 3 779
 

3.2   Parameter settings

In the experiment, the dimension of character embed-

ding  is  set  to  100.  The  model  training  is  done  by  mini-

batch with  the  Adam  optimizer.  Each  mini-batch  con-

sists  of  multiple  sentences  with  the  same  number  of

tokens. The optimal parameter values are determined by

controlling  a  single  variable  during  the  experiments.  In

order to  prevent  the  overfitting  of  the  network,  a  dro-

pout layer is added before the LSTM layer to make some

connections  drop  out  randomly.  The  dropout  rate  is  set

to 0.5.  Based on this,  the following experiments are car-

ried out. The best recognition results are found by chan-

ging the filter window size, the number of filter windows,

and the number of LSTM units in each layer. In order to

find the appropriate parameters in the fixed ranges tested

in  this  experiment,  we  set  different  filter  window  sizes

such as 2, 3, 4 and 5 and the numbers of filter windows

such  as  50,  100,  150,  200,  250  and  300.  Simultaneously,

model is tuned with different numbers of LSTM units in

each layer such as 50, 100, 150 and 200.

F1  score  of  various  parameters  are  given  in Tables

4−6. The models are trained using only the training set to

isolate the  effect  of  various  parameters  on  both  valida-

tion and test sets.

First, the number of filter windows is set to 100, and

the number of LSTM units is set to 100 to verify the op-

timal  value  of  filter  window  size.  As  shown  in Table  4,

the model proposed has good performance when the filter

window size is 3. Then, the filter window size is set to 3,

and  the  LSTM unit  number  remains  unchanged  to  find

the  optimal  number  of  filtering  windows.  As  shown  in

Table 5, the performance is improved when the filter win-

dow number is 150. The filter window size is set to 3 and

the number of filter windows is set to 150 to continue the

experiment,  as  shown in Table  6. The  experimental  res-
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ults show that the proposed model has good performance

when the filter window size is 3, the number of filter win-

dows is 150, and every layer has 100 LSTM units.

After  determining  the  optimal  values  of  the  above

parameters,  the  optimal  dropout  rate  of  the  model  is

tested.  All  other  parameters  are  the  same  as  the  best

model  obtained  by  the  experiment.  Dropout  can  reduce

the  risk  of  overfitting  in  model  training  by reducing  the

interaction  between  hidden  layer  nodes.  The  results  of

various  dropout  values  are  compared  in Table  7,  and  it

can be seen that the effect is best when the dropout rate

is  set  to 0.5 at the beginning.  Therefore,  the parameters

used in this experiment are shown in Table 8. 

3.3   Model evaluation and comparison

Several  representative  models  for  the  NER  tasks  are

selected as the baseline, such as RNN, LSTM, CNN, and

their variants. The proposed model is compared with oth-

er baseline models. The same dimension character embed-

ding  without  additional  features  is  used  as  input  to  the

baseline  models.  Each  model  is  tested  with  the  optimal

parameters to ensure the effectiveness of the comparative

experimental results.

The results of all the NER models concerning the pre-

cision, recall and F1 score on the testset are shown in Ta-

ble 9. It can be found that the performance of BiLSTM is

better  than  that  of  LSTM  and  RNN  neural  networks

when the character embedding is used as the input of the

model.  The F1 scores  of  RNN and LSTM are  0.614 and

0.677, respectively, while BiLSTM is 0.723, which is high-

er  than  that  of  the  former  two  models.  BiLSTM makes

full use  of  past  and  future  sequence  information.  Com-

pared with RNN, it can alleviate the problem of gradient

disappearance. The results show that the performance of

LSTM is better than that of RNN.

Besides,  it  can be  seen that  the  CRF layer  promotes

the  performance  of  RNN  and  BiLSTM.  The  individual

RNN produces 0.614 in the F1 score, while the RNN com-

bined with CRF gives 0.729 in the F1 score. When BiL-

STM is  combined  with  the  CRF layer,  the  F1  score  in-

creases to 0.824, while the F1 score for a single BiLSTM

is only 0.723. It shows that CRF can make use of the re-

lationship between adjacent tags to realize the global op-

timization of the tag sequence.

The performance of RNN and BiLSTM combined with

CNN  is  also  improved.  The  RNN  with  CNN  improved

from 0.614 to 0.730 in the F1 score. Compared with BiL-

STM,  the  F1  score  of  CNN-BiLSTM  is  increased  by

0.102. It  shows  the  validity  of  the  character-level  fea-

tures extracted by the convolutional layer.

This paper proposes a multi-neural network collabora-

tion model based on BiLSTM-CRF combined with gated

convolution.  Compared  with  other  baseline  models,  the

proposed  multi-neural  network  collaboration  model

achieves  the  highest  precision,  recall  and  F1  score.

Moreover,  compared  with  the  second-ranked  CNN-BiL-

STM-CRF model,  the  proposed model  increases  0.038 in

the F1 score and 0.056 in the recall. It shows that the se-

mantic features and additional features based on charac-

ter granularity are concatenated and can improve the ad-

 

Table 4    F1 score results with various filter window sizes

Filter window size Validation Test

2 0.897 0.867

3 0.899 0.868

4 0.883 0.861

5 0.894 0.859
 

 

Table 5    F1 score results with various filter window numbers

Filter window number Validation Test

50 0.870 0.864

100 0.899 0.868

150 0.913 0.887

200 0.889 0.867

250 0.910 0.883

300 0.892 0.861
 

 

Table 6    F1 score results with various LSTM unit numbers

LSTM units number Validation Test

50 0.851 0.840

100 0.913 0.887

150 0.912 0.882

200 0.907 0.871
 

 

Table 7    F1 score results with various dropout values

Dropout Validation Test

0.2 0.911 0.874

0.3 0.907 0.887

0.4 0.908 0.876

0.5 0.913 0.887

0.6 0.896 0.871
 

 

Table 8    Hyper-parameter values

Parameters Value

Character embedding dimension 100

Filter window size 3

Filter window number 150

LSTM units 100

Dropout 0.5

Optimizer Adam

Epoch 100

Mini-batch size 9
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aptability  of  the  model  to  on-board  fault  information.

Meanwhile,  the  gated  convolution  is  used  to  retain  the

non-linear operation ability and filter useless information

through the gating unit. It shows that the gating convo-

lution layer can capture the character representation fea-

tures  well.  Therefore,  for  entities  with  lower  and  upper

cases, special punctuation marks, and unclear boundaries,

the relevant features can be fully obtained to improve the

recognition effect. 

3.4   Additional features effect verification

In  order  to  verify  the  effect  of  additional  features  on

improving the recognition task of on-board fault informa-

tion, the  character  embedding  without  additional  fea-

tures is  passed  into  the  proposed  model  for  the  experi-

ment. The  baseline  model  is  also  used  in  additional  fea-

ture verification  experiments.  In  this  group  of  experi-

ments,  the  character  embedding  and  additional  features

are concatenated as the input of each baseline model. The

recognition  recall  and  F1  score  of  each  model  with  and

without additional features are shown in Figs. 3 and 4.

It  can  be  seen  from  the  comparison  results  that  the

model with the combination of semantic features and ad-

ditional  features  as  input  is  superior  to  the  model  with

single  character  embedding  as  input  in  the  evaluation

metrics  of  recall  and  F1  score.  For  example,  compared

with  the  model  without  additional  features,  the  multi-

neural network  collaboration  model  with  additional  fea-

tures increases 0.027 and 0.016 in recall and F1 score, re-

spectively. CNN-BiLSTM-CRF model ranks second in re-

cognition effect,  improved from 0.824 to 0.856 in the re-

call, and improved from 0.849 to 0.861 in the F1 score.

The results show that the entity boundary can be dis-

tinguished  effectively  by  tagging  some  specific  keywords

and features, and the recognition effect of each model for

on-board fault information is improved. It also shows the

value and feasibility of introducing additional features in-

to the recognition model. Therefore, different types of en-

tity  features  should  be  fully  extended  and  mined  in

named entity recognition. 

4   Conclusions

This paper investigates the fault  information recogni-

tion of  high-speed  railway  on-board  equipment  and  pro-

poses  a  multi-neural  network  collaboration  recognition

model based on GC-BiLSTM-CRF. Based on the study of

the critical  information of  on-board faults,  the classifica-

tion  rules  of  named entities  in  this  field  are  established.

The entities are labeled based on the character granular-

ity,  improving  the  quality  of  data  set  construction,  thus

avoiding  the  error  propagation  caused  by  the  Chinese

word segmentation errors.  In order  to  improve the qual-

ity of  feature  representation  of  railway  domain  informa-

tion,  combined  with  the  language  characteristics  of  on-

board  fault  records,  a  construction  method  of  semantic

features and additional features based on character gran-

ularity is  proposed.  The  combination  of  these  two  fea-

tures can  improve  the  rationality  judgment  of  fault  in-

 

Table 9    Comparisons of the proposed model with baselines

Models Marco-P Marco-R Marco-F1

RNN 0.696 0.549 0.614

CNN-RNN 0.788 0.679 0.730

RNN-CRF 0.797 0.673 0.729

CNN-RNN-CRF 0.769 0.758 0.764

LSTM 0.747 0.619 0.677

BiLSTM 0.784 0.670 0.723

BiLSTM-CRF 0.840 0.808 0.824

CNN-BiLSTM 0.855 0.797 0.825

CNN-BiLSTM-CRF 0.875 0.824 0.849

GC-BiLSTM-CRF 0.894 0.880 0.887
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formation entities.  In  the  construction  of  additional  fea-

tures, the  distinction  of  entity  boundaries  can  be  im-

proved  by  adding  additional  functional  labels  to  the

unique keywords in the railway field. In the model, gated

convolution and BiLSTM are used to learn the inner fea-

tures of  sentences  jointly.  First,  local  hierarchical  fea-

tures  between  adjacent  characters  are  extracted  from

multiple subspaces in parallel  using a gated convolution-

al layer to avoid the destruction of text sequence informa-

tion  by  down-sampling  and  alleviating  the  vanishing

gradient problem.  Then,  the  forward  and  backward  hid-

den states  of  BiLSTM are  used  to  extract  past  and  fu-

ture information to capture the long-distance dependence

of context features. In the output of entity tags, the CRF

layer  uses  the  dependency  and  constraint  relationship

between adjacent tags to jointly decode the optimized tag

sequence  of  the  whole  sentence  to  complete  the  task  of

fault information recognition of vehicle equipment.

The GCNN-BiLSTM-CRF  model  parameters  are  se-

lected  through  experiments  and  compared  with  several

representatives named entity recognition task models, in-

cluding RNN,  LSTM,  CNN  and  their  variants.  The  ex-

perimental results show that the proposed model achieves

excellent  precision,  recall,  and  F1  score.  It  also  proves

that the combination of semantic features and additional

features can  improve  the  quality  of  feature  representa-

tion and further improve the model′s recognition effect of

the model for on-board fault information. 
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