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a b s t r a c t

Reasoning aiming at inferring implicit facts over knowledge graphs (KGs) is a critical and fundamental
task for various intelligent knowledge-based services. With multiple distributed and complementary
KGs, the effective and efficient capture and fusion of knowledge from different KGs is becoming
an increasingly important topic, which has not been well studied. To fill this gap, we propose to
explore cross-KG relation paths with the anchor links identified by entity alignment for the knowledge
fusion and collaborative reasoning of multiple KGs. To address the heterogeneity of different KGs,
this paper proposes a novel reasoning model named HackRL based on the reinforcement learning
framework, which incorporates the long short-term memory and hierarchical graph attention in
the policy network to infer indicative cross-KG relation paths from the history trajectory and the
heterogeneous environment for predicting corresponding relations. Meanwhile, an entity alignment-
oriented representation learning method is utilized to embed different KGs into a unified vector space
based on the anchor links to reduce the impact of distinct vector spaces, and two training mechanisms,
action mask and retrain with sampled paths, are proposed to optimize the training process to learn
more successful indicative paths. The proposed HackRL is validated on three cross-lingual datasets
built from DBpedia on the link prediction and fact prediction tasks. Experimental results demonstrate
that HackRL achieves better performance on most tasks than existing methods. This work provides an
industrially-applicable framework for fusing distributed KGs to make better decisions.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Knowledge graphs (KGs) encode unstructured knowledge into
tructured triples, which provide an effective scheme for describ-
ng the complex relationships between concepts and entities.
n recent years, with the developments of big data [1,2] and
atural language processing, a large number of KGs, including
AGO [3], DBpedia [4], and Freebase [5], have been constructed,
hich contain millions of facts about real-world entities and re-

ations, e.g., (Joe Biden, president of, USA). Due to the explainable
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characteristics of KGs [6], they have been widely used in various
tasks, such as information retrieval [7], question answering [8,
9], and recommender systems [10–12]. Original KGs are usually
constructed with data collected from the Internet or gathered
manually; consequently, KGs always encounter the knowledge
incompleteness issue even though they are large in size. Links
among entities can be lost in a KG, which greatly affects the
performances of downstream tasks [13]. Predicting the missing
links is crucial to various knowledge-based services, which is
referred to as the knowledge reasoning task.

So far, numerous methods have been proposed to cope with
the knowledge reasoning problem, which can be classified into
three categories: rule-based, embedding-based, and path-based
[14–16]. The rule-based methods use first-order predicate logic
or ontology to represent concepts, which heavily rely on ex-
pert knowledge and are not suitable for large-scale KGs. There-
fore, many recent works have focused on reasoning based on
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istributed representations, which embed entities and relations
nto low-dimensional vector spaces and predict links based on
heir embeddings. Researchers have proposed a large number of
mbedding methods based on tensor decomposition [17], trans-
ational models [18–20], and semantic matching, which have
chieved great improvements in various applications. Despite
heir impressive results, embedding-based methods are usually
ard to explain and cannot model multi-hop relation paths [21].
n contrast, path-based reasoning methods find equivalent re-
ation paths of a relation and use them as features to predict
he existence of corresponding relations, which is easier to ex-
lain and can handle multi-hop reasoning problems. Recently,
esearchers have proposed exploring the most indicative relation
aths with deep reinforcement learning (DRL) [22–24], which
chieves excellent results on the knowledge reasoning task.
However, all of the existing methods conduct reasoning on a

ingle KG. In reality, there are usually multiple KGs regarding a
pecific domain. A better solution is to associate and fuse multiple
Gs to improve the reasoning performance [25,26]. Neverthe-
ess, the only existing research on reasoning over multiple KGs
redicts links based on the ensemble of inference results over
ifferent aligned KGs [27], which suffers from poor flexibility
s it requires the predicted entities to both have pairs in other
Gs. Therefore, how to integrate the complementary knowledge
ontained in distributed KGs effectively and efficiently to help
mprove each KG’s completeness remains a problem, which in-
olves identifying the equivalent knowledge and integrating the
omplementary knowledge.
To fill this gap, we propose to explore equivalent cross-KG

elation paths to integrate complementary relation paths based
n the anchor links from the entity alignment, which aims to
redict the missing links between different KGs by identifying
quivalent entities. The difficulties of learning useful relation
aths over multiple KGs are that the feature spaces of differ-
nt KGs are heterogeneous [25] and the action space is ex-
anded significantly. Existing DRL-based reasoning methods can
ardly learn indicative cross-KG relation paths effectively and
fficiently under such conditions. To tackle these issues, we pro-
ose a novel model for the knowledge fusion and collaborative
easoning of multiple KGs named hierarchical graph attention-
nabled cross-knowledge graph reinforcement learning (HackRL),
hich incorporates long short-term memory (LSTM) [28] and
ierarchical graph attention (HGA) to form the policy network
o make history-dependent policies based on the comprehen-
ive learning of the heterogeneous environment. To reduce the
mpacts of feature heterogeneity among different KGs, we first
se the graph attention network (GAT) and TransE model [29]
o embed entities and relations of different KGs into a unified
ector space based on the identified anchor links from entity
lignment. The agent is built with the LSTM and HGA-based policy
etwork to find the most indicative cross-KG relation paths. An
ction mask mechanism is designed to filter out unreasonable
ctions at each step and increase the success rate of exploration.
eanwhile, to optimize the training process to learn indicative
ross-KG paths, we design a novel reward function that jointly
ncourages accuracy, diversity, and efficiency, and we sample
oth intra-KG and inter-KG paths for demonstrations [30] to
uide the agent’s learning when it fails. Our contributions are
ummarized as follows:
•We are the first to propose exploring cross-KG relation paths

or the knowledge fusion and collaborative reasoning of multiple
Gs. Our proposed model provides an effective and flexible solu-
ion for integrating, unifying, and enhancing KGs to make better
nowledge-based decisions.
• A novel reinforcement learning model is proposed, where
he collaborative reasoning with fused knowledge is driven by m

2

an agent based on the embeddings in the same vector space and
well-designed training mechanisms.
• The proposed model is evaluated on three cross-lingual KGs

ith downstream tasks. Experimental results indicate that the
roposed HackRL model outperforms other baseline models and
emonstrate the effectiveness of the proposed policy module and
ptimization method.
The remainder of the paper is organized as follows: Section 2

eviews the related works of entity alignment and knowledge
easoning for KGs; Section 3 provides the details of the proposed
ackRL model; Section 4 describes the experimental datasets,
ettings, and results; Section 5 concludes the paper and shows
ur future work directions.

. Related work

The emergence of many heterogeneous, distributed, varied,
nconnected, yet complementary KGs has emphasized the im-
ortance of associating and integrating multiple KGs to achieve
efined and complete KGs. Entity alignment and knowledge rea-
oning are two fundamental and crucial techniques for achieving
his goal. In this section, recent advances in entity alignment and
nowledge reasoning are briefly reviewed.

.1. Entity alignment

The entity alignment problem has been researched for years.
he earliest entity alignment approaches utilize hand-crafted fea-
ures [31] or external sources based on crowdsourcing, which
uffer from heavy human efforts and insufficient scalability. Re-
ently, embedding-based methods have become the most pop-
lar solutions, which assign counterparts based on the distance
etween their embedding vectors [32]. Most embedding-based
ntity alignment approaches can be divided into two groups [33],
ne of which encodes each KG into separated vector spaces and
earns transitions between different vector spaces and the other
f which encodes multiple KGs into a unified vector space.
Many embedding-based entity alignment methods [34,35]

mploy translational models to learn entity representations based
n the attribute and relation triples. For example, Chen et al. [34]
roposed encoding entities and relations of different KGs into
eparate vector spaces based on the TransE model [19] and pro-
ided translations for each embedding vectors to their counter-
arts in the other space. Recently, graph convolutional neural net-
ork (GCN)-based entity alignment methods have been widely

nvestigated, e.g., GCN-Align [36], KECG [29], and AliNet [37],
hich use GCNs to capture the semantic relations between en-
ities and encode different KGs into a unified vector space by
haring the weights of different GCNs.
In addition to structural proximity, some approaches [35,38]

lso incorporate attribute and semantic information to boost en-
ity alignment performance. Trisedya et al. [35] proposed learning
ttribute embeddings from attribute triples based on the TransE
odel to capture entities’ attribute similarities. Wu et al. [39]
roposed a relation-aware dual-graph convolutional network to
ncorporate relation information via attentive interactions be-
ween the KG and its dual KG. To mitigate the limitations of struc-
ural information for long-tail entities, Zeng et al. [40] proposed
degree-aware co-attention network to dynamically adjust the

mportance of structural and name embeddings while calculating
ntities’ similarities. Entity alignment is a typical semi-supervised
earning problem with little labeled data. To tackle the issue
f insufficient pre-alignment seeds, Sun et al. [41] proposed a
ootstrapping method that uses highly confident prediction re-
ults to enrich the pre-alignment seeds and iteratively train the

odel. Zeng et al. [38] proposed adopting the deferred acceptance
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lgorithm (DAA) to solve the one-to-one mapping problem faced
y most entity alignment problems. Wu et al. [42] proposed esti-
ating entities’ similarities according to the structural and neigh-
orhood differences based on the graph matching method. Tang
t al. [43] proposed a BERT-based interaction model (BERT-INT)
o leverage the side information, including entities’ names, de-
criptions, and attributes to calculate entities’ similarities, which
chieves the best performance on public datasets. Based on these
rior studies, we can obtain accurate aligned entity pairs as
nchor links to connect different KGs.

.2. Knowledge graph reasoning

To date, many methods have been proposed to tackle the
nowledge reasoning problem [44]. First-order inductive learner
45] is a typical rule-based reasoning method that acquires the
orn clauses of specific relations as features for predicting
hether a relation exists. Jiang et al. [46] proposed a Markov

ogic network-based system to combine manually defined rules
ith probabilistic inference. Yang et al. [47] proposed neural logic
rogramming to learn first-order logical rules in an end-to-end
ifferentiable fashion. Traditional rule-based algorithms achieve
igh inference accuracy on small-scale KGs; however, they can
ardly handle reasoning on large-scale KGs, since the number of
nference patterns is exponential to the scale of entities.

In recent years, embedding approaches have also gained a
reat deal of attention in the knowledge reasoning field.
mbedding-based methods capture the distance between enti-
ies and relations while projecting them into a continuous and
ow-dimensional vector space. TransE [19] is a commonly used
mbedding model that interprets a relation as the translation
rom its head entity to its tail entity, i.e., h + r ≈ t is satis-
ied for a triple (h, r, t), where h, r, and t are the embeddings
f h, r , and t . TransE has motivated many embedding models
ue to its simplicity and efficiency; these include TransH [48],
ransR [20], and TransD [49]. Tensor decomposition models such
s DistMult [17], ComplEx [50], and SimplE [51] and deep learning
odels such as ConvE [52] are also widely used for knowledge

easoning. However, embedding-based methods can only handle
ingle-hop reasoning [13] and are hard to explain.
For the path-based reasoning methods, Lao et al. [53,54] pro-

osed the classic path-ranking algorithm (PRA) for the link pre-
iction problem. To learn an inference model for a certain relation
ype, PRA utilizes a random walk-based inference method to find
aths that frequently link instance entities and uses these paths
s features to train a bilinear regression model. Although the PRA
odel achieves excellent performance on multi-hop reasoning, it
perates in a fully discrete space and lacks the ability to distin-
uish similar entities and relations. To overcome this problem,
few DRL-based path inference models have been proposed.
eepPath [22] is the first work to bring DRL into the missing
ink prediction task, which uses a pre-trained policy-based agent
o sample the most promising paths. MINERVA [23] improves on
eepPath by incorporating LSTM into the policy network to mem-
rize the path traversed and stop at the right entity. ADRL [55]
lso incorporates LSTM with an attention module into the DRL-
ased reasoning model to improve efficiency, generalization, and
nterpretability. Lin et al. [56] proposed improving these two
odels by introducing action dropout and reward shaping. Li
t al. [21] proposed a multi-agent reinforcement learning method
hat uses two agents to conduct relation selection and entity
election iteratively for path-finding. AttnPath [24] incorporates
STM with a graph attention network as the memory component
n the policy network.

All of the above reasoning methods learn and predict rela-
ion links within a single KG. So far, although there are many
3

ntity alignment methods that significantly improve the ability
o identify equivalent knowledge objects, very little attention
as been paid to integrating complementary knowledge to boost
nowledge reasoning.

. The proposed HackRL

This section describes the concept, framework, and learning
rocess of the proposed HackRL model. An overview of the task
ormulation and the related notations is given. The components of
he proposed reinforcement learning framework are then intro-
uced. Finally, the training and optimization approach is designed
n the basis of the reinforcement learning framework.

.1. Problem formulations and notations

A knowledge graph G = (E,R, T ) consists of a set of entities
, a set of relations R, and a set of triples T . e ∈ E is an entity,
∈ R is a relation, and (eo, r, et) ∈ T is a triple that points

he head entity eo to the tail entity et . Without loss of generality,
e consider the knowledge fusion and collaborative reasoning of
wo KGs, i.e., G1 = (E1,R1, T1) and G2 = (E2,R2, T2), aiming to
redict the missing element of ? given a query among three cases,
? , r, et), (eo, ? , et), and (eo, r, ? ). eo and et are the head entity
and the tail entity not directly connected within a single KG.
Instead, there may be some long intra-KG and inter-KG inference
paths

(
eo

r1
→ e1

r2
→ e2 · · ·

rm
→ et

)
, where ei is the i-th entity and ri

is the i-th relation in the path.
Since the primary goal of this paper is to develop a model to

resolve the path inference problem over multiple heterogeneous
KGs, i.e., to automatically infer promising cross-KG relation paths
to indicate the existence of specific relations, we identify equiv-
alent entities based on the entity alignment and add the highly
confident predicted entity pairs to the anchor links to connect the
KGs. Based on this, we can fill the missing link athletePlaysInLeague
between X and Z if both (X, atheletePlaysForTeam, Y ) and
(Y , teamPlaysInLeague, Z) exist in G1, which can also be inferred
from

(
X, Identical, X ′

)
,
(
Z, Identical, Z ′

)
between G1 and G2, and(

X ′, atheletePlaysInLeague, Z ′
)
in G2. Recently, DRL-based methods

have achieved impressive performance on the knowledge rea-
soning task, in which the path-finding problem is formulated as
a Markov decision process (MDP). The MDP is defined as a 4-
tuple (S,A,P,R) [57–59], where S is the continuous states, A
is the available actions, P

(
Si+1 = s′|Si = s,Ai = a

)
is the state

transition function, and R (s, a) is the reward function of each
(s, a) pair.

3.2. RL framework of HackRL

The overview of the proposed HackRL model is shown in Fig. 1.
HackRL is framed on reinforcement learning, where a policy net-
work is formed to infer indicative paths for a relation throughout
the environment. At each step, the agent takes an action to choose
a relation from the action space based on the history trajectory
and current state encoded by LSTM and HGA network. If the agent
selects a valid action, it will move forward to extend the relation
path; otherwise, it will stay at the origin and be punished. The
detailed framework, the policy network, and the training method
are described as follows.
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Fig. 1. The reinforcement learning framework of the proposed HackRL.
Fig. 2. The embedding module for learning representations of entities and relations.
3.2.1. KG environment
For the case of two aligned KGs, the environment refers to the

whole G1, G2 as well as their anchor links, excluding the query
relation triples. We identify equivalent entities based on the
state-of-the-art entity alignment method BERT-INT [43]. Specif-
ically, BERT-INT uses a BERT model as a basic representation unit
to embed the name, description, attribute, and value of an en-
tity, which is highly discriminative information for distinguishing
entities. The embeddings are then inputted into an interaction
module to compute the name/description-view, neighbor-view,
and attribute-view interactions. The matching scores between
different entity pairs are aggregated based on the interaction
features. Based on the matching scores, an entity is assigned
to the candidate that possesses the highest matching score in
another KG. We refer the reader to [43] for more information
about the implementation details. Based on this method, we
achieve more than 96% alignment accuracy for the datasets used
in this study. Therefore, the prediction results are all added into
the anchor links. However, this method may be not suitable for
entity alignment of KGs without explicit and informative side
information, in such cases, the alignment results may need to be
carefully checked.

To facilitate path-finding, for each triple (eo, r, et), we add
the inverse triple

(
et , r−1, eo

)
to the datasets. Additionally, each

aligned entity pair
(
e, e′

)
∈ I is formed as a triple with the rela-

tion Identical, where I denotes all of the aligned entity pairs. The
environment remains the same throughout the training process
for a given query relation rq.

Since the agent works on continuous vector space, we need to
learn continuous representations for entities and relations for the
learning of the DRL model. Since the feature spaces of different
4

KGs are distinct and heterogeneous in nature, we need to map
entities and relations of different KGs into the same vector space.
For the inter-connected KG pair, we learn embeddings in a unified
vector space based on the graph attention network (GAT) and
TransE model, following [29]. The framework of the embedding
module is shown in Fig. 2. We first embed entities of different
KGs into a unified vector space based on a pair of GAT models
with parameter sharing. The loss function of the GAT models is
as follows:

LG =
∑

(ei,ej∈S)

∑
(
e′i,e
′
j∈S
′

)max
(
0,

ei − ej

2 + γ1 −

e′i − e′j

2

)
, (1)

where ∥·∥2 is the L2 distance, S is the set of positive aligned
entity pairs, S ′ is the set of negative entity pairs generated by
negative sampling [29], and γ1 is a margin hyper parameter. Since
the GAT model cannot learn embeddings of relations, we then
utilize the TransE model to embed relations with the objective
of minimizing the following loss function:

LT =
∑

(eo,r,et )∈T

∑
(e′o,r ′,e′t)∈T ′

max
(
0, f (eo, r, et)+ γ2 − f

(
e′o, r

′, e′t
))

,

(2)

where f (eo, r, et) = ∥eo + r− et∥2, T is the positive triple set,
and T ′ is the negative triple set generated from corrupted T
following TransE [19]. With the above process, the embeddings
of entities and relations that encode their semantic relations in a
unified vector space are obtained.

3.2.2. MDP
The MDP contains state, action, transition, and reward. Given

the KG environment, at each step, the agent learns to select a
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Fig. 3. The hierarchical graph attention mechanism.

promising relation ri to extend the relation path based on the
urrent state si. Then, the agent may walk from entity ei−1 to ei
according to the transition rules P . At the end of each episode,
the agent will receive the rewards R for its actions. The details
of each part are as follows.

State: In the proposed reinforcement learning framework, the
state encodes the agent’s location information in the environment
with a fixed-length vector, which is composed of three parts: the
entity embeddings, the LSTM-encoded history trajectory embed-
ding, and the hierarchical graph attention embedding. Thus, the
state vector at step i is defined as follows:

si = [mi; hi; ai] , (3)

where hi is the history trajectory embedding, ai is the hierarchical
graph attention embedding, and mi is the entity embedding part,
which is defined as

mi = [ei; et − ei] , (4)

where ei and et are the embeddings of the current entity and the
target entity. et − ei is used to capture the distance between the
target entity and the current entity. [; ] denotes the concatenation
operation.

We adopt LSTM in the policy network so that the agent can re-
tain its experience and history trajectory. In the proposed model,
a three-layer LSTM is utilized. The search history consists of the
sequence of states and actions taken up to step i, which is defined
as follows:

hi = LSTM (hi−1, [r i−1;mi]) , (5)

where hi denotes the hidden state at step i, the initial hidden
state h0 is set to a zero vector, and the input of LSTM at step i
is composed of the embedding of the action taken at step i − 1
(i.e., ri−1) and the entity embedding at step i, respectively.

KGs consist of entities and semantic relations, and multi-
ple aligned KGs also consist of many anchor links across them.
Therefore, multiple aligned KGs have a hierarchical structure.
For an entity ei in G1 with aligned entity e′i in G2, ei and e′i are
emantically identical, and neighbors of e′i in G2 are differentially
nformative, since they have different characteristics. Therefore,
e utilize the hierarchical graph attention embedding to make
he agent focus more on relations and connected entities highly
elated to the query relations in the heterogeneous environment.
he illustration of the hierarchical graph attention is shown in
ig. 3. The hierarchical graph attention includes two levels of
ttentions, i.e., the node level and the network level, to make the
gent pay more or less attention to the neighbors in the same KG
r the equivalent entity in another KG while choosing actions.
hese two levels of attention mechanism are formally called
ntra-KG graph attention and inter-KG graph attention. The intra-
G graph attention encodes the one-hop neighbors’ information
y means of the following equation:

si =
∑

αij ·Wej, (6)

j∈Ns

5

where W is a linear transformation matrix and Ns denotes the
ntra-KG neighbors of ei. αij is the weight of the j-th neighbor,
hich is calculated using a single-layer self-attention neural net-
ork. Specifically, following the graph attention model [60], the
ttention weight between the i-th entity and the j-th entity is

calculated as follows:

aij = LeakyReLU
(
qT [

Wei;Wej
])

, (7)

where q is a learnable weight vector that is shared by all entities.
LeakyReLU is the nonlinear activation function with a negative
input slope of 0.2. After obtaining the attention weight for entity
ei to all its intra-KG direct-connected neighbors, the normalized
attention weight is calculated by a Softmax function as follows:

αij =
exp

(
aij

)∑
k∈Ns

exp (aik)
. (8)

With the intra-KG attention mechanism, HackRL can pay more
attention to the neighbors that are more promising and extend
the relation path within the same KG.

Unlike the intra-KG graph attention that targets the direct
neighbors of ei in the same KG, the inter-KG graph attention pays
attention to the neighbors of ei’s aligned entity to judge the gains
of jumping to the aligned KG to learn cross-KG relation paths. The
anchor links connecting different KGs play a crucial role in the
fusion of cross-KG knowledge. In a similar way to the intra-KG
graph attention, the weighted combination of the neighbors of e′i ,
eai, is computed by Eqs. (6)–(8) with a different transformation
matrix and weight vector. If the current entity does not have
aligned pair in the other KG, the eai is set as a zero vector. To
retain more information of the heterogeneous environment, the
intra-KG graph attention vector and the inter-KG graph attention
vector are directly concatenated to form the hierarchical graph
attention embedding, i.e., hi = [esi; eai].

Action: For the collaborative reasoning task, an action refers
to a relation to forward the path, which can be taken from all the
relation types across the environment except the query relation
and its inverse relation in our framework. The agent chooses
the most promising relations according to its observation of the
current state. The action ri taken by the agent at step i can be
valid or invalid. If ei has outgoing edges with type ri, the action
is valid; otherwise, it is an invalid action.

Transition: The transition P is used to model the probability
distribution of the next state, which is defined as a mapping
function, P : S × A → S. In our DRL framework, the transi-
tion involves randomly selecting a tail entity to forward given a
valid action. That is, if there are m tail entities connected with
the current entity by the valid chosen relation, the agent will
randomly choose one of them with equal probabilities to forward
the relation path.

Reward: Reward is an indicator of the chosen action’s effec-
iveness and evaluates the qualities of inferred relation paths
n reinforcement learning. The reward function in HackRL is a
eighted sum of the global accuracy, path efficiency, path diver-
ity, and cross-KG efficiency to encourage the agent to learn more
ndicative paths.

Following the reward shaping mechanism proposed by [56],
he global accuracy reward Racc is defined as follows: if the path
eaches et , the reward is +1; if the path does not reach the
ground truth, we borrow the idea of TransE to calculate the
reward shaping function, that is, Racc = −

eo + rq − ei

1, where

∥·∥1 denotes the L1 norm; if the agent chose an invalid action,
the reward for this action is −1. For the actions in a successful
episode, the path efficiency reward Reff and the path diversity
reward R follow the settings of DeepPath [22]. Specifically, if
div
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Fig. 4. The architecture of the policy network.

e consider a successful relation path p composed of a sequence
f relations, the efficiency reward is defined as follows:

eff =
1

length (p)
. (9)

To encourage the agent to learn more different paths, the diver-
sity reward function is defined as follows:

Rdiv = −
1
|F |

F∑
i=1

cos (p, pi) , (10)

where cos (·) is the cosine function, |F | is the number of suc-
cessful inferred paths, and p =

∑n
i=1 ri denotes the sum of all

embeddings of the relations in the path.
In order to avoid long paths and duplicated paths caused by

multiple jumps between different KGs, we design a cross-KG path
efficiency reward to balance the gains from cross-KG paths and
the losses from long paths, which is defined as follows:

Rcp =
1

number (CKG)
, (11)

here number (CKG) is the number of the Identical action in a
successful path.

Thus, the total reward for a successful epoch is:

Rtotal = λ1Racc + λ2Reff + λ3Rdiv + λ4Rcp (12)

here λi is the weight parameter with
∑

λi = 1. In contrast,
he reward for a unsuccessful epoch that reaches a false entity is
he global accuracy reward with reward shaping, i.e., Rshaping =eo + rq − et


1.

Neural policy network: In the proposed HackRL model, the
agent needs to select promising relations based on the state.
Therefore, to generate the combined state vector from the observ-
able environment, we incorporate the LSTM and HGA modules
into the policy component. The overall architecture of the policy
component is shown in Fig. 4. In each step, the LSTM network
encodes the traversed relation paths and generates the history
trajectory embedding, while the HGA network calculates the hi-
erarchical graph attention embedding of the current entity. These
two embeddings are then concatenated with mi to generate the
tate vector si. The inputs of the policy component are all explicit
mbeddings from the environment.
The state vector is then forwarded to a three-layer fully con-

ected neural network with two hidden layers and a Softmax
ayer to parameterize the policy function πθ (ri|si) to map the
tate vector to a probability distribution over all possible rela-
ions. The action is then taken based on the output probability.
t the end of each epoch, the parameters of the three kinds of
eural modules are collectively trained with the supervision from
he rewards.
6

Fig. 5. Illustration of the action mask mechanism.

3.3. Training and optimization

For each path with a sequence of relations, we want to find
parameters θ that maximize the expected reward:

J (θ) = Eri∼πθ

T∑
i

R (ri, si) , (13)

where R (ri, si) is the reward of selecting relation ri at state si and
T is the maximum number of explorations of each episode. The
optimization is done using the Monte-Carlo Policy Gradient (RE-
INFORCE) algorithm, and the gradients of the model parameters
are calculated using the following equation:

▽θ J (θ) ≈ ▽θ

T∑
i=1

R (ri, si) logπθ (ri|si) (14)

here πθ (ri|si) denotes the probability of the chosen action.
For the task of collaborative KG reasoning to fuse knowledge of

ultiple distributed KGs, the training suffers from the increasing
umber of relations and heterogeneous feature spaces. To opti-
ize the policy network for finding both intra-KG and inter-KG
aths, we propose two mechanisms for the training of HackRL
ith the algorithm of reinforcement learning, i.e., action mask
AM) and retrain with sampled paths (RT). We directly train the
odel based on the path-finding process without pre-training or

ine-tuning unless the agent fails to find a successful path.
Action mask: At each step, the agent can only locate at a KG.

hus, it can only choose relations of the current KG or the cross-
G action. Therefore, we design an action mask mechanism to
ilter out half of the relations in the action space. As shown in
ig. 5, we set a mask for the agent at each step whose length
quals the size of the action space. According to the KG that the
urrent entity belongs to, the corresponding values of the current
G’s relations are filled with 1, and other values are set to 0.
ote that we assume that the Identical relation belongs to G1 and
ts inverse, Identical−1, belongs to G2. At each step, the output
robability of the policy network will be multiplied by the action
ask first and then be renormalized as the output probabilities
f possible actions. With this mechanism, the impossible actions
re filtered out at each step to improve the probability of finding
uccessful paths.
Retrain with sampled paths: When the agent fails to choose

successful path to the target entity, we not only punish it but
lso sample a feasible path with a biased random walk for a
etraining demonstration to guide the agent to optimize its policy.
ecause we want the agent to find not only diverse intra-KG paths
ut also inter-KG paths, we generate both intra-KG and inter-
G teaching paths. The intra-KG paths are generated following
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Algorithm 1: Agent’s learning algorithm
Input: Query relation rq, aligned knowledge graphs G1, G2,

training set Trq
Output: Parameters of the HackRL θ , successful paths for

relation reasoning
1 Construct the training environment K by removing the
triples containing rq and r−1q ;

2 Select a triple
(
eo, rq, et

)
from Trq for training;

3 Initialize the hyperparameters, including the dropout rate,
the policy network weights, and the reward weights;

4 for epoch← 1 to N do
5 Initialize the LSTM’s hidden state h0 to 0, and the step i

to 0;
6 while i < max_steps do
7 Compute the state vector si;
8 Compute πθ (ri | si);
9 Action Mask;

10 Action Dropout and recompute the normalized
probability distribution of different relations
π̂θ (ri | si);

11 Randomly sample a relation according to the
π̂θ (ri | si);

12 if ri is invalid then
13 Add ⟨si, ri⟩ to the negative action set Mneg ;
14 Force Forward;
15 i← i+ 1;
16 else
17 Add ⟨si, ri⟩ to the positive action set Mpos;
18 Update si to si+1;
19 i← i+ 1;
20 if reach et or i = max_steps then
21 break;

22 Update θ with the gradient of the invalid actions using∑
Mneg

logπθ (ri | si) (−1);
23 if reach et then
24 Calculate Rtotal;
25 Update θ with the gradient of the valid actions using∑

Mpos
logπθ (ri | si)Rtotal;

26 else
27 Reward shaping;
28 Update θ with the gradient of the valid actions using∑

Mpos
logπθ (ri | si)Rshaping ;

29 Sampling intra-KG and inter-KG paths to retrain and
update θ ;

the path sampling method of the supervised policy learning in
DeepPath [22]. Specifically, for the failed sample (eo, et), we ran-
omly select an intermediate entity einter and then carry out two
readth-first searches (BFS) between (eo, einter) and (einter , et) to
ample a concatenated path between eo and et . The purpose of
onducting such path sampling instead of direct BFS between
o and et is to encourage diverse sample paths by preventing
referred shortest paths. For the inter-KG paths, the space of the
andidate intermediate entities is greatly enlarged. We analyze
he normalized correlation coefficients between the existence
f links and the length of cross-KG paths founded by AttnPath
ver aligned KGs, as shown in Fig. 6. We can see that the short
nd direct cross-KG paths are more relevant to the existence of
orresponding links. Therefore, we want the inter-KG paths to
e short and directly connect the queried entities without many
7

Fig. 6. Visualization of the length–correlation coefficient of cross-KG paths for
a few relations.

other appended relations. To achieve this, we adopt a simple trick
to sample short and direct inter-KG paths. Instead of randomly
picking an intermediate entity from the entire entity set, we ran-
domly pick an intermediate entity einter from the aligned entities
of eo, et , and their one-hop neighbors. We then conduct two BFS
between (eo, einter) and (einter , et) to obtain concatenated inter-KG
sample paths.

The sampled paths are then utilized to train the policy net-
work in a supervised way (the same as DeepPath [22]). For
supervised learning, the rewards for the successful sampled paths
is +1, and the gradient to optimize the policy network is as
follows:

▽θ J (θ) =
∑

i

logπθ (a = rsi|si) , (15)

where rsi is the i-th relation in the sampled path. In this way,
the parameters are optimized to maximize the correct relations
being selected at each step of the sampled paths. With the retrain
with sampled paths mechanism, the agent learns quickly from the
ground truth demonstration paths for finding successful paths.

The learning process of the agent is summarized in Algorithm
1. At each step, the agent first calculates the probability of each
relation being selected and utilizes the action mask and action
dropout mechanism to filter out some irrational relations. Then,
a relation is selected to forward the relation path. Depending
on whether the action is valid, the agent will receive different
rewards and observe different new states, and the actions taken
and the states observed while making actions will be recorded
to corresponding positive and negative action sets. This process
will continue until the agent has arrived at the correct entity or
reaches the maximum exploration number. The policy network
will be trained based on the state and action sets with their
respective rewards.

The overall process of the collaborative knowledge reasoning
is shown in Fig. 7, which consists of five main steps: first, we
identify equivalent anchor links based on the BERT-INT model;
based on the anchor links, we learn embeddings of entities and
relations in a unified vector space with the objective of mini-
mizing the embedding distance between equivalent entities; we
then construct the environment based on the KGs and their
anchor links, and we employ the agent to explore the indicative
cross-KG relation paths with our designed policy network and
training mechanism; finally, we use the inferred relation paths to
train a prediction model to judge the existence of corresponding
query relation between query entities. Specifically, we construct a
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Fig. 7. The flowchart of agent’s path-finding process.

Table 1
Statistics of BDP15K dataset.
Datasets Entities Relations Triples

ZH-EN Chinese 66,469 2,830 153,929
English 98,125 2,317 237,674

JA-EN Japanese 65,744 2,043 164,373
English 95,680 2,096 233,319

FR-EN French 66,858 1,379 192,191
English 105,889 2,209 278,590

three-layer feedforward neural network as the prediction model,
with its input dimension being the number of relation path types
for the query relation. Each dimension of the input vector repre-
sents the number of relation paths of corresponding type between
given entity pairs. The prediction model is trained with positive
samples of the query relation and negative samples generated
by randomly corrupting the tail entity based on the binary cross
entropy loss.

4. Experiments and discussion

In this section, we describe the experiments in detail to verify
he effects of fusing knowledge from multiple KGs on knowledge
easoning and the effectiveness and efficiency of our model. We
irst describe the datasets and parameter settings we used in the
xperiments and then carry out a series of experiments. We prove
hat our model’s overall performance is better than traditional
mbedding-based methods, random walk methods, and other
aseline methods.

.1. Datasets and settings

The experiments are based on three large-scale cross-lingual
atasets from DBP15K. The statistics of these three datasets are
hown in Table 1 [36]. All of them are subsets of larger datasets. In
hese real-world KGs, only a few entities and relations are densely
onnected, and hundreds or thousands of relations have no more
han ten triples in the datasets. We refer to these relations as
ong-tail relations and observe that they destroy the performance
f collaborative reasoning. Therefore, we only select the triples
ith the top-200 relations. For each triple (h, r, t), we add the

nverse triple
(
t, r−1, h

)
to the KGs to facilitate path-finding,
llowing the agent to step back.

8

We conduct reasoning for a relation of one KG at a time. For
the task rq, we remove all the triples with rq or r−1q from the KG.
The removed triples are split into two sets, with 30% being used
as training samples and 70% as testing samples. For each sample,
we generate 100 negative samples by changing the tail entity
with its n-hop nearest neighbors. The following is a summary
of the hyperparameters in our model. For the embedding model,
we follow the paramter settings in KECG [29] except that the
embedding dimension of entities and relations is set as 100.
The hidden dimension of LSTM is set to 200. The dimension of
HGA is 200. Thus, the dimension of the state vector is 600 with
three kinds of embeddings. The dimension of the first hidden
layer of the feedforward neural network in the policy network
is 512, while that of the second hidden layer is 1024. The output
dimension of the policy network is 802. For the reward function,
the weights of different reward functions are set by grid search
as follows: λ1 is 0.1, λ2 is 0.7, λ3 is 0.1, and λ4 is 0.1. The action
dropout rate is set to 0.3. We use Adam [61] to optimize the
parameters of the policy network. In each epoch, the agent is
allowed to explore a path for no more than max_steps = 50 steps.
We conduct experiments on a personal station with an Intel (R)
Xeon(R) CPU E5-2630 v4 @ 2.2 GHZ and GPU TITAN RTX (32G).

Following previous studies, we compare with the commonly
used methods based on embeddings or paths. For the embedding-
based knowledge reasoning methods, we select two state-of-
the-art methods designed for graph completion, TransE [19] and
TransR [20]. The implementations of these embedding-based
methods are based on the OpenKE toolkit released by [62]. For
path-based methods, we select PRA, DeepPath, and AttnPath to
compare with our model. The implementations of the path-based
methods are based on the code released by their authors. To
evaluate the effects of integrating knowledge of aligned KGs
and the models’ ability to explore useful complementary knowl-
edge, we apply them to both single KGs and aligned KGs. The
TransE, TransR, PRA, DeepPath, and AttnPath implemented on
aligned KGs are named MTransE, MTransR, MPRA, MDeepPath,
and MAttnPath for simplicity.

4.2. Results

In accordance with previous works [22,24], the metrics used to
evaluate the ability of the proposed model are the mean average
precision (MAP) and the mean success rate of finding paths (MSR).
The MSR indicates the average success rate of finding paths for
different relations on a dataset. For the link prediction task, each
test sample is considered a query like (h, r, ? ), and the candidate
target entities are ranked according to their predicted confidence.
For the fact prediction task, the positive and negative triples are
directly ranked.

4.2.1. Results of link prediction
For the positive and negative samples with the head entity

h and relation r , we use all the inferred paths of r to train a
neural network classifier with one hidden layer, and rank all
the tail entities according to their prediction scores. Tables 2–4
show the MAP results of different models on specific prediction
tasks of the three datasets. It can be seen that HackRL benefits
a lot from the knowledge of aligned KGs and outperforms other
methods on most link prediction tasks. From these cases, we can
see that embedding-based methods perform worse than path-
based methods and fail to gain much from the aligned KGs on
most query relations. This is because embedding-based methods
can only carry out single-hop reasoning, which can hardly utilize
the multi-hop information in aligned KGs, and the increase of
entities and relations reduces their learning efficiencies. Path-

based methods are much easier to perform better on collaborative
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Table 2
Link prediction results (MAP) on the ZH-EN dataset.
Tasks TransE MTransE TransR MTransR PRA MPRA DeepPath MDeepPath AttnPath MAttnPath HackRL

463 0.4250 0.4115 0.4384 0.5056 0.3315 0.8540 0.5136 0.5942 0.4602 0.6597 0.9249
343 0.2910 0.2353 0.2072 0.1914 0.5968 0.6267 0.8070 0.8609 0.7177 0.7074 0.8907
538 0.2501 0.2631 0.2424 0.2654 0.4030 0.4042 0.6562 0.5761 0.3869 0.5570 0.7249
533 0.2180 0.1524 0.1408 0.1635 0.8265 0.8923 0.9239 0.8878 0.8310 0.8986 0.9224
102 0.3121 0.3089 0.2948 0.3113 0.4789 0.4742 0.8542 0.6310 0.5941 0.8666 0.9327
177 0.9060 0.9156 0.8708 0.8922 0.9627 0.9842 0.9942 0.9986 0.9914 0.9950 0.9986
414 0.4031 0.4005 0.3763 0.3374 0.6313 0.5612 0.8583 0.8132 0.7707 0.9527 0.9652
21 0.7990 0.8574 0.8203 0.8121 0.8217 0.8422 0.8536 0.9882 0.8529 0.9681 0.9708
75 0.4104 0.4074 0.4022 0.3572 0.7838 0.7844 0.9382 0.9436 0.9497 0.9446 0.9774
494 0.5245 0.4474 0.4402 0.3890 0.6905 0.6400 0.8817 0.8513 0.7866 0.8857 0.8971
Table 3
Link prediction results (MAP) on the JA-EN dataset.
Tasks TransE MTransE TransR MTransR PRA MPRA DeepPath MDeepPath AttnPath MAttnPath HackRL

496 0.5118 0.5402 0.5424 0.5031 0.6897 0.6674 0.8986 0.8934 0.7411 0.8642 0.9046
87 0.1792 0.1744 0.1639 0.1704 0.3806 0.3534 0.8988 0.8768 0.6256 0.7438 0.8992
441 0.0969 0.0996 0.0902 0.0942 0.8634 0.8975 0.8668 0.8654 0.8912 0.8936 0.9126
1173 0.7959 0.7986 0.7998 0.7711 0.8516 0.8767 0.8305 0.9139 0.8163 0.8568 0.9321
179 0.1241 0.1231 0.0904 0.0993 0.8701 0.9082 0.9422 0.8856 0.9012 0.9396 0.9481
824 0.6931 0.7079 0.6634 0.6972 0.8649 0.9151 0.9474 0.9518 0.9040 0.9314 0.9544
506 0.1022 0.0945 0.0986 0.1084 0.8676 0.8986 0.8954 0.9827 0.9075 0.9365 0.9430
351 0.1041 0.0874 0.0924 0.0904 0.8941 0.9516 0.8835 0.9443 0.9357 0.9337 0.9483
322 0.1042 0.0991 0.1034 0.1002 0.8824 0.9789 0.9362 0.9718 0.9065 0.9374 0.9427
119 0.1021 0.0966 0.0968 0.0885 0.8975 0.8263 0.8955 0.8575 0.8879 0.9145 0.9189
Table 4
Link prediction results (MAP) on the FR-EN dataset.
Tasks TransE MTransE TransR MTransR PRA MPRA DeepPath MDeepPath AttnPath MAttnPath HackRL

844 0.1953 0.1406 0.1781 0.1627 0.8459 0.8983 0.8546 0.8790 0.8351 0.8303 0.8886
41 0.5006 0.5328 0.4566 0.3582 0.7481 0.8818 0.8858 0.9021 0.8857 0.9799 0.9905
110 0.1382 0.1137 0.1462 0.1495 0.7593 0.8777 0.8027 0.8209 0.8254 0.8159 0.8319
552 0.1079 0.1180 0.1093 0.1021 0.2605 0.2624 0.2678 0.2519 0.2719 0.4765 0.5464
573 0.2704 0.2293 0.2802 0.2947 0.4627 0.4897 0.2808 0.4741 0.4413 0.4665 0.5804
900 0.1130 0.1522 0.1459 0.1456 0.7817 0.8193 0.7897 0.8089 0.8032 0.8211 0.8448
150 0.1485 0.1474 0.1398 0.1373 0.3623 0.4803 0.4271 0.5012 0.4278 0.6914 0.8091
61 0.4643 0.4506 0.3688 0.4046 0.6113 0.7559 0.7918 0.8975 0.5154 0.9002 0.9152
833 0.6878 0.6902 0.6651 0.6600 0.7464 0.9901 0.9714 0.9638 0.9565 0.9147 0.9728
228 0.1614 0.1425 0.1551 0.1447 0.7447 0.7388 0.8087 0.8474 0.7813 0.7745 0.8389
knowledge reasoning because they are able to utilize the supple-
mentary knowledge contained in the cross-KG paths. However,
in some cases, the path-based methods also perform worse on
aligned KGs than on single KGs, indicating that they cannot effec-
tively learn useful paths in the heterogeneous environment. We
also notice that HackRL does not achieve the best results on some
query relations, where PRA or DeepPath achieves better perfor-
mances. However, DeepPath requires the pre-training process,
which consumes a great deal of training time and is inefficient.

Table 5 shows the overall link prediction results for the three
atasets. It can be seen that the proposed HackRL obtains state-
f-the-art performances on the three datasets when compared
ith other models. The embedding-based methods performmuch
orse than the path-based ones, especially on the JA-EN and FR-
N datasets, which are denser KGs. This indicates that path-based
ulti-hop features are more useful for the relation prediction of
ense KGs, since the increase of corresponding relation triples in-
reases the difficulty of learning their embeddings and decreases
he vectors’ expressiveness. The performances of the path-based
easoning methods on aligned KGs are better than their perfor-
ances on single KGs, indicating that the cross-KG paths are
elpful for the prediction of relations. In particular, compared
ith AttnPath, the results also show that HackRL benefits from
he hierarchical graph attention mechanism and the designed
raining mechanisms.

Table 6 shows the MSR to compare agents’ abilities in different
odels to learn equivalent relation paths. Fig. 8 demonstrates

he results of MSR for the relation 463 (president) of the ZH-EN
9

Table 5
Link prediction results (MAP).
Models ZH-EN JA-EN FR-EN

TransE 0.4665 0.2514 0.2333
MTransE 0.4492 0.2520 0.2081
TransR 0.4324 0.2459 0.2217
MTransR 0.4306 0.2423 0.2130
PRA 0.6580 0.7890 0.7212
MPRA 0.7095 0.8030 0.7927
DeepPath 0.8286 0.9006 0.7570
MDeepPath 0.8200 0.9114 0.7935
AttnPath 0.7353 0.8423 0.7456
MAttnPath 0.8493 0.8906 0.7883
HackRL 0.9207 0.9279 0.8441

Table 6
Mean success rate (MSR) of different models.
Models ZH-EN JA-EN FR-EN

DeepPath 0.1060 0.1982 0.1005
MDeepPath 0.0899 0.1393 0.0530
AttnPath 0.1572 0.3280 0.2150
MAttnPath 0.1083 0.2425 0.1581
HackRL 0.1160 0.2579 0.1652

dataset. The experimental results show that the DRL methods on
aligned KGs are significantly worse than those on single KGs on
finding successful paths, which also indicates that the heteroge-
neous environment and the increase of action space make the
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Fig. 8. Path success number on 463 of ZH-EN dataset.

Table 7
Fact prediction results (MAP).
Models ZH-EN JA-EN FR-EN

TransE 0.1644 0.0712 0.0470
MTransE 0.1609 0.0738 0.0410
TransR 0.1544 0.0758 0.0438
MTransR 0.1495 0.0743 0.0445
PRA 0.2502 0.4697 0.4524
MPRA 0.2620 0.4963 0.4535
DeepPath 0.1717 0.4366 0.4413
MDeepPath 0.3280 0.4924 0.4534
AttnPath 0.2137 0.5424 0.4401
MAttnPath 0.4252 0.5661 0.4610
HackRL 0.5029 0.5912 0.4994

learning more difficult and decrease the probability of finding
successful paths. Despite pre-training, DeepPath has much lower
success rates on the three datasets. In contrast, AttnPath performs
much better than DeepPath because of the force forward mech-
anism, which resamples a feasible relation to extend the relation
path while the agent chooses an invalid action. It can also be seen
that our proposed HackRL performs better than DeepPath and
AttnPath on aligned KGs. With the proposed hierarchical graph
attention and the training mechanism, our model is more suit-
able for exploring cross-KG relation paths in the heterogeneous
environment and can learn more successful paths by filtering
out infeasible actions and reducing the probability of selecting
irrelevant actions.

4.2.2. Results of fact prediction
As an important downstream task of knowledge reasoning,

he fact prediction task is intended to predict whether a given
riple (h, r, t) is correct, which is widely used to evaluate models’
bility to judge true and false triples. Similarly, we use ZH-
N, JA-EN, and FR-EN as the benchmark datasets for this task.
ote that the classification assessment requires negative triples,
hich have already been provided in the generated datasets. For
ach relation, we also use all the inferred paths as features to
rain a neural network classifier with one hidden layer and use
he prediction scores to predict the correctness of given triples.
nlike the link prediction task, fact prediction sorts all positive
nd negative samples for a particular relation in the test set
nstead of just ranking the target entities. Table 7 shows the
verall results of all the methods. We can see that path-based
ethods outperform all the embedding methods, which indicates

hat embedding-based single-hop reasoning methods cannot ef-
ectively distinguish similar triples because the embeddings of
10
Table 8
Model setting ablations on the ZH-EN dataset.
Tasks Link prediction Fact prediction

HackRL 0.9297 0.5029
-HGA 0.8903 0.4662
-AM 0.8400 0.4352
-RT 0.8913 0.4811

neighboring entities are always similar. The path-based methods
perform significantly better on aligned KGs than on single KGs,
which indicates that the use of cross-KG path features improves
these models’ ability to distinguish similar triples. We can also
see that HackRL significantly outperforms other baseline models.
Meanwhile, the comparisons between HackRL and MAttnPath
suggest that the proposed policy component and the training and
optimization mechanism improves our model’s performance on
the task of collaborative fact prediction. The overall framework of
HackRL enhances its probability of finding successful and promis-
ing cross-KG relation paths, which enriches the features for the
learning of downstream models.

4.2.3. Ablation study
The ablation study is carried out to demonstrate the effec-

tiveness of different components of the proposed model. Table 8
shows the results of link prediction and fact prediction on the ZH-
EN dataset under different model settings. The first observation
is that all three components are essential for improving the
model’s performance. When we remove the hierarchical graph
attention module to perform the cross-KG path-finding for the
downstream link and fact prediction tasks, the original results
drop by 3.94% and 3.67%, respectively. It can be seen that the
action space reduction based on the action mask mechanism
plays an important role in inferring feasible relation paths. When
we remove the action mask mechanism, in the link prediction
task, the original result decreases by 8.97%, while in the fact
prediction task, the MAP drops by 6.77%. The results also suggest
that the retrain with our sampled cross-KG paths plays a part
in improving the model’s performance. Our model eliminates the
problem of inferring relation paths in heterogeneous aligned KGs
and is more suitable for large-scale KGs.

4.2.4. Parameter sensitivity
In this section, we analyze the parameter sensitivity of four

weight parameters of different rewards. Fig. 10 shows the link
prediction MAP of HackRL on the FR-EN dataset with the change
of reward weights. Each subgraph shows how the MAP varies
with the weight of a kind of reward, while the hyperparameters
of other rewards are unchanged. It can be seen from the results
that the parameter settings of the rewards greatly impact the
link prediction results of HackRL. However, there is almost no
linear law between the MAP and a single reward parameter.
Therefore, it is difficult to find the optimal set of hyperparam-
eters of rewards. In contrast, the determination of the efficiency
reward weight is more important, since its change impacts the
link prediction result in a greater deal. The reason is that the
lengths of the inferred cross-KG relation paths have great im-
pacts on the prediction of corresponding relations. However, the
optimal lengths of cross-KG paths for different relations are not
the same. As a result, the overall MAP on the whole dataset
fluctuates with the efficiency weight. Similarly, the overall link
prediction results of HackRL fluctuate with the settings of other
reward weights as the optimal parameter settings that impact the
inferred cross-KG relation paths are different with different query
relations. In conclusion, the optimal hyperparameter settings of
the reward weights should be carefully selected after multiple
attempts, which can be resolved by grid search in a more efficient
way. Besides, the optimal parameter settings of different datasets

may be different.
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Fig. 9. The distribution of path lengths of the DRL-based methods.
Fig. 10. Link prediction MAP of HackRL on the FR-EN dataset with different weights of rewards.
.2.5. Qualitative analysis
In these experiments, we conduct qualitative research on the

atasets, which is intended to show the searching and reasoning
rocess of HackRL on the cross-KG paths in reality and evaluate
he quality of the inferred paths. Since the facts described in
he three datasets are largely the same, and the names of many
elations in the other two datasets are missing, we only show
n instance of the ZH-EN dataset here. Table 9 demonstrates
he details of the reasoning paths for president from ZH-EN. The
aths are inferred by the DRL-based methods; the top 8 paths are
nalyzed. It can be seen that DeepPath and MDeepPath cannot
earn more than eight successful relation paths for this case. The
esults indicate that DeepPath can hardly learn various successful
aths even though it has the pre-training process. With the LSTM
nd graph attention network-enabled memory component and
he force forward mechanism, AttnPath can learn more successful
aths. However, on aligned KGs, AttnPath cannot learn a lot of
nter-KG paths, and its learned inter-KG paths are less indicative
emantically. As can be seen from the results, HackRL can learn
ore inter-KG relation paths with the assistance of the hierarchi-
al graph attention and the action mask mechanism. In addition,
he inter-KG relation paths learned by HackRL are shorter and
uch more semantically related to the query relation. In partic-
lar, the equivalent relation is found by HackRL, which is quite
ndicative to the query relation’s existence. Therefore, HackRL
ffectively fuses the knowledge from different KGs by concate-
ating relations from different KGs to form equivalent relation
aths to indicate the existence of certain links between a pair
f entities. For example, HackRL finds the equivalent cross-KG
elation path identical→presidente →identical−1 of the relation
resident , which strongly indicates that someone is the president
ased on the existence of such a relation between the equivalent
ntities of the query entities in the aligned KG.
To analyze the quality of the paths found by different models,

e illustrate the path distributions in Fig. 9. From the results, we
an see that AttnPath finds the maximum number of successful
aths. However, in the heterogeneous aligned KGs, HackRL finds
ore cross-KG relation paths than MAttnPath and MDeepPath.
ith the efficiency reward applied in the above DRL-based mod-

ls, all of them are prone to find short and direct paths as it can
e seen that the lengths of most successful paths are less than 5.
11
4.3. Discussion

The proposed HackRL model is a relation inference model
based on reinforcement learning for the knowledge fusion and
collaborative reasoning of multiple aligned KGs, where a novel
policy network is designed to enable the agent to make better
inferences in the heterogeneous environment, and several mech-
anisms are designed and adopted to optimize the training of
the model. With these designs, HackRL achieves state-of-the-art
performances on the link prediction and fact prediction tasks.
In particular, the LSTM module enables the agent to retain the
experience contained in its history trajectory and the HGA mod-
ule improves the agent’s ability to perceive the heterogeneous
environment. The expansion of the action space improves the
probability of selecting an invalid action, which greatly increases
the difficulty of learning successful paths. To deal with this, we
propose a simple yet powerful action mask mechanism to filter
out infeasible actions, which effectively improves the probability
of finding successful paths together with the force forward mech-
anism. The retrain with sampled paths mechanism prompts the
agent to learn shorter and more direct cross-KG paths, which are
more indicative to the corresponding relations.

However, the collaborative reasoning of multiple KGs is a
difficult task and our proposed model has some remaining defects
to be further investigated. We count the frequencies of the top
five paths found by MDeepPath, MAttnPath, and HackRL for each
reasoning task to evaluate their ability of focusing on the most
indicative relation patterns. Fig. 11 shows the average of the
frequencies from top one to top five on the three datasets. From
the results, we find that the top one and top two paths found
by MDeepPath are more focused than those of MAttnPath and
HackRL. This indicates that, because of the pre-training process,
MDeepPath is more likely to concentrate on a small number of
relation path patterns, which in turn make it cannot discover
more path patterns. Compared with MAttnPath, HackRL is less
focused on the top two relation paths, indicating that it can
learn more types of cross-KG relation paths. However, it may
also introduce more less-indicative noisy path features, which

may destroy its performance in some cases. The reason may be
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Table 9
Top 8 frequent paths of president (ZH-EN) inferred by the DRL-based models;−1 indicates inverse
relation and e indicates equivalent relation in the aligned KG.
Method Reasoning path

DeepPath

Successor−1;
Predecessor;
Successor−1 →predecessor;
Successor−1 →party→title−1

MDeepPath

Successor−1;
AlmaMater→almaMater−1;
Prime minister;
Deputy−1;
Predecessor;
Successor−1 →predecessor−1 →successor−1

AttnPath

Predecessor;
Successor−1;
Premier−1;
Predecessor→prime minister−1;
Successor→after→prime minister−1 →successor−1;
Predecessor−1 →placeofbirth→country−1→allegiance−1 →predecessor−1

Successor→predecessor→prime minister−1 →predecessor;
Predecessor→successor−1 →party→title−1

MAttnPath

Prime minister−1;
Successor−1;
Predecessor;
Successor−1 →after→title→appointer→title−1;
Incumbent−1 →inaugural→appointer−1→leader−1;
Premier;
Successor→identical→after−e →presidente→identical−1 →successor;
Predecessor→premier→party→party−1

HackRL

Prime minister−1;
Successor−1;
Identical→presidente →identical−1;
Party−1;
Vice president−1;
Identical→presidente →aftere →identical−1→predecessor;
Predecessor;
Prime minister→predecessor−1
Fig. 11. Frequencies of the top 5 paths for all reasoning tasks.
hat the LSTM-based memory module cannot learn experience
rom various heterogeneous history trajectories very well due to
he enrichment of relation path patterns. Moreover, KGs contain
any other types of information, such as the entity description
nd attributes. Integrating different types of information into the
RL-based model may help it to learn more accurate and deep
emantic relation patterns.

. Conclusion and future work

In this paper, we propose the exploration and utilization of
ndicative cross-KG relation paths over multiple aligned KGs to
ntegrate and fuse the complementary knowledge for collabora-
ive reasoning and decision-making. We propose a novel DRL-
ased model named HackRL to explore the most informative
aths. In order to eliminate the problems caused by feature space
12
heterogeneity of different KGs, we embed different KGs into a
unified vector space by minimizing the embedding distance be-
tween the equivalent entities identified by entity alignment. We
also incorporate the LSTM and HGA mechanisms into the model
to enable the agent to learn feasible paths from the heteroge-
neous environment. To eliminate the impact of the increase of
action space, we propose an action mask mechanism to filter out
unreasonable actions before selecting a relation to proceed. Addi-
tionally, we find that short and direct cross-KG relation paths are
much more useful; therefore, we propose sampling such paths to
retrain failed episodes to guide the agent to learn. Three famous
cross-lingual knowledge graph datasets are utilized to validate
the proposed model on two downstream tasks, link prediction
and fact prediction. Experimental results indicate that the cross-
KG paths with the anchor links as intermediate relations improve
the performance of the path-based reasoning. Qualitative analysis
also suggests that our proposed HGA module, and the action
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ask and retrain with sampled paths mechanisms are helpful for
inding indicative cross-KG relation paths.

In terms of future work, we are interested in combining in-
egrated information, such as structural information, description
nformation, and attribute information, with the reinforcement
earning framework to capture deeper semantic knowledge for
nowledge fusion and collaborative reasoning. We would also like
o refine the LSTM-based memory component and capture the
emantic correlation between a relation and the found paths by
sing their embeddings to improve the prediction performance.
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