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Abstract: The use of a lower sampling rate for designing a discrete-time state feedback-based controller fails to capture information of
fast states in a two-time-scale system, while the use of a higher sampling rate increases the amount of computation considerably. Thus,
the use of single-rate sampling for systems with slow and fast states has evident limitations. In this paper, multirate state feedback
(MRSF) control for a linear time-invariant two-time-scale system is proposed. Here, multirate sampling refers to the sampling of slow
and fast states at different sampling rates. Firstly, a block-triangular form of the original continuous two-time-scale system is construc-
ted. Then, it is discretized with a smaller sampling period and feedback control is designed for the fast subsystem. Later, the system is
block-diagonalized and equivalently represented into a system with a higher sampling period. Subsequently, feedback control is de-
signed for the slow subsystem and overall MRSF control is derived. It is proved that the derived MRSF control stabilizes the full-order
system. Being the transformed states of the original system, slow and fast states need to be estimated for the MRSF control realization.
Hence, a sequential two-stage observer is formulated to estimate these states. Finally, the applicability of the design method is demon-
strated with a numerical example and simulation results are compared with the single-rate sampling method. It is found that the pro-

posed MRSF control and observer designs reduce computations without compromising closed-loop performance.
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1 Introduction

A fundamental problem in control engineering, i.e.,
designing a feedback controller for a linear system has
gained much importance since an appropriately designed
feedback control improves system stability and closed-
loop performance. Owing to the recent advances in micro-
electronics and computing technology, feedback controls
are invariably implemented digitally. Early developments
in this area assumed uniform sampling rates for convert-
ing signals from analog to digital format and vice-versa.
Later, it was realized that there is a need to include mul-
tirate samplingll), due to an increase in computational
load in large-scale digital control systems. Within the last
few decades, several techniques have been proposed on
the eigenvalue assignment of discrete-time systems using
multirate samplingl24. In [3], outputs are sampled at
1/TsHz by applying the inputs sampled at p/7TsHz,
where p is greater than or equal to the controllability in-
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dex. Further, in [2], it is shown that the inputs in [3] can
be sampled at a rate slower than u/TsHz. While, in [4],
the inputs are sampled at 1/7,Hz and the outputs are
sampled at v/TsHz, where p is the observability index.
Very recently, an optimal controller is designed in [5] for
a linear system using a multirate approach, in which
states and inputs are sampled at different rates. However,
in this method, all the states are sampled at the same
sampling rate and it also requires an observer for imple-
mentation. Whereas, techniques in [2—4] provide suffi-
cient freedom for eigenvalue assignment and obviate the
need for the deployment of an observer by sampling in-
puts and outputs at different rates.

The techniques in [2—4] are also applied to the singu-
larly perturbed systems(6™9, in which eigenvalues of the
system are grouped as dominant (slow) eigenvalues and
non-dominant (fast) eigenvalues[’0l. As these techniques
are based on the feedback of outputs, rather than states,
they lack robustness. Further, in [7], the input changes
from a large positive value to a large negative value sev-
eral times at the early stage of transient response to regu-
late the state, making it less suitable for industrial applic-
ations. Also, in the case of systems with a smaller value
for the singular perturbation parameter, they result in
feedback gains with larger values due to ill-conditioned
system matrices arising because of the eigenvalue group-
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ings. In such a situation, two-stage feedback control
designs[!113], employing single-rate sampling are found to
be more useful. Nevertheless, it is worth noting that, the
response of fast states is crucial during a short transient
period. After that, the behavior of the system is mostly
decided by the slow states. The use of a larger sampling
period for feedback control design for such systems causes
loss of information in fast varying states. On the other
hand, a smaller sampling period increases online compu-
tations considerably. Hence, the design of feedback con-
trol at a single sampling rate is not advisable. Conversely,
using a multirate sampling strategy, the designer can ac-
commodate multiple sampling rates for the group of
states, rather than a single sampling rate. Consequently,
the closed-loop control performance can be enhanced.

The conceptual background for investigating multir-
ate state feedback (MRSF) control for the systems with
slow and fast varying modes is established in [14], in
which two multirate sampling schemes have been sugges-
ted with their theoretical differences. In contrast to [2—4],
where inputs and outputs are sampled at different rates,
in [14] slow and fast varying states are sampled at differ-
ent rates. Furthermore, Kando and Iwazwumt[l® recom-
mended the design of optimal regulators via multirate
sampling. Lennarstonl!6l demonstrated that the disturb-
ances, not considered in [14, 15], can be efficiently
handled by adding immeasurable states in the existing
model, which are determined by an estimator. State es-
timation problems are further solved by reporting multi-
stage continuous-time observers!!719 and multirate ob-
servers(20-24. In multirate observers, the two-time-scale
system is considered with quasi-steady-state modeling
which is accompanied by approximation. This approxima-
tion can be avoided by using similarity transformations
for the exact separation of subsystems[!7"19. However,
more algebraic equations need to be solved which in-
creases computation time.

In this paper, multirate state feedback control is pro-
posed for a two-time-scale system using block-diagonaliz-
ation, in which slow and fast subsystem states are
sampled at different rates. Firstly, the continuous-time
system is transformed into an upper triangular form and
then feedback controls are designed for two subsystems
with different sampling periods. Then, a feedback control
input with slow and fast states, sampled at different
rates, is derived. Lastly, for control realization, slow and
fast subsystem states are estimated by a sequential two-
stage observer. The presented method reduces design
complexity, computations, and signal processing time sig-
nificantly and also improves system performance. The
usefulness of the reported design is verified by simulating
a numerical example.

The paper is organized as follows. In Section 2, the
main results of this paper are presented. The application
of the controller to the numerical example is illustrated in
Section 3. Finally, the paper is concluded in Section 4.
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2 Main results

2.1 System description

Consider a linear time-invariant continuous-time sys-
tem

2= Az+ Bu (1)

y=0Cz (2)

where z € R", u € R™ and y € RP” are states, inputs and
outputs, respectively. If system (1)—(2) is assumed to
have a two-time-scale structure, i.e., n eigenvalues have
n1 slow and nq fast eigenvalues, then it can be written as

2] A Ax 21 N B,
5 | T |An Azl B: |
€ € €
3)
T 1t
y= [Cl CQ] [z1 22] (4)

where z; € R™ and z2 € R"?, such that ni + n2 =n.
Submatrices A;j, B; and C; are of compatible dimen-
sions. Parameter ¢ is the speed ratio of the slow versus
fast states.

Assumption 1. The pairs (A, B) and (A, C) are re-
spectively controllable and observablel25].

Assumption 2. Matrix Ass is invertiblel26],

Assumption 1 ensures state stabilization and estima-
tion of (3)—(4) by the state feedback control and observ-
er respectively. It also helps to fulfill the controllability
and observability properties of the lower order continu-
ous-time subsystems obtained in the next subsections by
the application of similarity transformations. Assumption
2 is necessary to get solutions of algebraic equations de-
liberated on later in the design procedure.

As the states of the slow subsystem remain almost
constant over a time duration of 1/e, it is reasonable to
measure them at a slower sampling rate compared to the
fast subsystem states. Therefore, if the fast states are
sampled at the A sampling interval, slow states can be
sampled at 7 sampling interval, where A =7/N with N
as the largest integer smaller or equal to 1/¢ [16]. Interest-
ingly, for a suitably selected value of a sampling interval,
the discrete-time system equivalent to the continuous
two-time-scale system (3)—(4), would also possess the
two-time-scale propertyll”> 271, Thus, the designer has to
select N, 7 and A. Out of these, N is selected, such that,
it is <1/e. Now, if 7 is selected, one can acquire A.
Sampling period 7 can be carefully chosen using sampling
theorem!28] and Condition 1.

Condition 1. If Assumption 1 is satisfied and sys-
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tem (3) has only real eigenvalues, then any 75 > 0 can be
taken, otherwise, if |[Re(A\; — A\;)| = 0, then

2mm
Tt 2 form=1,2,-
S =) O )

where )\; and )\; are any two eigenvalues(25 29],

Condition 1 is required to satisfy the controllability
property of the discrete-time systems received by
sampling the corresponding continuous-time system. It
must be noted that, if 7 meets the sampling theorem and
Condition 1, A also meets both.

Suppose the sampling begins at a k7 instant. Here,
slow states are measured at every k7, where k =0,
1,2,---, while the fast states are measured at every
A = k7/N. In other words, in the 7 sampling interval of
slow states, fast states are sampled N times at every [A,
where [ =0,1,2,---,(N —1). The overall feedback con-
trol input is the combination of slow and fast controls,
such that

u(t) = us (k1) + up(kr +1A) (6)

where wus(k7) and wy¢(kT +[A) are piece-wise constant
during k7 <t < (k+1)7 and kTt +IA<t<kr+ (I+1)
A, respectively.

Even if the singular perturbation parameter ¢ does not
need to appear explicitly in the system, the system can
still have slow and fast eigenvalues. Hence, the use of
similarity transformation matrices to derive decoupled
subsystems could be a more promising and accurate
method instead of singular perturbation methods/3%l. The
proposed observed-based multirate feedback control
design uses similarity transformations. In the following
subsections, the complete design scheme of MRSF con-
trol and state estimation by the sequential observer are
presented.

2.2 MRSF control design for two-time-
scale system

First of all, an upper triangular form of (3) is con-
structed and then its discrete-time forms are acquired se-
quentially, starting from a lower to higher sampling peri-
ods, i.e., A — 7. Just after achieving a particular dis-
crete-time form, feedback control for the corresponding
uncoupled subsystem is designed. The block-triangular
form of (3) is given by

3 As A12 Bl

zZ1 zZ1

. = + u. 7
{ Zf ] 0 —Aaf |: zf —Baf ( )

A
In (7), max |Re {\(As)}| << min ‘Re {)\ (7'0 H,
where A(+) is the eigenvalue. System in (7) is obtained by
applying the state variable transformation given below:

ol | I

to the system in (3), in which I, is an identity matrix of
order n and matrix P satisfies

6P(A11 — A12P) + Az — AP =0 (9)

where As = A1 — A2 P, Ay =cPAi2+ Az and By =
ePB; + Bs,. The solution of (9) exists for a sufficiently
small value of € and under Assumption 2. Setting € = 0 in
(9) gives A21 — A22P(O) = 0, i.e.7 P(O) = A2_21A21 —
PO = A7l Ay and P =0(1) and P = P +0(e).
Having found P, the algebraic equation (9) can be
solved by the fixed point iteration methodBl. Assumption
1 implies system (7) is controllable. In (7), the fast
subsystem is entirely isolated from the slow subsystems.
At this point, according to Assumption 1, controllability
of (A1 Bs

is preserved. Now, the system (7) is discre-
5

tized with the A sampling interval as

2L+t | _ DPas Pal Zu |, T w (10)
Zfit1 0 Day E7x! Lay
where
DPrs Par = AA
= ¢ =
|: 0 Doy a=e
A
[ Tav | A :/ e Bdn
I'ay 0
in which
_ As A12 _ Bl
A=l A | B=| B
€ €

Feedback control design for (10) requires the follow-
ing Assumption 3.

Assumption 3. System (@A, I_"A) is controllable.

If sampling periods (7 and A) meet the sampling the-
orem?8] and Condition 1, Assumption 3 is fulfilled. As a
result, the controllability of (®4,Is) infers the control-
lability of (@A, I'af). And so, in the first stage, feed-
back control

u, = 7Ffo,l + us; (11)

is designed and applied to (10) as

Z1,1+1 _
Zfi+1
DPrs DPae —I'alFy 21, n I'Ar .
0 @A.fprfFf Zfl FAf s

(12)
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The feedback gain Fy is chosen, such that
M@Pay — TagFy) = A577°? and is positioned near the
origin. After that, system (12) is modified to

Zs,14+1 _
Zfil+1
DA, 0 Zs,l I
+ Us,l
0 @Af—FAfFf Zfl FAf

to separate fast subsystems. This is achieved by applying

Zs,l I.. -M Z1,1
= : 14

0 (12). In this, matrix M is evaluated by setting
Daro— LarFy +BasM — M(Pap— TapFy) =0. (15)

Equation (15) can be solved using the “lyap” com-
mand of Matlabl32 as a linear algebraic Sylvester equa-
tionl25] with Assumption 4 given below.

Assumption 4. \(Pas) # N Pay — LapFy).

Assumption 4 is fulfilled because subsystem
(Pay — I'agFy) is user designed with the eigenvalues
close to the origin, whereas the subsystem ®a; has the
original system's slow eigenvalues. Manipulating (12) and
(14) gives I'ns =I'a1 — MTIay. System (13) has a
sampling period of A seconds. If 7= N/A, the system
corresponding to the 7 sampling interval can be built
from (13) as

Zs,k+1 _ QTS 0 Zs,k + F‘rs W b
2§kt 0 Doyl | 2k Ly | 7

(16)

The state and input matrices of the A system (13)
and 7 system (16) are related as @, =®N and
N-1 _,
I, = Z . DNL'A. As a result, submatrices in (16) are
i=
obtained as

N-1

P =BN, Tro=)

i=

&5, Tas

N—-1 i
Iy = Zi:o (Pay — LasFy)' Tay.

As the controllability of the slow subsystem (®-s, I'-s)
is confirmed by Assumption 3, in the second stage,

Us k = stzS,k (18)

is designed and applied to (16) to have a closed-loop
system

Zs,k+1
Zfk+1
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¢787FTSFS 0 Zs,k
' . 19
- TfFS fo:| |: Zfk :| ( )

In (19), the feedback gain Fy is selected, such that
MND,s — I Fs) = X3¢ and are placed near the unit
circle. Thus, the overall MRSF control is

u(t) =—Frzs) — Fszs 1 (20)

where

up; = —Frzp, kt +1A<t<kr+(I1+1)A
sy = —Fszs i, kTt <t < (k+ 1)1

Lemma 1. Input (20), received by sampling fast and
slow subsystem states respectively at A and 7 intervals,
stabilizes system (19).

Proof. In a block-triangular system (19), eigenvalues
are the disjoint sum of eigenvalues of diagonal matrices
@D, — I'; . Fs and P,5. The subsystem (D, — I+ Fs) is
stabilized with Fs, so that the eigenvalues stay within the
unit circle near the perimeter. On the other hand, subsys-
tem @, is given by (17), in which the eigenvalues of
DAy — IagFy are stabilized by the feedback gain Fy. At
this instant, if |A\(Pay — LapFy)| < 1, then

A(Pay — TarF)N) <1 (21)

making |A(®-5)| < 1. As a deduction, input (20) stabilizes
system (19). ]

The control input (20) is obtained by designing feed-
back controls for the completely decoupled fast (zy) and
slow (zs) subsystem states at different sampling rates.
Being internal and decoupled states, they cannot be
measured and sampled directly for implementing (20).
For that reason, an observer is desired to estimate them
separately, so that they can be sampled at different rates.
As a result, control (20) becomes

U(t) = _Ffﬁf,l - Fsﬁs,k (22)

where 2y and 2, are estimates of the continuous-time fast
and slow subsystem states respectively. These are then
sampled with the A and 7 sampling intervals to get the
corresponding Zy; and 2. In the next subsection,
estimation of these states is discussed.

2.3 State estimation using sequential ob-
server

The full-order
constructed(?’ as

observer for (3)—(4) can be

3 A A 2
; = Az A2 S| T
) _— _— )

€ 5

B, L,y .

B, |ut+| Ly | (¥y—9)

5 €
2=A24+Bu+Lly—-9)=(A—LC)2+ Bu+ Ly

(23)
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g=[c1 &7 2§]T —c: (24)

where 21 and 22 are estimates of z; and za, respectively.
As transpose of the observer feedback matrix AT —
CTLT generates the dual representation to the system
feedback matrix A — BK, a similar approachll? 1]
can be adapted to design A — BK and A — LC. For
this, consider a hypothetical system corresponding to
(3)—(4) as

AT
& A’lrl =2 CT
1 £ 1 1
@ | T T2 + ct v (25)
AL, Az 2
€

where 1 € R™ and x2 € R"2 Introducing the state

variable transformation:
} —7r [ e ] (26)
T2

a | I IO .
@ | |o =2 T
system (25) is changed to standard singular perturbation

[

€

form:
Al A3 ct
q1 q1
! = + . 27
[ q2 :| A1T2 A2T2 |: q2 :| C;F Y ( )
€ £ e

Later, system (27) is structured to a lower triangular
form:

. AT o cT
qS qs
= 2
{ q2 } AT, A} { q2 ol | (28)
€ € €

by applying state transformation

qgs _ Inl _EPT qi1 _ T q1
[(h _{0 I,z }l:Q2:|_T2[QQ] (29)

to (27). Herein, the matrix PT is reckoned by solving

e(Al, - PTAL)PT + A}, —PTA, =0 (30)

iteratively, in the same way as that of (9). After that, one
can gain Al = A, — PTAJ,, AT =cA,P" + A3 and
cT=cl - P'Cy. Since A(A) =A(AT), system (28)
also conforms to the eigenvalue grouping property of
system (7). It is interesting to note that, the design of the
feedback controller presented in Section 2.2 starts by
decoupling the fast subsystem, as given by (12). Whereas
the design of observer discussed in Section 2.2 is initiated
by decoupling the slow subsystem, as shown by (28). This
is due to the duality property, i.e., in designing the

observer, the eigenvalue-assignment problem is solved for
the dual system. For two-stage observer design, in the
first stage, applying

v=—L.qs+ vy (31)
to system (28) leads to

AT -—CcTLT o

cs
qs _ qs
[42}‘ AL -ciLl A7 [«n]* cy |
€ € €

(32)

The slow subsystem observer gain LT is selected, such
that A(AT — CTLYT) = Adesired Ag the transformations
(26) and (29) transmute the original system from (25) to
(28) without losing controllability (or observability), the
pair (AT, CT) is controllable (or the pair (A, Cs) is ob-
servable), due to which an arbitrary eigenvalue assign-
ment is possible under Assumption 1 for slow subsystem.
Next, system (32) is restructured as

, A7 -CiL; 0 cT
gs gs
Is | _ + T v
{ s ] 0 Aj [ as S|
IS 3

by applying state variable transformation

AR R P P
ay HT I..]| ¢ Q2

to system (32), in which CF = C3 +cH'CY and

eH" (A} —C/LY) + Al, - CyLY —ATH" =0. (35)

Just like (15), (35) can be solved to get HT with As-

sumption 5 given below.
T

Assumption 5. A\(AT — CTLT) # ) (% .
Subsystem (AT — CTLT) is wuser designed with
AT
asymptotically stable dominant eigenvalues and 7f

has the original system's non-dominant eigenvalues. That
being so, Assumption 5 is satisfied. Thereupon, in the
second stage, passing input

vp=-Ljqy (36)

to the system (33) provides

. Al -cfLl  -clLy
&)= 21 (37)
i o Ao |

3
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The fast subsystem observer gain L? is designed so as
to place A(A} — C}FL?)/E = A§esire¢_ Controllability of
the fast subsystem ((A}“)/.E7 (C}F)/E) is preserved due to
Assumption 1. Using inputs (31), (36) and transforma-
tions (26), (29) and (34), the overall observer gain is
obtained as

v=L"z= [LlT éLQT] [a:lT x3 ]T (38)
where LT = —L{ —LyH" and Lj =eL{P" +cLjH"
Pt — L?. Once again, applying change of states

RN el P R
to the system (37) results in

[:b ] (4, -pcyr LGN

¢ T
0 (Ay — LsCy)
g

(40)

The hypothetical system (25) and system (40) are re-
lated by linear transformations (26), (29), (34) and (39) as

sl lal=l2 )]s ] e
Ty T2 T2 Ty

[ I, —pT

T =17 't = i iy
eH —cH P +1I,,

. (42)

Using (40) and the duality principlel!% 23], the observ-
er can be configured as

B (As — L:C) 0 5
[ Ey ] T | LG (Ar - LsCy) [ P
g g
B, L.
Bof u + h Y.
e €
(43)

The intriguing aspect is that the observer configura-
tion (43) is matched with system (19) for state estima-
tion. This is attainable only when feedback control and
observer designs start with decoupling fast and slow sub-
systems respectively. Employing (41) for a two-time-scale
system (23)—(24) gives

T T
27 23] =7[sF 4] (44)
resulting in an observer that estimates slow and fast
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subsystem states as

[ % ] _Tl(A_LC)T[ i +T 'Bu+T 'Ly.
s

(45)

Zy

Systems (43) and (45) are equivalent, in which case

L, L,
-1

g g

can be verified using (38) and (42). Similarly, using
T-'B, one can get

Bos :Bl _SHPBl —HBQ (46)

Bof =ePB; + B-. (47)

In observer (43), the slow and fast states are estim-
ated sequentially, in which case slow states are independ-
ent of the fast states and are used to estimate fast states.
State estimation and its use in implementation of feed-
back control is illustrated in Fig. 1.

Novelty and benefits of the proposed sequential ob-
server-based MRSF control design are listed below.

1) The MRSF control design is completed using two
state variable transformations, compared to three state
variable transformations in [11]. Also, in contrast to four
state variable transformations in [19], only three state
variable transformations are required to complete the
two-stage design of sequential observer. As a result,
manual design complexity is reduced significantly.

2) The offered design requires solutions of two algeb-
raic equations for both MRSF control design and sequen-
tial observer design, i.e., solutions of four algebraic equa-
tions in all. Perversely, using straightforward designs
in [11] and [19], solutions of six algebraic equations are
required. As a lower number of algebraic equations need
to be solved, the online computations are minimized.

3) The presented control design method uses the mul-
tirate sampling concept, due to which the online compu-
tations are reduced compared to the fast single-rate
sampling(!2, and the closed-loop performance is greatly
improved compared to slower single-rate sampling[!3].

4) In MRSF control, the on-line computations are re-
duced by around ni(N — 1) in one 7 sampling interval,
compared to single-rate sampling control when designed
with A seconds.

5) Since both designs (MRSF control and sequential
observer) are done in two independent stages by the ap-
plication of similarity transformations, eventual inac-
curacies made in the second stage will not affect the first
stage design accuracy.

The step-by-step design procedure is given below.

Step 1. Solve the algebraic (9) to get P.
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Slow B
of
observer z
REAINETTS Ve
S € +
A,-LC) (e

< observer

Fast

Zr

| —

(4,-L,C)

4

g - )§
AR

Fig. 1 Block diagram of observer-based controller design

Step 2. Determine A,, Ay, By and construct system
(7).
Step 3. Discretize (7) with A interval to get (10).
Step 4. Obtain Fy, so that >\(¢Af — FAfFf) =
)\cga;zred.

Step 5. Compute M by solving (15) and determine
Ihs.

Step 6. Build (16) with 7 interval using (17).

Step 7. Find out Fs, so that AN @.s — I . Fs) =
)\desired.

Step 8. Sample z; and zy, obtained in Step 14, with 7
and A intervals respectively and construct (20).

Step 9. Evaluate the algebraic equation (30) for PT.

Step 10. Calculate AT, AT, CT and achieve system
(28).

Step 11. Find out LT, so that A(AT —CTLT) =
)\desir'ed.

Step 12. Estimate HT by exercising (35) and get C;{.

Step 13. Obtain L}, with )\((A;cF = C’}FL?)/E) =
)\desired

H .

Step 14. Determine B,; and B,y in (46), (47) and

formulate (43) for estimating z, and z;.

3 Numerical example

Let us consider a fifth order steam power system(1?],
having two slow and three fast eigenvalues with the state,
input and output matrices as

[—0.1125 0.046 8 0.1049 0.0001 0.1876
—-0.0001 -0.1669 —0.0000 —0.0002 0.626 4
A =|-0.0000 1.3333 -2.0001 -0.0000 —0.0004
—2.0000 0.0001 —-0.0001 —2.0001 0.0001
| 0.0006 —0.0001 0.0007 1.2677 —5.0014

[ 0.0001
0.1499
R
1.5003
| —0.0022

Eigenvalues are located at (—5.0332, —1.9697+
0.1428i, —0.154 2 + 0.149 4i) with the ratio of slow versus

fast states as € = % = 0.1087. Thus, N is taken as

min|Az|

9 1< é . If the sampling duration for the slow subsys-

tem is selected as 7 = 1.8s, then the fast subsystem states
are sampled at every A = 0.2s. Suppose the desired ei-
genvalues of  the continuous-time system are
(—0.20,—-0.35, —3.10, —4.30, —5.50). Consequently, the de-
sired eigenvalues in z-domain for the slow and fast sub-
systems for 7 and A sampling intervals respectively, can
be obtained by e*:’s, where \; is the i-th eigenvalue of
the continuous-time system and T is the sampling peri-
od. Accordingly, A% = (0.5379,0.4232,0.3329) and
Adesired — (0.6977,0.5326). Now, solution of (9) is found
by the fixed point iteration methodB! to get P and an
upper triangular form (7) is reached with

—0.0116
I R R
’ ' —0.0007

—0.2183 0.0000 —0.0502
Ay = 0.0123 —-0.2175 0.0170
0.003 3 0.1378 —0.5399

This system is then discretized with a sampling peri-
desired

od of 0.2s. Later, to place A\%7""%, the feedback gain is

determined as Fy = [75.7277 1.1959 0.8986]. Next,

M is estimated to get (13) and subsequently system (16)
with 7 sampling interval is derived using (17), in which
case

5. — { 0.7250 0.171 0] .- [0.0458}

—0.2373 0.7358 0.5401

0.0071 0.0000 -—0.0011 —0.0366
&, ;= |0.0348 0.0002 —0.0054|, Iy = | 0.2884

0.0205 0.0004 —0.0030 0.0734

The slow subsystem eigenvalues are placed at A2¢*¢red

by computing Fs; = [-0.3307 0.4548]. Utilizing obtained
feedback gains, control input (20) is formulated. The sys-
tem initial conditions are taken as (-0.2, 0.1, 0.1, —0.2,
0.4). States zs and zy are estimated using the sequential
observer and are sampled at 7 and A sampling intervals
respectively, with desired observer eigenvalues as (—1.6,
-1.8, —9.8, —11.2, —13.1). For this, the solution of (30) is
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determined and system (28) is obtained. PT in (30) and
AT and A}f in (28) are the exact transpose matrices of P
in (9) and A, and Ay in (7) respectively. After that, CT
in (28) is obtained and then, to position A%**"¢? the ob-
server gain LT is determined. These are given below:

) S

T 1.0000 —-1.2915 T | 0.6363 0.9424
° 1.0000 0.8168 —0.6236 0.8660]|

Then, HT is calculated to gain (33) with

23375 76117
C} =|-0.7293 3.7516
—0.5570 0.5634
The fast subsystem eigenvalues are placed at X;es"m
by determining

0.4274 —1.4710 1.4775

L} =
f —0.0043  0.4785 —0.4947|"

Finally, B,s and B,y are calculated using (46) and
(47), respectively as

—0.0116
B = [_g-g; ;] B=| o619
' —0.0007

Initial conditions for the estimated states of the ori-
ginal system (23) are obtained as given in [19] and initial
conditions for the decoupled states are obtained from the
relation (44). Using all these feedback and observer gains,
initial conditions and other submatrices, the overall sys-
tem is simulated. The simulation results are compared
with the single-rate sampling videlicet A and 7 seconds.
Figs.2 and 3 depict estimation errors of the decoupled
and sampled slow and fast subsystem states, respectively.

1.0

Proposed MRSF
— — Single-rate 4
— - —Single-rate ¢

0t — R
0 5 10 15 20
Time (s)
0.2
ol —
—02 |
< 04}
-0.6
-0.8 . . .
0 5 10 15 20
Time (s)

Fig. 2 Estimation errors for the decoupled slow subsystem
states

@ Springer

Fig.4 shows the evolution of the control input and out-
puts. Evolutions of the states of the original system are
represented in Figs.5 and 6. From the simulation results,
a significant improvement in the overall system perform-
ance can be observed with the MRSF control compared
to single-rate sampling (7). Moreover, the online compu-
tations are reduced compared to single-rate sampling (A)

with nearly matching performance.

Proposed MRSF ]
— — Single-rate 4
— - — Single-rate 7

Time (s)

Time (s)

Fig. 3 Estimation errors for the decoupled fast subsystem
states

1.0 Proposed MRSF ||
’ — — Single-rate 4
— - — Single-rate 7

Time (s)

V2
o
S
/

Time (s)

Fig. 4 Evolution of control input and system outputs
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0l
¥ o1 Proposed MRSF
’ — — Single-rate 4
“oa . —-— Single-rate 7
0 5 10 15 20
Time (s)

Time (s)

Fig. 5 Evolution of z; and z3 states of the original system

02 t TN Proposed MRSF H
¢ 0.1 < ~ — — Single-rate 4
A — - — Single-rate

Time (s)

Time (s)
Fig. 6 Evolution of z3, z4 and z5 states of the original system

4 Conclusions

In this paper, a multirate state feedback control
scheme is presented for a two-time-scale system using the
exact separation of the fast and slow subsystems. The
fast subsystem states are sampled at a higher rate than
the slow subsystem states. Two steps of subsystem separ-
ation and two stages of MRSF control are merged. For
control implementation, the decoupled states are com-
puted by a sequential two-stage observer, designed for a
continuous two-time-scale system. The proposed control
is then applied to an illustrative example and simula-
tions are presented. Simulations are compared with the
single-rate sampling and it is observed that the multirate
sampling improves system performance. Although the ob-
server is designed in a continuous-time domain in this pa-
per, the multirate state estimation problem may be con-
sidered in future.
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