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Abstract: An efficient convolution neural network (CNN) plays a crucial role in various visual tasks like object classification or detec-
tion, etc. The most common way to construct a CNN is stacking the same convolution block or complex connection. These approaches
may be efficient but the parameter size and computation (Comp) have explosive growth. So we present a novel architecture called
“DLA+”, which could obtain the feature from the different stages, and by the newly designed convolution block, could achieve better ac-
curacy, while also dropping the computation six times compared to the baseline. We design some experiments about classification and
object detection. On the CIFAR10 and VOC data-sets, we get better precision and faster speed than other architecture. The lightweight
network even allows us to deploy to some low-performance device like drone, laptop, etc.
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1 Introduction

Rapid development with architecture of deep convolu-
tion neural network (DCNN) in many fields like com-
puter vision (CV), natural language processing (NLP),
fingerprint recognition (FR), etc., has been seen in the
past decade. With the increase of complexity and diffi-
culty in many artificial intelligence (AI) implementations,
we need a higher performance network architecture to
cope with various computer tasks. In the earlier com-
puter vision tasks, for any network, the accuracy of mod-
els was mainly limited by the depth and structure. Like
LeNet[l] or AlexNet2, the depth of the architecture is no
more than 10, it is not far enough to achieve a better res-
ult. Subsequently, many excellent network architectures
like VGGNetlBl, ResNetll, DenseNetl5 6, etc. have come
out, making great progress in final accuracy. The main
reason is that the network architecture is optimized in
many aspects, and the capacity to extract semantic in-
formation was improved. Of course, it is inevitable, with
the depth and width also rising, the number of paramet-
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ers and Flops have explosive growth. A high-power device
is a prerequisite for any network training. The number of
parameters tends to over 500MB or even 1000MB, and
the demand on a running device's performance is rising.
In some recent studies of network structure, it is difficult
to employ on new devices or low-performance devices!” &,
such as mobile phones, ultra-books, laptops, drones, etc.
All these devices have poor performance compared with
the desktop computers or servers. With the demand for
computer vision and development of communication tech-
nology, the model after training may run in various
devices. If we take a long time to train model and get a
bigger training model, it will be difficult to deploy in
various low-performance devices.

In prior popular skeletons, because the computation of
fully connection has a large proportion of the neural net-
work, then various convolution operation appeared. In or-
der to reduce the computation, in some prior networks,
such as LeNet, fully connections are often used in the last
layers for classification operations. This operation adds a
lot of computation. However, in recently studies such as
single shot multibox detector (SSD)[, researchers found
that using a convolution layer instead of fully connection
layer still achieved good results. For one thing, this could
increase the network’s flexibility. On the other hand, it
can reduce the computation of forward propagation. So
convolution connections are now commonly used instead
of fully connections. All the same VGGNet uses a small
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convolution kernel and other methods, but it also re-
quires too many computing resources. So the question be-
comes how to construct a more efficient skeleton, besides
reducing the number of parameters without extra accur-
acy. Generally, for any network like VGGNet, in terms of
structure, which consists of several similar conv-units,
each unit consists of a convolution operation, a batch
normalization (BN) and a non-linear function (mostly it
is ReLu). Researchers use many methods to restrain the
parameter size, like replacing the two or three same small
convolution kernels with a big convolution kernel to
achieve a larger receptive field and save parameter size,
when connecting these block-by plane-connections, the fi-
nal parameters are still enormous. Usually, input image
size of classification or detection network is fixed by
224 x 224 or bigger, sometimes researchers may add pool-
ing operations to reduce the computation and decrease
noise to improve the stability and performance of the net-
work. After these adjustments, VGGNet not only raises
the depth of the network but also wins the championship
for object location in ILSVRC 2014.

Although VGGNet mades impressive progress in depth
and accuracy, if researchers use the same method to con-
struct a deeper network, a number of issues come up such
as gradient explosion or gradient decent. The depth of
the network is helpless to improve the capacity for ex-
tracting semantic information. Well, for VGGNet, the
limit of depth is 19. The key for constructing networks
becomes how to avoid these questions above. In deep re-
sidual learning for image recognition, this architecture is
also called ResNet. In [4], the main content is given by
adding a shortcut to learn the training loss from the shal-
low layer, such as Fig.1. This method addresses the over-
fitting caused by no shortcut. In this way, the depth of
the network exceeds 100 even in 1000.

In order to balance the computation, speed and preci-
sion, we present the DLA+, the whole architecture can
be seen as Fig.2, and the details about depth-wise asym-
metric convolution blocks can be seen as Fig. 3.

2 Related work

In this section, we will review the most related tech-
niques in this paper, mainly the attention for the net-
work, the evolution of the convolution kernel and net-
work architecture.

2.1 Importance of width and depth of net-
work

There has been interesting in designing a deeper and
wider neural network. From a depth point of view, in the
first few years, the depth of the neural network is very
shallow like LeNet, AlexNet, etc., and the ability to ex-
tract semantic information is too weak, it is not enough
for some computer vision task[19-12l. In some object detec-
tion tasks, it requires rich representation, the size of fea-
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ture map need various scales. Therefore, we need a deep-
er network[!3l. On the other hand, most construct meth-
ods of computer vision networks is stack the same conv-
unit. With the depth deepen, receptive field (RF) be-
comes larger and the size of feature map becomes smaller.
In most cases, we would shrink the size of feature map by
a factor 16x or 32x[14 15 it brings new problems: In the
last layer of network, the feature map size is too small
and more sensitive for large object. In the front layers,
the feature map size is too large and more sensitive for
small object. So the final result cannot always be satis-
fied because when the multi-scale object exists as a single
image, this only improves the depth of the network and
cannot make the ability of the last layer more sensitive to
the multi-scale objects.

So there are various feature aggregation architectures
like FPNM, please refer to Fig.4. This research is mainly
to solve the problem in multi-scale detection, now many
of the networks are accessed using a single high-level fea-
tures (such as faster-R-CNN using the convolution layer
from Conv4, which is used for subsequent object classific-
ation and bounding box regression), but there is an obvi-
ous flaw in this method: The small pixel information of
the object is less, it is easy to be lost in the process of
down sampling. In order to deal with the detection prob-
lem with an obvious difference in multi scale feature, the
classical method is to use an image pyramid to enhance
the multi-scale variation, but this will bring a great
amount of computation. FPN provides a good solution.
From the structure of the network, FPN is a multi-
branch architecture, it has mainly two path: top-down
and bottom-up. The bottom-up path is a convolution
path with batch-normalization and pooling, the output
feature map size is the input one-four. In annother top-
down pathway, reasearchers upsample the spatial resolu-
tion by a factor of 2. The top-down pathway merge with
buttom-up pathway by lateral connection. By doing so,
this architecture solved the problem of low precision on a
small object, but due to the addition of extra bottom-up
branch and many 1x1 convolutions, there is a significant
increase in computation.

X
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Weight layer
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Fig. 1 Brand new depthwise asymmetric convolution block



F. T. Wang et al. / DLA+: A Light Aggregation Network for Object Classification and Detection 965

|:| Output of subnet — Basic connection
_ Long connection

— Skip connection

Input

Output

Fig. 2 Architecture of DLA+

Attention
identify

Output

Fig. 3  Architecture of residual block of ResNet

For computer visual tasks, another type is multi-scale
detection like SSD, which uses the last 2 layers of back-
bone and adds an extra 4 layers to detect a multi-scale
object directly without the last layer to predict. This
form is faster than FPN, besides it could get a Satisfact-
ory accuracyll6: 17, But this backbone is modified from
VGGNet, and because it uses an extra convolution layer,
the parameter size is still large. So we present DLA+,
which is based on deep layer aggregation (DLA)[I8 it is
constructed by several same stages, and every stage con-
sists of the same conv-units. For the first stage at the
bottom of the network, we use neighboring conv-units to
construct a mini network. And we use the same method
to construct the upper layer. In order to be able to bal-
ance accuracy of large and small objects, we add a long-
connection to connect the upper feature and lower fea-
ture.

2.2 Standard convolution with asymmet-
ric factorization

Factorization convolutions have been raised in re-

thinking the inception architecture for computer vision
(Inception-V3) from Szeged et al.¥ In inception-V319)
Ku et al. replace any 1 X 1 convolution by a 1 x n fol-
lowed by 1 x 1 convolution. The theory basis of factoriz-
ation convolution is simple: If the rank of the 2D-kernel is
one, the asymmetric convolution after factorization is
equal to standard convolution. Suppose n = 3, it could
reduce parameters by 33%. And with the value of n
changed, the parameter size may decrease by factor n.
Fig.5 shows asymmetric convolution.

In general, the ability to extract semantic information
will become more powerful with the improvement of net-
work depth, so this undoubtedly will make the size of the
parameter larger, and the nonlinear network will be im-
proved with the depth deepening. However, factorizing
convolutions is an amount to deepen the depth, not only

Predict

2x2 up E

L]

Fig. 4 The typology of FPN, the left part is the bottom-up
branch and the right side is top-down branch. Researchers
concat the features in the same stage by literal connected, which
is consisted of 1 convolution and 2 X 2 up-sample.
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Fig.5 The asymmetric convolution. Square convolution is
decomposed into several rectangle convolutions, it could drop
the parameter size by 5, and learn features from horizontal and
vertical directions.
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reduce the parameter size but also improve the fitting ef-
fect. Yang et al.20. 21 introduces that asymmetric convo-
lution is not applicable for replacing the standard convo-
lution for the whole architecture, but it will get a good
result when asymmetric convolution located in the mid-
posterior of a network, otherwise easily lead to the side
effect[22],

2.3 Details regarding depth-wise convolu-
tion

Depth-wise separable convolution is a special form of
group convolution3l,  which first appeared in
AlexNet and could be running over two GPUs, because
the GPU-memory is too low to undertake AlexNet. In the
recent study such as MobileNet, Xception, because of the
use of depth-wise convolution, researchers designed more
efficient architecture. Mostly, researchers will directly
perform a batch normalization (BN) followed by a non-
linear function operation after depth-wise separable con-
volution as shown in Fig.6. For any standard convolu-
tion layer with a input size as Dr x Dy x M, output size
is Do x Do x N, and kernel size is Dk X Dk, where Dg
represents the size of filters, M and N represent numbers
of input and output channels, the standard convolution
computations is

Cstd:D]XDIXMXNXDkXDk. (1)

Compared with standard convolution, the computa-
tion of depth-wise convolution can be represented as Cay:

CdW:D[XD[XMXDIXDI. (2)

But the initial process of depth-wise separable convo-
lution is channeled one by onel?4, and we have found this
approach may lose the relevance between channels. In or-
der to narrow down the gap, channel attention is avail-
able to this problem. The idea is proposed in [18, 25], and
as squeeze-and-excitation networksl26l, one of the most
important is the new channel attention block. To mitig-
ate the problem of weak relevance, she squeezes the glob-
al spatial information by using global average pooling as
weight, and multiplies it with the output after depth-wise
convolution. If the size of input feature map Dy is
H x W x C, by this operation, the feature size goes into
1 x 1 x C. The weight w is calculated by

w— ﬁ; ;Dl(i»j)- (3)

Suppose the standard convolution output is Do, after
the channel attention, the output can be expressed as
wDo, and the squeeze block is easy to insert into any
skeleton after nonlinear function for each conv-unit.
There are not many parameters of the squeeze block and
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it is especially helpful for the issue of depth-wise convolu-
tion(27],

3 Network architecture

In this section, we will give instructions about the
constitution of DLA+.

In the original DLA, the conv-unit consists of convolu-
tion (mostly the size is 3 x 3), BN and a non linear func-
tion (ReLu or others) as. In DLA+, we use the depth-
wise asymmetric convolution blocks instead of the origin-
al conv-unit, Fig.3 displays the shape of the new unit.
The re-designed conv-unit is based on depth-wise and
asymmetric convolution. As we can see in Section 2, the
large computation of the standard convolution depends
on Dj, Dg, M and N. Suppose N = 3, skeleton uses 3 x
3 depth-wise convolutions which use about 8 times less
computation than standard convolutions.

It is easy to see the computation cost after depth-wise
convolution operation depends on the value of D;, Dk
and M. But the values of D;, M cannot change easily, in
general, there is a more popular method to save computa-
tion by control Dj;, M, like pooling and changing the
value of stride. If we still reduce the size of the feature
map, it may have a bad effect on the representation abil-
ities. So we decomposed the standard convolution into a
asymmetric convolution for each depth-wise convolution.
As introduced in Section 2.2, after replacing the stand-
ard convolution with depth-wise convolution, the compu-
tation can be represented as follows:

D[XD[XMXD[XD[ 7i (4)
D[XD]XMXNXD]XD]_N'

If we depose the square kernel to asymmetric kernel,

D xDrxMXDpx1+DrxDrxMx1x Dy

cost = Dy x Dr x M x N x D; x D;

_ 2
7N><Dk.

()

By this equation we can see if the convolution kernel
size is 3 X 3, it will save about 33% further parameters.

3.1 Attention on depth-wise
convolution

separable

In Section 2.2, we introduced the problem of depth-
wise convolution: information transmits obstructed
caused by the relevance between channels. Each channel
of the feature map provides significant guidance informa-
tion for analyzing its image. So it is essential to pay more
attention to find where it is meaningful for any input im-
age.

In order to capture the relationship, Woo et al.[?] sug-
gests learning a relevance between channels, the atten-
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tion maps are multiplied to input feature. The multiplier
is caculate by average pooling for each input feature
channels. Beyond the previous study, we empirically ar-
gue that which could improve representation ability. The
core of DLA+ is the multi-path conv-unit. Fig.6 shows
the depth-wise asymmetric convolution branch. Fig.7
shows the final conv-unit after combining 2 branches.

As shown in Fig.7, suppose shown in an input feature
map D; € REXWXC Dy is the output without attention,
and make same padding to keep the same size of input
and output, the value of channel attention can be seen as
a 1D vector and the value can be obtained by the next

function:
H W
Mc = 6(AvgPool(Dr)) = H N1 ; ;v (6)
and then multiplied with
D, = M.® Do. (7)

The ® represents the giving weights to the output.

| Input (H x W x M) | | Output (H x W x N) |

' !

| Depth-wise (1 x 3) | | ReLu |
| BN | BN |

| Depth-wise (3 x 1) |

Fig.6 Typology of asymmetric depth-wise separable
convolution branch

Input feature |H x W x M

Global pooling

[ Jixiaan

1x1xM

Asymmetric
depth-wise 1 x1 xMr
branch
I1x1xN

Output feature

Fig. 7 Architecture of attention branch embedded in depth-
wise asymmetric convolution as the above figure demonstrates.
The left side: asymmetric depth-wise convolution could be seen
as Fig. 6.

Characteristics of depth-wise separable are convolution
operations based on a single-channel, and combined into
an output feature. These values of each channel in the
2D-kernel are not equal, so the feature of each channel
may lose relevance. Therefore, in order to utilize the in-
formation between channels, we sequence the channel in-
formation before depth-wise. If the input feature map size
is Hx W x M, and output size is H X W X N, we
change the shape to 1 x 1 x M by using the global aver-
age pooling. We adopt the channel attention method,
which is similar to SeNet, and we use two fully connec-
ted layers in attention branch. And notice that if the
channel of input is not equal to output, in the second
fully connected, we will multiply M /r by factor rM /N to
keep the number of attention channels equal to those
of output channels. The final conv-unit is shown as Fig.7.

3.2 Densely connected architecture with
subnet

In order to take advantage of subnet features from
previous stages and layer, we add more long-connected in
DLA+, as depicted in Fig.2, which can be seen as an
deep supervision structurel®s, 29I, Owing to the dense long
connect, DLA+ generates more features without arising
the parameter size and computation compared with ori-
ginal network.

Finally, there are three difference from DLA and ori-
ginal baseline: 1) DLA+ have depth-wise convolution
unit; 2) Compare with original architecture, these are
more densely connected between each subnet; 3) We add
an attention branch to obtain the semantic information.

4 Experiments

We evaluate DLA+ on these object classification
tasks: Cifar10B% and ImageNet10031. The latter is a sub-
set of ImageNet201262, which is divided into 100 classes
with 1000 JPEG images; and PASCAL VOC2007[33, 34
for object detection. We compare DLA+ with networks
which have been reproduced in the Pytorch framework.

In order to prove the validity of DLA+, we first per-
form experiments with the baseline: original deep layer
aggregation[3 36, Besides, we have performed several ex-
periments on object classification and detection.

4.1 Ablation study

4.1.1 Separable convolution

In order to verify the effectiveness, we only use separ-
able convolution in DLA+, first we compare it with oth-
er networks that use depth-wise convolution. All net-
works trains 200 epochs and on 1 Titan Xp GPU. The fi-
nal results are shown in Table 1. We evaluate three as-
pects: parameter size, Flops and accuracy. Notice that
compared with ShuffleNet, the parameter size is lower
than DLA+, but the Flops is too high because the pro-
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cess of the channel shuffle operation in ShuffleNet costs
many computations. The result can be seen in Table 1.

Table 1 Result of adding depth-wise convolution on Cifar10

Net Lr Train Acc(%) Test Acc(%) Flops(MB) Comp (%)

VGG16_bn 0.01 97.84 91.13 527.8 527.8
ShuffleNet 0.01 98.71 92.93 30 30
DenseNet 0.01 98.53 92.37 43.63 43.63
Baseline 0.01 98.64 92.51 163 163
DLA+(dw) 0.01 95.93 86.83 70 70

In the Table 1, dw represents the depth-wise convolu-
tion. The result of Cifarl0 after using depth-wise convolu-
tion can be seen in the last line, the parameter size has
decrease of about 52%. And then, we test our model in
Cifar10 and compare the video-memory cost with other
networks shown in Fig. 8.

Memory-cost of GPU

9,000
8 000 /\
7000

6 000
5000

4000 (— :

3000 /
2000 -
1000 ——

Video-memory cost (MB)

(O?Q N > @0) o oy ?}'\%
C)\
40

Fig. 8 GPU video-memory cost on Cifarl0

4.1.2 Asymmetric convolution

The 2D-kernel shape of the depth-wise convolution is
n X n, we split the square 2D-kernel inton x 1 and 1 xn
in each depth-wise convolution, which lets the network
learn features by two directions: vertical and horizontal,
besides reducing more than 33% parameters in DLA+. In
the original DLA, each conv-unit consists of a two layer
convolution operation, but in DLA+, which is replaced
by asymmetric convolution, the new conv block can be
seen as a four layer convolution operation as in Fig.7. In
the prior work37), researchers propose a hypothesis: In the
process of designing a network or conv-unit, ReLu could
increase the ability of nonlinear and reducing the compu-
tation, in addition, ReLu could reducing the possibility of
over-fitting. But if too many ReLus are used in the same
conv-unit, it will could adversely impact. So we removed
ReLu and put it after the concat featurel®8! (add by asym-
metric depth-wise branch and channel-attention branch).

Compared with the original depth-wise convolution,
the depth after deposing the square convolution for each
depth-wise convolution block is the amount to deepen, so
we made some adjustment for depth-wise asymmetric
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convolution blocks: We remove the ReLu between two
asymmetric convolutions, in order to obtain a better
training result, we replace the ReLu to ReLLu6. This oper-
ation is in favor of deployment on the mobile device.
4.1.3 Channel attention

Because the initial process of depth-wise convolution
in channel is one, the relevance in each feature is under-
used, in order to obtain this relation, we used channel at-
tention on both sides with the asymmetric depth-wise
convolution. Results are shown in Table 2.

In Table 2, ch represents the channel attention, and
1n represents the deposed standard square convolution
with asymmetric convolutions.

It is easy to see from Table 3, compared with other
multi-branch or multi-scale architecture such as FPN,
DLA+ achieves a faster speed on the Cifar10. The main
reason is that a large number of depthwise asymmetric
convolution modules are used in the DLA+, depthwise
separable convolution disintegrates the standard convolu-
tion, asymmetric convolution also has a very good ability
to make up for the square convolution feature representa-
tion from vertical and horizontal. In general, square con-
volution is more suitable for running on GPU. These
structures are more suitable for processing large amounts
of parallel data. But for none GPU device or low perform-
ance device, it is more suitable for running DLA+, be-
cause depthwise separable tends to serial computing. In
order to further enhancing the capability of feature rep-
resentation, we use the channel attention module to get
better channel features to achieve better results on ad-
vanced visual tasks, meanwhile it does not generate too
many extra parameters.

Table 2 Results of adding channel attention and asymmetric
convolution on Cifarl0

Net LR  Train Acc Test Acc Comp(MB)
Baseline 0.025 97.25 88.02 60
DLA+(dw) 0.025 93.3 85.2 9
DLA+(dw+ch) 0.025 94.1 84.8 10.1
DLA+(dw+1n) 0.025 93.93 87.64 50.8
DLA+ 0.025 97.49 90.45 9.81

Table 3 Result on Cifarl0. Final result and the computation is
calculated by fixing the input size as 224 X 224.

Net Lr FPS Train Acc(%) Test Acc(%) Comp(%)

VGG16_bn 0.0254 761 97.84 91.13 527.8
DenseNet121  0.025 2 381 98.71 92.93 30

SENet_Resblock 0.025 4 761 98.53 92.37 43.63
Preact_Res101 0.0252 941 98.64 92.51 163
DetNet59 0.025 4 347 95.93 86.83 70
ResNet101 0.025 2 500 98.55 91.97 339
DLA+ 0.0254 981 99.74 90.45 9.81
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4.2 Image classification

From Sections 2 and 3, we know that an efficient
neural network could make the best use of each conv-
unit. To prove the principle, we adopted train from
scratch for all experiments. First, we perform ImageNet100
classification to evaluate our network, and we compare
DLA+ with other networks such as ResNet, DetNet and
VGGNet. The results of experiments are shown in Table 4.

Table 4 Results of classification on ImageNet100

Net Lr FPS Topl Acc Topb Acc
ResNext 0.1 205 61.47 84.36
ResNet 0.1 302 62.94 85.19
VGGNet6 0.1 228 50.04 76.52
DetNet 0.1 230 63.84 85.36
SequenceNet 0.1 163 35.50 63.21
Baseline 0.1 147 63.25 85.16
DLA+ 0.1 222 65.31 86.23

We train the network for 90 epochs and batch size is
256. The initial learning rate is 0.1, and lowered by 10
times at epoch 30 and 60, respectively. As we can see
from Table 4, the performance of DLA+ is beyond
baseline and other networks. Notice that the parameter
size and Flops of DLA+ are smaller than other
networks[39.

4.3 Object detection

From Sections 2 and 3, we know that an efficient
neural network could make the best use of each conv-
unit. To prove the principle, we adopted train from
scratch for all experiments.

CenterNet[4 was used as the object detection frame-
work, and we use the PASCAL VOC dataset, which con-
tains 5 011 training images and 4 952 test images, the fi-
nal training converges in 50 epochs. The original skeleton
deep layer aggregation (DLA) was replaced with DLA+.
We fix the input size as 384 x 384, other hyper-paramet-
ers are the same as CenterNet.

We compare it with faster RCNN based on VGG16,
and SSD, MobileNet and EfficientNetB3. The results are
shown in Table 5. All devices use TITANXP Xp GPU
and Xeon E5-2620 CPU. It is easy to see the DLA+ is
better than baseline on both accuracy and speed from, as
shown Table 1. Besides, the two-stage detection frame-
work such as faster RCNN cannot undertake the training
from the scratch task so that RCNN cannot converge to
global feature. Likewise, compared with other imple-
ments, DLA+ shows the trade-off between accuracy and
speed.

5 Conclusions

In order to address the large computation cost in
neural network training and employment for many mo-
bile devices, we present DLA-+, which is a smaller and
faster skeleton. Compared to other multi-branch net-
works, the result also indicates that the measures of
DLA+ achieve a reasonable trade-off of accuracy and
speed or parameter size compared with the baseline and
another popular skeleton. We put many experiments with
many visual tasks like object classification and detection
to prove the implementation in DLA+ is valid. And we
will release the code in Pytorch.
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