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Abstract: Working conditions of rolling bearings of wind turbine generators are complicated, and their vibration signals often show
non-linear and non-stationary characteristics. In order to improve the efficiency of feature extraction of wind turbine rolling bearings
and to strengthen the feature information, a new structural element and an adaptive algorithm based on the peak energy are proposed,
which are combined with spectral correlation analysis to form a fault diagnosis algorithm for wind turbine rolling bearings. The pro-
posed method firstly addresses the problem of impulsive signal omissions that are prone to occur in the process of fault feature extrac-
tion of traditional structural elements and proposes a “W” structural element to capture more characteristic information. Then, the pro-
posed method selects the scale of multi-scale mathematical morphology, aiming at the problem of multi-scale mathematical morphology
scale selection and structural element expansion law. An adaptive algorithm based on peak energy is proposed to carry out morphologic-
al scale selection and structural element expansion by improving the computing efficiency and enhancing the feature extraction effect.
Finally, the proposed method performs spectral correlation analysis in the frequency domain for an unknown signal of the extracted fea-
ture and identifies the fault based on the correlation coefficient. The method is verified by numerical examples using experimental rig
bearing data and actual wind field acquisition data and compared with traditional triangular and flat structural elements. The experi-
mental results show that the new structural elements can more effectively extract the pulses in the signal and reduce noise interference,
and the fault-diagnosis algorithm can accurately identify the fault category and improve the reliability of the results.
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1 Introduction fault diagnosis results by extracting fault features accur-
ately and efficiently from non-stationary and non-linear
vibration signals.

Mathematical morphological analysisP! is a non-linear
signal processing method developed in recent years, which
can decompose a vibration signal into several compon-

ents by retaining the morphological characteristics of the

Rolling bearing is one of the most commonly used and
most vulnerable main components in the chain drive sys-
tem of wind turbines. This failure can cause costly pro-
duction losses and lead to catastrophic accidents. There-

fore, early detectionl!l, diagnosis® 3/, and prediction of re-

maining useful life of the defects in rolling bearings dur- signal according to the geometric characteristics of the

ing the operation of wind turbines are conducive to avoid structural elements. At present, many researchers are at-

abnormal events and reduce production losses. At tempting to extract relevant fault features from vibra-

present, the analysis of vibration signals is one of the tl(?n signals through mathematical morphology for lqentl_
fying the root cause of the fault more effectively.
Nikolaou and Antoniadis® introduced single-scale math-

ematical morphology in the fault diagnosis of rolling bear-

most commonly used methods for diagnosing rolling bear-
ings. It is of great significance to improve the accuracy of
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ings, where the scale refers to the height and length of
the structural elements (SE). Before using the single-scale
mathematical morphology, the structural element must
be determined first. The height and length remain un-
changed during the subsequent morphological processing.
Mao et al.[7l utilized a feature extraction technique with
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generalized fractal dimension based on mathematical mor-
phology. Then, they extracted the characteristic combus-
tion signal for monitoring the combustion state. Shen et
al.l8l proposed a signal processing method based on a gen-
eralized mathematical morphological filter for eliminat-
ing non-linear noise in vibration signals. This method
shows that morphological filtering has obvious effects in
suppressing signal noise and extracting impulse compon-
ents of the original signals. However, since the length and
height of the single-scale mathematical morphology struc-
tural elements are set as fixed values, the feature inform-
ation extracted from the original signal by a single-scale
mathematical morphology is very limited.

In order to extract more characteristic information
from vibration signals, Maragosl?) proposed a multi-scale
mathematical morphology method. In this method, the
single-scale structural elements are transformed into a
series of structural elements based on certain rules.
Moreover, the characteristic information at different
scales is extracted and further processed to form the mor-
phological spectrum. Li et al.[l% proposed a fault diagnos-
is method that uses multi-scale morphological analysis for
extracting impulse features from strong background noise
signals. Cui et al.l'll proposed a multi-scale morphologic-
al filtering algorithm for early faults of rolling bearings
based on information entropy threshold (IET-MMF) to
extract fault features in vibration signals. Zhang!?l sur-
veyed the application of multi-scale mathematical mor-
phology in vibration signal processing. Wu et al.'3] used a
noise-assisted multivariate empirical mode decomposition
combined with a multi-scale morphology method of bear-
ing fault diagnosis. All the above methods show that
multi-scale mathematical morphology has an obvious ad-
vantage over single-scale in feature extraction. This ad-
vantage is mainly manifested in the analysis of the multi-
scale mathematical morphology through structural ele-
ments of various scales. It can maintain the pulse details
at small scales and effectively suppress a large-scale noise.
However, there is no unified standard for scale selection
and structure element construction in multi-scale mor-
phological operation. Li et al.l4 used multi-scale math-
ematical morphology to extract the features of rolling
bearings. In order to ensure the effect of feature extrac-
tion, the operation scale may be large, and the width of
the flat structure elements increases with the scale. Al-
though the fault frequency of the outer and inner of the
rolling bearing can be extracted, the operation is complic-
ated.

A structural element is an important part of multi-
scale mathematical morphology, and its structural charac-
teristics have a vital influence on the analysis of results of
mathematical morphology. It is an array of certain geo-
metric characteristics composed of a series of discrete
data. A structural element is determined in terms of
shape, height (size of element), and length (number of
elements)15]. The most common structural elements are
flat, triangular, and sinusoidal. Among them, the flat and
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triangular types are the most used structural elements
when vibration signals of a bearing are analyzed and pro-
cessed[16: 17, However, since there are a large number of
sudden changes in the fault signals of rolling bearings and
these two structural elements do not contain sudden
pulse changes, the feature extraction effect of the bearing
fault signals is often not ideal, and it may easily miss the
pulse fault signal.

Considering the above problems, this paper aims to
capture numbers of sudden changes in the rolling bearing
fault signal by starting from the detailed characteristics
of a signal. Accordingly, a more suitable “W” structural
element is proposed for fault vibration signal analysis.
This new structural element not only conforms to the
structural characteristics of the vibration signal in the
center part but also at both ends. The addition of two
abrupt components can solve the problem of missing ab-
rupt pulse signals by flat and triangular structural ele-
ments. Furthermore, to solve the problems of scale selec-
tion in multi-scale mathematical morphology operations
and the construction of multi-scale structural elements,
this paper proposes an adaptive multi-scale construction
method based on peak energy. In this method, the separ-
ation distance between peaks is used to determine the
morphological scale.

Moreover, the change of peak energy is utilized to de-
termine the range of change in the height of structural
elements. Hence, selecting scales is solved in multi-scale
mathematical morphological operations, and the multi-
scale structure is optimized. This technique reduces com-
putational complexity and enhances computational effi-
ciency while ensuring the effect of feature extraction. Fi-
nally, in numerical examples, bearing platform data ob-
tained from Western Reserve University and real wind
turbine data are used to validate the algorithm and com-
pared with traditional flat and triangular structural ele-
ments.

The rest of the paper is organized as follows. The ba-
sic knowledge is described in Section 2. New structural
elements and multi-scale construction methods are intro-
duced in Section 3, followed by the fault diagnosis al-
gorithm in Section 4. Finally, the paper is concluded in
Section 5.

2 Basic knowledge

2.1 Mathematical morphology

Mathematical morphology is an effective tool for sig-
nal processing in the time domain. It uses structural ele-
ments with certain geometric characteristics to locally
match or modify a signal to extract and denoise signal
features.

Mathematical morphology has four basic operations,
namely corrosion, expansion, opening operation, and clos-
ing operation. The operation formulas are as follows:
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Let f(n) denote a one-dimensional discrete signal, and
the structural element g(m) denote the discrete sequence
defined as G = (0,1,--- , M — 1). Then, the corrosion and
expansion operations can be expressed by (1) and (2), re-

spectively.
(f©g) (n) = min[f (n +m) — g (m)] (1)
(f @ 9) (n) = max [f (n —m) + g (m)]. (2)

In (1) and (2), m€0,1,--- ,M — 1, © represents the
corrosion operator, and @ represents the expansion oper-
ator.

Based on the corrosion and expansion operations, the
morphological opening and closing operations can be ex-
pressed by (3) and (4), respectively.

(fog)(n)=(fOg®g)(n) (3)
(f-9)(n) = (f ® gOg)(n). (4)

In (3) and (4), o represents the open operator, and -
represents the closed operator.

2.2 Multi-scale mathematical morphology
and morphological spectrum

On the basis of single-scale mathematical morphology,
a new variable scale A is introduced here, through which
a sequence of structural elements of different scales is
generated for performing multi-scale and multi-level ana-
lysis of the signal to be processed. For this purpose, the
following opening and closing operations are defined in
multi-scale morphology.

(fog)y=(fOAg) ®Ag=folAg (5)

(f-9)\=(fBAGOXg = [ Ag. (6)

The above (5) and (6) represent the multi-scale open-
ing and closing operations of the structural element g at
the scale X (1, 2, 3, --).

Morphological spectrum, also known as the histogram
of shape value, is a quantitative description of shape rep-
resentation in signal analysis. The morphological spec-
trum combines the results of multi-scale morphological
operations. The multi-scale morphological spectrum of
the original signal f relative to the structural element g is
defined as

PS4y (+X,9) = A[f o Ag—f o (A+1) g]
PS_(=X\g)=A[f-Ag—f - (A-1)g]

A(f)=>_ f(n). (7)

In (7) and (8), A represents the scale of the structural
element.

2.3 Structural element

Structural elements are the basic operators of math-
ematical morphology operations. The extraction of vibra-
tion signal features is affected by structural elements and
mathematical morphology operations. Structural element
function is similar to that of a feature extraction “win-
dow”. The more similar the geometric features of the se-
lected “window” to the signal framed by the “window”,
the more the feature information that can be extracted
from this part of the signal. Common structural elements
are flat, triangular, and sinusoidal, which are shown in
Fig. 1.

2.4 Correlation analysis

The correlation analysis is a classification tool that
measures the similarity of two sets of data of the same
size. At present, correlation analysis has been widely used
in the field of signal processing[!7: 18].

In order to measure the degree of correlation between
two columns of data, a correlation coefficient is defined in

(8).

. Coula(t), (1)) )

020y

where r is the correlation coefficient, x(t) is the training
signal, y(¢) is the signal to be measured, o, and oy are the
standard deviations of z(¢) and y(t).

3 New structural elements and multi-
scale construction methods
3.1 “W?” structural element

Traditional research on mathematical morphology is
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Fig.1 Several common structural elements
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based on the characteristics of the signal used to select
structural elements for achieving better processing results.
However, since the vibration signals collected under actu-
al working conditions are often complex, the noise is usu-
ally not unique. The traditional structural elements have
no satisfactory performance to analyze and process the
signal.

Fig. 2 shows the time domain diagram of the fault sig-
nal of the inner ring of a bearing having a damage dia-
meter of 0.007. It can be seen that the waveform of the
vibration signal conforms to the zero-axis symmetry and
exhibits non-linear characteristics. There are triangular-
like spikes in the signal. At the same time, there are
mutation signals of different sizes at both ends. However,
traditional structural elements often consider only the im-
pulse response in the vibration signal and ignore the ab-
rupt components on both sides, which leads to the omis-
sion of some signal characteristics. Therefore, structural
elements are required to be sensitive to impulse re-
sponses and sudden changes in the signal so as to ensure
effectiveness in feature extraction.

To overcome the problems of structural elements, this
paper proposes a novel structural element to simultan-
eously capture the impulse response appearing in the sig-
nal and the abrupt signal and meet the extraction re-
quirements of complex signal features. The structure of
the proposed element is shown in Fig.3. A spike-like
pulse of a vibration signal is resembled by the central
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Fig.2 Time domain diagram of fault signal of the inner ring of
a bearing having damage diameter of 0.007
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Fig. 3 “W” structural elements
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part of the new structural element. Moreover, a non-zero
element is added to both ends. Since the shape is similar
to the letter “W”, we named this structural element as
the “W”-shaped structural element. So far, based on the
center height of the structural element, we define a mat-
rix form of the structural element as[h 0 h 0 A].

The “W” and triangular structural elements are sub-
jected to fast Fourier transform. In order to better ex-
plain the meaning of the “W” structural element, a com-
parative analysis is carried out from the perspective of
the frequency domain. Fig. 4 (a) shows the frequency spec-
trum of the triangular structural element, whose matrix
form is [0 0.5 1 0.5 0], and the number of sampling points
is N = 128. As seen in Fig.4 (a) the spectrum diagram of
the triangular structure elements is similar to the amp-
litude-frequency characteristics of the low-pass filter. This
can smooth high-frequency and abrupt parts of the signal.
Moreover, the fault and noise in the vibration signal are
often high-frequency mutations and easy to be filtered
out. The signal often appears in the high-frequency part.
Although triangular structural can play a certain filter-
ing role, it ignores the important fault information.
Fig.4 (b) shows the frequency spectrum of the “W” struc-
tural element, whose matrix form is [1 0 1 0 1], and the
number of sampling points is N = 128. It can be seen in
Fig.4(b) that there is a clear difference between the fre-
quency spectrum and the triangular structural element.
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Fig.4 Amplitude-frequency diagram of two structural
elements
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Based on Fig.4, the spectrum of the “W” structural ele-
ment is obviously different from that of the triangular
structural element. Both ends and the central part of the
“W?” structural element allow the passage of high-fre-
quency signals. Hence, the abrupt signal can be greatly
retained in the signal, which is more appropriate for the
analysis of complex vibration signals.

3.2 Adaptive algorithm based on peak en-
ergy

In the traditional multi-scale mathematical morpho-
logy operation, a series of structural elements are pro-
duced by determining scale A, which greatly influences
the feature extraction of vibration signals according to
the scale. However, there is no standard selection prin-
ciple for the above issues. Hence, it is difficult to achieve
the best feature extraction performance.

In order to tackle the above problems, this paper
takes the peak of the signal as the starting point and ad-
apts the morphological scale for determining the se-
quence of structural elements. Firstly, the morphological
scale A\ is determined using the maximum spacing dis-
tance between adjacent peaks in the signal. Then, the
peak energy of the signal and the maximum difference of
the peak energy are calculated. Finally, the scale and en-
ergy differences are used to optimize the multi-scale
structural elements. This method can cover the peak in-
formation in the signal, reduce unnecessary operation,
and improve the efficiency of the operation.

Fig.5 (a) shows some details of the collected actual vi-
bration signal, where it can be found that the noise pollu-
tion is severe and the peak information is considerable.
The peak value involved in the selection inevitably in-
creases, the peak interval point becomes smaller, and the
peak difference increases, resulting in a larger morpholo-
gical scale selected. The variation range of the structural
elements will increase, thereby the effect of mathematical
morphological feature extraction will be weakened. There-
fore, before determining the morphological scale and the
sequence of structural elements, this article first obtains
the peak energy of the signal, whose variance is used as
the threshold limit as shown by the dotted line in
Fig.5(b). In order to reduce noise interference, the ex-
cess noise peaks are eliminated from the signal as much
as possible by screening and retaining the peak points
greater than the threshold.

According to the above analysis, this paper proposes
an adaptive algorithm based on peak energy. In this al-
gorithm, the variance of the peak energy is used as the
threshold limit, the peak information is filtered, the mor-
phological scale is calculated, and the sequence of struc-
tural elements is determined according to A. The reason
for such choice is as follows: In general, the amplitude of
the noise component is smaller than the fault pulse. By
calculating the peak energy, the pulse component with a
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Fig. 5 Vibration signal

smaller amplitude can be made smaller, and the pulse
component with a large amplitude can be amplified at the
same time. The separation of a noise signal and a fault
signal is made easier. Then the peak energy of the signal
is calculated as the threshold limit so that the threshold
limit can be distinguished from noise and fault pulse. In
this way, the peak points larger than the threshold line
are the fault pulse points. Ultimately, the height vari-
ation range of structural elements is determined based on
the maximum difference of peak energy. The adaptive al-
gorithm based on the peak energy can be summarized in
the following steps:

1) Firstly, perform zero-average processing on the vi-
bration signal f(n) to obtain y(n) = {yn|n =1,2,--- N}

2) Search for all positive peak points Q = {¢li =
1,2,---,I} in signal y(n), calculate the energy of the peak
points according to M = kQ?, and take k = 1 in this art-
icle. Then, find the variance m of the peak energy, and
divide the known positive peak points according to m as
the threshold, keep the positive peak points larger than
m, and eliminate the positive peak points smaller than
m. Generate a new set of the positive peak points
Q ={dqjli=1,2,---,J}, where J represents the num-
ber of positive peak points whose amplitude is greater
than m.

3) Calculate the number of interval sampling points
between two adjacent peaks, determine the maximum in-
terval sampling point number Ly.x and the minimum in-
terval sampling point number L, and set the initial
length of the structural element as Lg. First, judge the
size of Ly, and Lg. If Ly > Ly, then let Ly, = Lo. At
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this point, the scale A = Ly, — Lo = 0. If Ly < Ly, then
let Lyin = Lo. At this point, the scale A = Ly — Lo.
When the length of the structural element changes to
Lpax, then the scale A = Lpax — Lo reaches the maximum.
Therefore, the range of scale transformation of multi-scale
mathematical morphology is
A = { Lmin_LO,Lmin_L0+17"’ 5 }
Lmax - LO - 1, Lmax - LO

4) Search for the maximum, and minimum peak en-
ergy denoted as Mmax and My, respectively. Divide the
maximum difference of peak energy (Mmax — Mmin) by
the scale to calculate the degree of growth at each scale.
Then, the height of the center point can be obtained as

h = \/Mmin + (Mmax - Mmin) / (Lmax - Lmin)

where A =0,1,2,--+ , Lmax — Lmin-
5) Take the “W” structural element as an example.
Suppose that the initial structural element matrix is

B:%[A AL A As A

0
1
A =[1,1,--- 71]1></\ =
A
L AXA
exdiag(0,1,--- , A —1)
[ A
A—1
Ao :[1’1"" 71]1><)\ =
L 0 AXA

exdiag(\, A\ —1,---,0)
A= LminfLO,LminfLOﬁL]-v'“v
- Lmax - LO - 17 Lmax y LO

where X is the scale of mathematical morphology.

Through the above method, the scale A=Lmax — Lmin
of multi-scale mathematical morphology is determined,
and the multi-scale structural elements are constructed as
shown in Fig. 6.

4 Rolling bearing fault diagnosis
algorithm based on multi-scale
mathematical morphology of “W?”

structural element

4.1 Fault diagnosis algorithm

The flow chart of the diagnostic algorithm is shown in
Fig.7. The algorithm consists of two parts. The right half
is the signal training module, training and extracting data
from known normal, inner faults, and outer faults. The
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left half is the algorithm, which is applied to identify and
diagnose the faults of the signal under test. The working
steps of the algorithm are as follows:

1) According to the known types of faults, the train-
ing signals are divided into m categories. Each category
contains mn training sample signals. The obtained signal
set is {z;;}(i=1,2,---,m;j=1,2,--+ ,n)

2) Perform multi-scale mathematical morphology op-
erations on the signal set to extract the characteristic in-
formation of the signal {z;;}. Among them, “W” struc-
tural elements are selected, and adaptive algorithms
based on the peak energy are used to determine the scale
A of multi-scale mathematical morphology and construct



Q. Li et al. / A Signal Based “W” Structural Elements for Multi-scale Mathematical Morphology Analysis --- 999

multi-scale structural elements SE; (1 = 1,2,---, \).

3) The fast Fourier transform is used to transform the

processed  signal set {x;;}(i=1,2,--- ,m;5=1,2,
--n) and use (7) to obtain the corresponding morpholo-
gical spectrum set {P;} (i =1,2, -+ ,m).

4) For bearing signals with unknown fault types, re-
peat Steps 2) and 3), perform multi-scale mathematical
morphology operations, find the normalized morphologic-
al spectrum, and obtain the morphological spectrum P of
the unknown signal.

5) Calculate the average correlation coefficient
between the morphological spectrum P of the unknown
signal and the trained adaptive morphological spectrum
set {P;}(i=1,2,---,m). Assuming that the largest one
out of 71 to r, is 75 (0 < s < m), it is considered that the
working state of the bearing corresponding to the wun-
known signal is the same as that corresponding to the
training preprocessing signal set {z;}, i.e., it is checked
whether the unknown signal has a fault and the fault
type to achieve the purpose of diagnosis.

4.2 Numerical example simulation

In order to verify the feature extraction effect of the
multi-scale “W” structural element, a mixed-signal is con-
structed as (9):

y(t) = z1(t) + z2(t) + 23(t) 9)

where 1 (t) = 0.5sin (27 x 20t) + 0.5 cos (27 x 60t) repre-
sents repetitive shock response with a sinusoidal
frequency of 20Hz and cosine frequency of 60Hz,
22 (t) = 0.05e™" x sin (27 x 40t) represents an amplitude-
modulated sinusoidal signal with a frequency of 40Hz and
exponentially attenuating, and z3(t) is defined as a
Gaussian white noise with a mean value of 0 and a
standard deviation of 1 which simulates mechanical
background noise. Suppose the sampling frequency of the
signal is 8 000 Hz, and the number of sampling pointsis 2 000.
The corresponding time domain diagrams of the mixed-
signal are shown in Figs.8 (a) and 8 (b). In Figs.8(a) and
8 (b), the signal components with frequencies of 20 Hz and
60Hz are clearly seen. The pulse signal with a frequency
of 40Hz is almost submerged in the noise signal. The
open operation of mathematical morphology is performed
on the mixed signals with “W”, triangular and flat
structural elements, and then the processed frequency
domain images are compared. The frequency domain
maps of the mixed signal filtered by the “W?”-shaped,
triangular and flat structural elements are shown in
Figs.8(c)—8(e), respectively. The comparative analysis
shows that the “W” structural element has a better noise
reduction effect than the triangular and flat structural
elements. The extraction effect of the 40Hz pulse signal
submerged in the noise signal is more obvious. To a
certain extent, it shows that the “W”-shaped structural
elements can extract the pulse components submerged in
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(c) Frequency domain diagram after filtering “W”
structural element

Fig. 8 Simulated results of numerical examples

the signal more effectively.

4.3 Case study: Verification of bearing fail-
ure data of case western reserve uni-
versity

In order to further verify the feature extraction effect
of the “W” structural elements, this paper uses bearing
data from the central experimental platform of Case
Western Reserve University to select the vibration signal
obtained under a load of 3HP, speed of 1730 rpm, and
damage diameter of 0.007mm. The frequency is 12kHz.
The operating conditions of the bearing corresponding to
the data include normal, inner ring failure, outer ring fail-
ure, and rolling element failure. Outer ring failure has
three sampling directions: @3:00, @6:00 and @12:00. Each
operating condition contains 25 training sample signals
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and 10 test sample signals, and each sample signal con-
tains 2 000 data points, as shown in Table 1.

In order to fully demonstrate the effectiveness of the
proposed algorithm, the “W” triangular and flat structur-
al elements are used fault diagnosis, and their diagnostic
effects are compared.

Fig.9 represents the results of fault diagnosis of the
inner fault samples of three different structural elements.
In Fig.9, the abscissa shows the signal logarithm, and the
ordinate denotes the average correlation coefficient.
Figs.9(a) and 9(c) are the fault diagnosis results of the
“W” structural element and the flat structural element.
The test data have the highest similarity with the inner
ring fault, and the target sample is far away from other
samples. Hence, it can be accurately judged as an inner
ring fault. Fig.9(b) displays the fault diagnosis result of
the triangular structure element. The test data are very
similar to the normal and outer ring fault @6:00 sampling
direction specimens. The target standard sample is simil-
ar to the normal and outer fault @6:00. The sample dis-
tance is relatively close, which is prone to the fault type
misjudgment.

Fig. 10 displays the test data samples of rolling ele-
ment faults utilizing “W” structural elements, triangular
structural elements, and flat-shaped structural elements
for fault diagnosis results. The fault diagnosis results of
“W” structural elements are represented in Fig.10(a).
The target sample has the highest similarity with the
rolling element fault, and the fault type can be determ-
ined. However, the target sample is very close to the fault
sample in the @12:00 direction of the outer, which is easy
to cause misjudgment. Nevertheless, the target sample is
mixed with other fault samples in the fault diagnosis res-
ults of the triangular structure element and the flat struc-
ture element in Figs.10(b) and 10 (c). Hence, it is diffi-
cult to judge the type of fault. Based on the above ana-
lysis, using “W?” structural elements to perform multi-
scale mathematical morphological operations yields a bet-
ter diagnostic effect on complex faults.

Figs. 11-13 show the fault diagnosis results of the out-
er ring in the three sampling directions of @3:00, @6:00,
and @12:00. As a result of the same fault types, the fault
characteristics are also very similar, and the fault types
are difficult to distinguish. According to Figs.11(a),
12 (a) and 13(a), the “W” structural elements are used
for fault diagnosis. The target sample has the highest
similarity with its corresponding fault sample and is far
from other fault samples. It can accurately determine the
type of fault. Figs.11(b), 11(c), 12(b), 12(c), 13(b) and
13(c) utilize triangle structure elements and flat struc-
ture elements to @3:00 and @6:00 the fault of the outer
ring in the two sampling directions of diagnosing. Based
on Figs.11(b), 11(c), 12(b), 12(c), 13(b) and 13(c), the
target sample is close to other fault samples, and it is
easy to misjudge the fault type.

@ Springer

International Journal of Automation and Computing 18(6), December 2021

Table 1 Experimental data of different types of faults

Training Test Damage Bearing
samples samples diameter(mm) condition
25 10 0 Normal
25 10 0.007 Inner fault
25 10 0.007 Rolling fault
25 10 0.007 Outer
25 10 0.007 Outer fault
25 10 0.007 Outer fault
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0.8 r 1
Normal —— Outer fault@3:00
0.6 F —=— Inner fault Outer fault@6:00 1
Ball fault ~—— Outer fault@12:00
04 r b

Average correlation coefficient

Average correlation coefficient

Average correlation coefficient

0.2

—_
=]

4
o

o
o0

e
9

g
=N

o
W

1.0

0.8

0.6

0.4

0.2

2 3 4 5 6 7 8 9 10
Signal logarithm
(a) “W” structural element

Normal
—=— Inner fault
r Ball fault

—— Outer fault@3:00
Outer fault@6:00
—— Outer fault@12:00

1 2 3 4 5 6 7 8 9 10
Signal logarithm
(b) Triangular structural element

T S S — o
r Normal —— QOuter fault@3:00

—=— Inner fault Outer fault@6:00
L Ball fault  —— Outer fault@12:00

Signal logarithm

(c) Flat structural element

Fig. 9 Diagnosis results of inner ring fault
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Fig. 10 Diagnosis result of rolling element fault

To verify the effectiveness of the adaptive peak en-
ergy algorithm, taking the outer fault with the sampling
direction @12:00 as an example, the mathematical mor-
phology operation scale is A = 20, A = 50 and A = 100,
respectively. The initial structural element is [1 0 1 0 1],
and its width increments towards both ends by increas-
ing the scale. Though, its height increases by 0.1 with
each scale. Based on the results in Figs.14 (a) and 14 (b)
for fault diagnosis of A = 20, A = 50 structure, the tar-
get samples are closer to the outer fault with the
sampling direction @3:00 and rolling element fault which
is prone to misjudgment of the type of failures. As a res-
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Fig. 11 Diagnosis result of outer ring fault @3:00

ult of the fault diagnosis of A=100 shown in Fig.14 (c),
the target samples with samples direction to @12:00 of
outer fault are the most similar, which can determine the
fault type. Although A = 100 makes the fault diagnosis
effect better, it has a longer running time and lower effi-
ciency. The specific time is shown in Table 2.

According to the time comparison in Table 2, the
scale A = 62 determined by the adaptive peak energy al-
gorithm results in a fault diagnosis effect similar to A =
100. However, the running time is significantly reduced,
and the computing efficiency is highly improved.

In order to verify the validity and feasibility of the
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Fig. 12 Diagnosis result of outer ring fault @6:00

correlation coefficient for fault diagnosis, the inner ring,
outer ring, and rolling bearing faults with damage de-
grees of 0.007 inch, 0.014 inch, and 0.021 inch are selec-
ted, and the “W” structural elements are used for fault
detection. The results are shown in Fig. 15.

It can be seen in Fig.15 that the failure of the inner
ring, outer ring, and rolling element with a damage de-
gree of 0.007 can be well distinguished from the failures
with the other two damage degrees of 0.014 and 0.021. It
can be seen that using the method proposed in this art-
icle for fault monitoring is capable of not only detecting
different types of faults but also predicting the types of
faults under different damage signals accurately.
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Fig. 13 Diagnosis result of outer ring fault @12:00

4.4 Application on wind turbines in wind
farm

In order to further verify the effect of the proposed al-
gorithm in practical engineering applications, the bearing
fault data of wind turbines (model: Yangming 1.5MW
wind turbine) are collected from the Wengongwula wind
farm in Inner Mongolia. There are three types of data:
outer ring failure, inner ring failure, and normal signal.
The sampling frequency is 26 kHz, and the bearing model
is 6332MC3SKF deep groove ball bearing. The specific
parameters of rolling bearings are shown in Table 3.
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Fig. 14 Single-scale mathematical morphology fault diagnosis

Table 2 Running time at different scales

Average correlation coefficient

0.2

0.9

0.8 ‘E/k—_“\x/"\‘*—*\*_,/:r

07 ;

~0.007
ol ooot| |
05 - 1
04

0.3
0.2

1.0

1003
- 1.0 T T T T T T T T
g ‘W
;g 09 r
=
|
= . r T
g 0,007
3ol ]
§ 0.5 t - 1
504 | .

Signal logarithm

(a) Inner ring failure with damage degree of
0.007, 0.014 and 0.021

Signal logarithm

(b) Outer ring failure with damage degree of
0.007, 0.014 and 0.021

2
2 09 W
(4]
=]
Q
g 08 r - 0.007 b
E 0.014
] - 0.021
£ 0.7 b
3
Q
& 06 &
o
z

0.5 . . . . . . . .

1 2 3 4 5 6 8 9 10

Signal logarithm

(c) Rolling element failure with damage degree of
0.007,0.014 and 0.021

Fig. 15 Fault diagnosis results of different damage levels

Table 3 Basic parameters of rolling bearing 6332MC3 SKF

Inner Outer Number of Thick- Contact
Scale Time (s) diameter diameter rolling elements ness angle
A=20 13.083 160 mm 340 mm 8 65 mm 0
A =50 32.923
17-4720HQ 16.0GB . .
L= 100 Q 153.824 gular and flat structural elements. The diagnosis results
Proposed method A — 62 25 558 of the inner and outer ring faults of the wind turbines are

Each operating condition contains 15 training sample

signals and 10 test sample signals. Each training sample

signal or test sample signal contains 2 000 data points,

which are compared with the extraction effects of trian-

shown in Figs.16 and 17, respectively. Based on
Figs.16 (a), 16(b), 17(a) and 17(b), “W” shaped struc-
tural elements can better diagnose the inner ring and out-
er ring faults of wind turbine rolling bearings. Moreover,
the target sample has the highest similarity with the in-
ner ring fault sample, and the distance from other
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Fig. 16  Diagnosis result of the inner fault

samples is far. For both the inner and outer ring faults of
the triangular structural elements and the flat structural
elements, the distance between the target sample and
other samples is very close or even mixed. This can eas-
ily lead to the misjudgment of the fault type. The effect-
iveness of the new structural unit in fault feature extrac-
tion of an actual wind turbine is further proved.

5 Conclusions

This paper introduces a new type of structural ele-
ment aiming at the non-linear and non-stationary charac-
teristics of vibration signals of large-scale rolling bearing.
It presents the problems of scale selection and multi-scale
expansion structure in multi-scale mathematical morpho-
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Fig. 17 Diagnosis result of the outer fault

logy analysis. The proposed method can effectively over-
come the problem of missing the pulse signal in the fea-
ture extraction of traditional structural elements. In nu-
merical examples, bearing data of the experimental plat-
form of Case Western Reserve University and real fan
data are used to verify the effect of the new structural
elements. The obtained results show the effectiveness and
practicability of the proposed algorithm.
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