Neurocomputing 467 (2022) 300-309

Contents lists available at ScienceDirect 2
Neurocomputing
journal homepage: www.elsevier.com/locate/neucom
SADRL: Merging human experience with machine intelligence via N
supervised assisted deep reinforcement learning e

Xiaoshuang Li*®, Xiao Wang *¢, Xinhu Zheng ¢, Junchen Jin€¢, Yanhao Huang', Jun Jason Zhang %,

Fei-Yue Wang ““*

2The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
b The School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China

“The Parallel Intelligence Research Center, Qingdao Academy of Intelligent Industries, Qingdao 266109, China

4The Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA

€ PCITECH, PCI Intelligent Building, No.2 Xincen Fourth Road, Tianhe District, Guangzhou 510653, China

The State Key Laboratory of Power Grid Safety and Energy Conservation, China Electric Power Research Institute, Beijing 100192, China

&The School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China

ARTICLE INFO

Article history:

Received 11 March 2021
Revised 6 August 2021
Accepted 25 September 2021
Available online 4 October 2021
Communicated by Zidong Wang

Keywords:

Deep reinforcement learning
Behavioral cloning

Dynamic demonstration
Double DQN

ABSTRACT

Deep Reinforcement Learning (DRL) has proven its capability to learn optimal policies in decision-making
problems by directly interacting with environments. Meanwhile, supervised learning methods also show
great capability of learning from data. However, how to combine DRL with supervised learning and lever-
age additional knowledge and data to assist the DRL agent remains difficult. This study proposes a novel
Supervised Assisted Deep Reinforcement Learning (SADRL) framework integrating deep Q-learning from
dynamic demonstrations with a behavioral cloning model (DQfDD-BC). Specifically, the proposed DQfDD-
BC method leverages historical demonstrations to pre-train a behavioral cloning model and consistently
update it by learning the dynamically updated demonstrations. A supervised expert loss function is
designed to compare actions generated by the DRL model with those obtained from the BC model to pro-
vide advantageous guidance for policy improvements. Experimental results in several OpenAl Gym envi-
ronments show that the proposed approach accelerates the learning processes, and meanwhile, adapts to
different performance levels of demonstrations. As illustrated in an ablation study, the dynamic demon-
stration and expert loss mechanisms using a BC model contribute to improving the learning convergence
performance compared with the baseline models. We believe that SADRL provides an elegant framework
and the proposed method can promote the integration of human experience and machine intelligence.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

els, which is consistent with the real-world systems. Technically,
the DRL agent can not obtain sufficient experience to improve

Deep reinforcement learning (DRL) has made great milestones
in several applications such as the Go [1,2], Atari games [3] and
robot skill acquisition [4] in recent years. However, DRL-based
approaches, such as Deep Q-learning Network (DQN), usually fail
in many real-world scenarios [5-7]. The gap between the real-
world and the simulation environment prevents the wide applica-
tion of the DRL methods. Due to the diversity and uncertainty of
complex systems and real-world situations, it is a big challenge
to establish a simulation environment for implementing DRL mod-

* Corresponding author at: The State Key Laboratory for Management and
Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences,
Beijing 100190, China.

E-mail address: feiyue.wang@ia.ac.cn (F.-Y. Wang).

https://doi.org/10.1016/j.neucom.2021.09.064
0925-2312/© 2021 Elsevier B.V. All rights reserved.

the strategies without a reliable and informative simulation envi-
ronment. The inability to fully interact with the real world
restrains the agents from learning some valuable policies that
can be directly applied to real-world scenarios. During the learning
process, the DRL model may choose a random action sampled from
a random policy [8], which is essential for the agent to explore the
entire state-action space. However, the random actions are
restricted in many real-world circumstances because of the possi-
bility of causing severe damage to the system. For instance, in
autonomous driving scenarios [9,10], a random policy may lead
to traffic congestion or even road accidents. These prohibited dan-
gerous actions make it impossible for the agent to accumulate the
subsequent states or learn how to avoid potentially serious conse-
quences. To ensure the reliability of the agent, shifting from limited

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.09.064&domain=pdf
https://doi.org/10.1016/j.neucom.2021.09.064
mailto:feiyue.wang@ia.ac.cn
https://doi.org/10.1016/j.neucom.2021.09.064
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom

X. Li, X. Wang, X. Zheng et al.

simulation environments to mimic real-world ones becomes one of
the most urgent tasks for applying DRL models for complicated
decision-making tasks.

Human experts may have significant advantages in learning
efficiency and decision-making performance [11] in complex
real-world circumstances. Recent studies show that incorporating
human experience is a potential solution to enhance the adaptabil-
ity of DRL models for complex tasks [12,13]. Although it is difficult
to model and learn that expert knowledge, many supervised learn-
ing methods based on deep neural networks show powerful capa-
bilities of feature extraction and modeling of various data,
including expert decisions extracted from trajectory data and
human experience, which are also known as demonstrations
[14-16]. To be specific, deep Q-learning from demonstrations
(DQfD) is a typical algorithm that succeeded in integrating DRL
with demonstrations [12], which combines the temporal difference
(TD) error in the traditional Double DQN (DDQN) algorithm [17]
with supervised expert loss by constructing a hybrid loss function.
Through a specially designed large margin supervised loss function
[18,19], the DQfD method can guide and assist an agent in learning
the expert’s knowledge by constantly steering the agent learning
policies closer to those represented by the demonstration.

However, the DQfD model suffers from three major issues: (1)
In the learning process, the transition trajectory in the historical
demonstration dataset is the single data source for contributing
expert loss, which does not include the self-generated transitions
of the trained agents. As a result, the DQfD algorithm merely relies
on TD errors to improve the policy but the demonstration is idle
when the self-generated transitions are sampled from the experi-
ence replay buffer, which reduces the efficiency of utilizing
demonstrations. (2) According to the learning mechanism, static
demonstrations are not enough to cover sufficient state-action
space during the agent training process, especially when it is diffi-
cult or expensive to collect demonstrations in real-world applica-
tions. Also, with a constant stream of self-generated transition
samples added into the experience replay buffer, historical demon-
strations would make smaller and smaller contributions to the pol-
icy improvement as their sampling probability gradually
decreases. (3) The DQfD algorithm requires the learned policy to
approximate the demonstration but ignores the negative influence
of imperfect demonstrations, which existing commonly in real-
world applications. Instead of providing appropriate guidance like
a perfect demonstration, the imperfect demonstration is detrimen-
tal to the learned policies when the demonstration represents a
policy inferior to the learned ones.

In this paper, a novel supervised assisted deep reinforcement
learning (SADRL) framework is proposed. In addition, a specific
method deep Q-learning from dynamic demonstrations with a
behavioral cloning model (DQfDD-BC) is developed. In general,
the main contributions are summarized as follows:

1 A hybrid framework SADRL is proposed to merge human
experience and machine intelligence and the supervised learn-
ing method is used to assist DRL.

2 A specific method DQfDD-BC that assists the DRL by leverag-
ing behavioral cloning (BC) [20,21]. Experimental results on
OpenAl Gym show that the proposed method has a better per-
formance compared with the baseline models.

3 An automatic update mechanism that adaptively enhances
the demonstration and the BC model, which can include more
high-quality transition samples to improve the demonstration
and mitigate potential pernicious influences caused by imper-
fect demonstration.

The remainder of this paper is organized as follows: In Section 2,
the related work in imitation learning methods and some studies

301

Neurocomputing 467 (2022) 300-309

which leveraged the demonstration to improve the DRL methods
are discussed. The problem definition is presented in Section 3
and the details of the method proposed in this paper are demon-
strated in Section 4. In Section 5, some experiments and analyses
are conducted to validate the proposed method. Conclusions are
summarized in Section 6, with some future research directions.

2. Related works

Generally, demonstration comes from the human or other kinds
of "experts" who can provide valuable information [22] for differ-
ent hard problems, such as robot control [14,23], self-driving
[24], etc [25,26]. Imitation learning [27,28] methods can exploit
the demonstration to mimic expert actions and behavioral cloning
[20], as a kind of imitation learning, has received extensive atten-
tion [21,29,30] due to its significant advantages, such as fast learn-
ing speed, simplicity, and effective utilization of demonstration,
etc. The BC method constructs mappings from states to actions
(or distributions of actions) in a supervised manner to model the
policies represented by the demonstrations and achieves the goal
of learning from a demonstration by minimizing various super-
vised losses. In a study by NVIDIA, the model obtained impressive
results by minimizing the mean squared error between the steer-
ing command output by the network and the command of a human
driver [24]. Chauffeurnet further enhances the performance of imi-
tation learning in autopilot by synthesizing the worst scenarios
[31].

DAgger [32] is proposed to cope with the covariate shift prob-
lem of BC method. Experts are required by the DAgger method to
respond to self-generated transitions so that totally new and valu-
able transitions can be added to the demonstration. These new
transitions can expand the state-action space covered by the
demonstration. Thus the goal of performance improvement can
be achieved during the learning process. However, the DAgger
method requires an always-available expert to assist in labeling
the data, which reduces the practicality of the method. Deeply
AggreVaTeD [33] enables the DAgger to handle continuous action
spaces by using deep neural networks but the weakness of DAgger
was preserved.

Another typical class of imitation learning algorithms is gener-
ative adversarial imitation learning (GAIL) [34-36]. Instead of
mapping from state to action directly, GAIL learns from the demon-
strations by introducing the generator and discriminator. The gen-
erator is used to learn the policy contained in the demonstration
and generate a state-action pair, while the discriminator is trained
to distinguish whether the state-action pair is from the expert or
the learned policy. The goal of policy improvement is achieved
through the adversarial learning process. GAIL shows good perfor-
mance on the high-dimensional continuous control problem
[37,38]. Policy optimization with demonstrations (POfD) [37] uti-
lizes the demonstration by an adversarial learning method and
has made efforts on sparse and dense reward environments.

Recently, demonstrations have been leveraged to tutor DRL to
achieve better performance. Since the DRL reward is immediate
feedback from the environment for evaluating the performance
of the policy, reshaping the reward function through the demon-
stration is an effective approach to improve DRL performance
[39-41]. By transforming the form of the reward function, the dif-
ficulty of agent training has been reduced. Model-Based DRL
(MBRL) has shown the capability in handling some difficult tasks
[42] and demonstration is also leveraged to deal with the MBRL
problems [43,44].

All of the previously mentioned approaches yielded impres-
sive results but most of them utilized demonstrations through
reward shaping or imitating the demonstration. An alternative

X. Li, X. Wang, X. Zheng et al.

approach is to improve the policy directly from demonstrations.
The samples in the experience replay buffer and demonstra-
tions are both extracted by DRL agents [12,45,5]. These
approaches put the demonstration into the experience replay
buffer and sample from the hybrid experience replay buffer.
The DQfD algorithm enhances the DDQN [17] algorithm by
keeping the demonstration in the replay buffer at all times. A
designed, supervised expert loss is generated when the transi-
tions in the demonstration are sampled to update the parame-
ters of the neural networks. The self-imitation learning (SIL)
method chooses different loss functions and adds new trajecto-
ries to the demonstration. It updates the same neural network
twice with the A2C loss function and the SIL loss function [45].
The DDPGfD algorithm [46] is similar to the DQfD and they
both assist in enhancing the original algorithms through a
hybrid loss function with an expert loss. The difference
between these two methods is that the DDPGfD algorithm is
based on the DDPG algorithm [47], which is designed to solve
problems with continuous action space and the DQfD is more
suitable for the discrete action space. However, both DQfD
and DDPGfD suffer from the problem of under-exploiting
demonstration data [37].

The proposed DQfDD-BC method is designed to make up for the
shortcomings of the above methods. The supervised learning
model and expert loss can fully extract the demonstration and
mimic the expert policy. The constant renewal of demonstration
is beneficial to overcome the negative effects of static demonstra-
tion. To our best known, this is the first time the imitation learning
model has been introduced to the DRL and the combination of
these two function modules results in some new and comprehen-
sive progress.

3. Preliminaries
3.1. Q-function and DQN

Standard Deep Q-Networks (DQN) is designed to deal with the
standard Markov Decision Process (MDP) [48], which is defined
by a tuple (¥, «/,2,r,7) where &, «/,2,r,7 represent the state
space, action space, state transition distribution, reward function
and discount factor, respectively. The transition distribution
2(s'|s,a) describes the process of taking action a at state s,s’ is
the next state and reward function r(s, a) gives the feedback. A pol-
icy m(als) specifies how the agent responds to various states. The
goal of the agent is to find the policy @ which maps states to
actions that maximize the expected discounted total reward
Ex[>roo)'r(Se, a;)] over the agent’s lifetime. Q" (s, a) is an estimate
of the expected future reward that can be obtained from (s, a) by
the agent with policy 7. The optimal value function Q*(s,a) pro-
vides maximal action values in all states and is determined by solv-
ing the Bellman equation, shown as Eq. (1).

Q'(s,a) =E|r(s,a) + yZP(s’\s, a)mang*(s’, a) (1)
v

Deep Q learning is one of the most famous deep reinforcement
learning methods. It leverages deep neural networks to approxi-
mate the value function and outputs the action value Q(s,a) for
each state-action pair (s,a). Transitions are sampled uniformly
from the experience replay buffer to update the parameters of
the neural networks by minimizing the loss function, denoted by
Eq. (2). DQN uses two neural networks to improve the policy
learned by the agent. The current network, 6, is used to calculate
the value function and the target network, represented by ¢', copy
the parameters of the current network every k steps to stable the
training process.

302

Neurocomputing 467 (2022) 300-309

#0(Q) = (r(5,0) + ymaxQ(ses1, ¢ 0) ~ Qs.:0)) @)

3.2. DDQN and DQfD

To avoid the issue of over-estimation for the action value in
DQN, double DQN (DDQN) uses the current Q network to choose
the best action by af'¥* = argmax,Q (s..1,a; 0) instead of the optimal
action value Q". Similarly, as in DQN, the target Q network is uti-
lized to calculate the TD target, but it uses the best action instead
of searching for the optimal action value. Thus, the loss function of

DDQN can be written as Eq. (3).

Zo(Q) = (1(5,) +9Q(se41,a™% 0') — Q(s,a;0))° (3)

Based on DDQN, the DQfD algorithm proposes a hybrid loss
function with supervised loss. In DQfD, the complete loss function
is denoted by Eq. (4) which consists of four parts: the double Q
learning TD loss, n-step double Q learning TD loss, expert loss
and L2 regularization loss, denoted by #p(Q), Z»(Q), Z:(Q) and
Z12(Q), respectively. The parameters /1, 42, 23 adjusts the weights
of different losses.

LQ) = Zpo(Q) + 41 Zn(Q) + 22Z(Q) + 13Z12(Q) (4)

The expert loss Z¢(Q) is considered as the most significant loss
among the losses in DQfD, expressed in Eq. (5). It allows the model
to satisfy the Bellman equation and also enables the agent to learn
from the demonstrations directly. The large margin supervised loss
{(ag, a) is set to 0 when a = ar where ar denotes the expert action in
the demonstration, and a positive constant otherwise. This loss
forces the action values of the other actions to be at least a margin
lower than the value of the demonstrator’s action [12]. Note that,
when the sampled transitions are not in the demonstration,
J2 = 0 means that the expert loss #(Q) is non-functional.

Zp(Q) = max(Q(s, a) + £(ag, a)] — Q(s, a) (5)

In this paper, the proposed DQfDD-BC method substitutes the
large margin supervised loss with a cross-entropy loss and the
expert loss is always available for the complete loss function dur-
ing the self-learning process via imitation learning model (see
details in Section 4.3).

4. Methodology

In this section, the overall structure of SADRL and two major
modules of the proposed method are introduced, which are utiliz-
ing dynamic demonstration and obtaining a better supervised
expert loss via behavioral cloning model. Last but not least, the
training process and the pseudo-code are presented.

4.1. Framework of SADRL

The fusion of both supervised learning and reinforcement learn-
ing is an important advantage of SADRL. Supervised learning meth-
ods are good at extracting knowledge from vast amounts of data,
which facilitates the utilization of supervised learning to learn a
decision policy from the expert experience and offline operation
records. However, supervised learning is limited by the data itself
and cannot discover new knowledge. On the contrary, DRL realizes
the full potential of machine intelligence and the DRL agent con-
stantly learns new knowledge from the environment. However,
the learning speed of DRL is relatively slow and it is expensive to
obtain a perfect result. The SADRL intends to mitigate their disad-
vantages while retaining their strengths and realizes a new learn-
ing paradigm of human-machine integration.

X. Li, X. Wang, X. Zheng et al.

Fig. 1 illustrates the technical architecture of the proposed
DQfDD-BC approach under the SADRL framework. DQfDD-BC
shares the same basic components of the DDQN algorithm [17],
including two Q networks and experience relay buffer where alter-
able demonstrations are added for further usage. An additional BC
module is introduced to utilize the demonstration in the replay
buffer. In addition, the loss value is calculated considering both
the output of the trained Q network and the BC model.

Firstly, the DQfDD-BC method attempts to extract the experts’
policies from the initial demonstration and allows the agent to pro-
vide reasonable actions when facing self-generated states. During
the self-learning process, BC model is introduced to generate
expert loss to utilize all transitions in the experience replay buffer.
The agent’s actions are compared with those generated by the BC
model through a supervised expert loss function. The inclusion of
the BC model allows the knowledge in the demonstrations to be
sufficiently utilized in the training process and enables the model
to cope with the states which experts have not ever encountered.
The supervised learning process and self-learning process can pro-
mote each other. The supervised model provides a baseline to
guide the learning process and the self-learning process keeps
improving and generates new demonstration samples to reduce
the limitation of the BC model and suboptimal samples. In partic-
ular, new transitions are added to the demonstration if the model
achieves a relatively high-performance episode score. Hence, the
BC model can be improved after the update of the demonstration.
There are two main differences between the proposed DQfDD-BC
method and previous methods that also combine DRL with super-
vised learning. Firstly, existing methods that combined DRL and
supervised learning make use of supervised learning techniques
from the perspective of data. Specifically, only a supervised loss
function is designed to utilize the demonstration. And the super-
vised loss is not available when the self-generated transitions are
sampled. In the proposed DQfDD-BC method, we construct a BC
model to imitate the demonstration so that the policy behind the
demonstration can be used all the time once the pre-training pro-
cess is completed. When a new state appears, the previous method
is not able to make use of the demonstration to facilitate the learn-
ing process, while our method can provide a demonstration-like
decision policy based on the pre-trained BC model and generate
supervised loss to guide the self-learning process. Secondly, the
demonstration in previous methods is static and it is dynamically
updated in the DQfDD-BC. The demonstration is of great signifi-
cance for the supervised learning process and dynamic data can
effectively expand the original dataset to avoid overfitting and
improve the generalization ability of the model.

4.2. Dynamic demonstrations

As the transition quality of historical demonstrations is usually
much higher than that associated with random policies, DQfD
chooses to learn its initial knowledge from preset demonstrations
instead of random interaction trajectories. One of the major
improvements of the proposed DQfDD-BC method is adding the
newly generated interactions into the demonstrations. These
newly generated transitions, who have a higher performance score
for the same task, are collected during the training process. Partic-
ularly, after the early stage of the training process, the transition
samples are automatically generated and inserted into the demon-
stration dataset when the final cumulative reward of each episode
reaches a new high score. After the performance of the model has
been improved effectively, the new and better transition samples
are added to the demonstration. Thus, the quality of the demon-
stration is continuously improved while attempting to cover the
full state-action space. Such a mechanism can continuously
improve the diversity and quantity of the demonstration and con-

303

Neurocomputing 467 (2022) 300-309

tinuously generate a positive effect on the imitation learning
model performance.

The concept of the proposed approach is close to the DAgger
algorithm, especially for improving the decision-making capability
by adding new transitions to the demonstration and utilizing the
added data to optimize the model parameters. However, unlike
DAgger, the proposed method does not rely on manual labeling
and automatically determines whether new transitions need to
be added to the demonstration, which can significantly reduce
the computational cost of the training process and improves the
applicability of the method.

4.3. Expert loss with supervised BC model

The DQfD method leverages a binary supervised large margin
loss function ¢(ag, a) to compare the generated actions with those
in demonstrations under the same environment states. However,
the large margin loss function is not able to distinguish the differ-
ence of various actions and the binary loss values are prone to
cause a volatile gradient which all lead to the instability of the
training process. Instead of utilizing the demonstration directly, a
BC model is used to extract useful information from the
demonstration.

In specific, the proposed DQfDD-BC method contains a deep
neural network-based BC model and maintains two different expe-

rience replay buffers: D% and D%™. In particular, D" refers to

the common experience replay buffer in a DRL model and D™
consists of both historical and self-generated demonstrations.
The BC model is first pre-trained with demonstrations D*™ to
obtain its initial decision-making ability. Prioritized experience
replay mechanism [49] is also applied to both of the two replay
buffers to improve the sample efficiency. The performance of the
DRL agent is improved continuously during the learning process.
Hence, the newly generated transition are given the highest prior-
ity to ensure that transitions with higher performance are
extracted timely.

The DQfDD-BC model takes full advantage of the demonstration
by generating expert losses for all self-generated transitions
instead of directly using historical demonstrations. And it is
designed for discrete action spaces while the additional BC model
is considered to solve a multi-label classification problem. Hence,
instead of the binary supervised large margin loss function, the
cross-entropy loss function, H(output, target), is selected to evalu-
ate the difference between different actions. In the pre-train pro-
cess, the BC model is trained by minimizing the cross-entropy
loss between ar and m,c(s¢) (EqQ. (6)) to learn the demonstration
and construct the BC model.

tc = H(Ttpe(S1),)

(6)

where ag refers to the expert action in the demonstration and 7,
represents the learned policy of the BC model. Once the pre-
training of the BC model is completed, 7, can always provide rela-
tively reasonable expert actions for each state.

£(a, o (s)) = H(a, o (5)))

In the self-learning stage, the cross-entropy loss (Eq. (7)) evaluates
the difference between a and 7,(s), where a is the action provided
by the Q network and 7, (s) represents the action generated by the
latest state of BC model. The supervised loss ¢(a, T.(s)) can be con-
structed all the time during the training process and it is zero when
the action of the Q network output is the same as the output of the
BC model and otherwise a positive number. Consequently, the
supervised expert loss function of DQfDD-BC is shown as Eq. (8),
which is different from DQfD and the complete loss function is
the same as Eq. (4).

LXS
高亮

LXS
高亮

X. Li, X. Wang, X. Zheng et al.

Ze(Q) = max(Q(s, a) + £(a, ()] — Q(S, a)

Algorithm 1: DQfDD-BC: Deep Q-learning from Dynamic
Demonstration with Behavioral Cloning

1 Initialization: D"°P'%V and D?¢™: both initialized
with the incipient demonstration data set, 0:
weights for initial Q network, 0" weights for the
target network, 7: frequency at which to update the
target network, E: maximum number of episodes,
M : maximum number of newly generated
trajectories, k: number of pre-training gradient
updates;

2 Train the BC model with D?¢" using the
behavioral cloning cross-entropy loss £ g ;

3 for step = 1 to k do

4 Sample a mini-batch of transitions from D’¢P/ey
with prioritization;
5 Calculate expert loss L ;(Q) using the BC
model;
6 Calculate loss £(Q) using target net;
7 Perform a gradient descent step to update 6;
8 every 7 steps update the target network 6 =0;
9 for episode = 1 to E do
10 while not done do
11 Sample action a from € — greedy policy;
12 Play action a and observe (s’, r, done);
13 Store (s, a, r, s’, done) into Dreplay.
14 Sample a mini-batch of transitions from
DrePlay with prioritization;
15 Calculate expert loss L ;(Q) using the BC
model;
16 Calculate £(Q) using target net;
17 Perform a gradient descent step to update 6;
18 every 7 steps update the target network
0 =0
19 s =5
20 if get the best episode score then
21 for i = 1 to min(episode//2, M) do
22 Agent interacts with the environment
until done;
23 Store the trajectory into D4¢™?;
24 Fine-tune the BC model with new D4eme;

The goal of introducing a different expert loss function is to
smooth the output of the total loss function and stabilize the train-
ing process. More importantly, the BC model is utilized to provide
reasonable actions and generate supervised losses for all self-
generated transitions in the experience replay buffer. Compared
with the DQfD method, the sample efficiency is significantly
improved.

4.4. Training process

The pseudo-code of the proposed DQfDD-BC method is
sketched in Algorithm1 and consists of three main stages: BC

304

Neurocomputing 467 (2022) 300-309

7 p—
[Loss function]%
Supervised
Ti and Ta ﬂv pervi
loss
targets
! [Target ' =
; get Q] Q :[BC].., 5
i _network copy every | network Ji_ model | | <
: k steps ' ;
1 St+1(st+n) Sid, E S !
o Update when the
1 demonstration
buffer demonstration | P
Prioritized Replay buffer
(Sz’ar”;’sHI)

Fig. 1. The technique architecture of the proposed DQfDD-BC method where BC
model represents the behavioral cloning model.

model pre-training, agent pre-training, and joint model self-
learning. Firstly, the BC model is pre-trained with Eq. (6) to gain
the initial decision-making ability, and then the Q network is also
pre-trained in a supervised manner. During the self-learning pro-
cess, the trained BC model is leveraged to generate expert actions
and construct the expert loss function. Combined with TD errors,
the self-learning ability is retained and the L2 regularization loss
on the network weights is able to prevent over-fitting. After each
episode, the best episode score is obtained from the sum of step
rewards in each episode compared to the previous record. The pol-
icy is evaluated via the episode score and the dynamic demonstra-

tion method is applied to D%™ to update the demonstration. To
reduce the interference of the lucky episode, the demonstration
will not be updated in the early stage of the self-learning process.
The update is initiated only after the self-learning process has
passed at least 10 episodes. Fine-tuning of the BC model is con-

ducted after D™ is updated, thus enabling the BC model to con-
stantly improve the supervised strategy and providing a better
target for the agent.

5. Experiments and results
5.1. Overview

Experiments configuration The proposed DQfDD-BC method is
validated in the classic OpenAl Gym environments: CartPole-vO,
CartPole-v1, Acrobot-vl and LunarLander-v2 [50]. The original
reward functions provided by the gym environments are used
without giving any additional rewards or penalties during the
learning process. At the end of each episode, the rewards for all
steps in the episode are summed up to form an episode score. Since
the DQfD method is based on DDQN, both DQN [3], DDQN [17],
Duel DQN [51] and DQfD [12] algorithms are chosen as the bench-
marks to compare with the proposed method.

Two different experimental conditions are considered: perfect
demonstrations and imperfect demonstrations. All demonstrations
are obtained from the interaction trajectories of pre-trained DDQN
models to represent the human experience. The major difference
between perfect and imperfect demonstrations is as follows: The
perfect demonstrations are obtained from state transitions data
of a well-trained DDQN agent, while the imperfect demonstrations
are derived from the model during the training process. In all
demonstrations, the initial amount of transitions is around 10K
before the training and the number will increase when new transi-

X. Li, X. Wang, X. Zheng et al.

tions are added into the demonstrations. The average episode
scores of perfect demonstration collected from CartPole-vO,
CartPole-v1, Acrobot-v1, LunarLander-v2 are 200, 500, —84, 246.
We omit the imperfect demonstration of CartPole-vO in Table 1,
and further discuss the reason in experimental results. The scores
of imperfect demonstrations in CartPole-vl, Acrobot-v1,
LunarLander-v2 are 357, —238, 14, respectively.
Hyperparameters There are numerous hyperparameters in the
experiments and different hyperparameters have a significant
effect on the results. In all experiments, the n in n — step return
is 10, the batch_size = 64, the size of experience replay buffer is
1000000, the learning rate of supervised model is 0.001, the learn-
ing rate of Q networks is 0.00001, and the discount factor y = 0.95
in the CartPole environments (0.99 for other environments). Differ-
ent random seeds have different performances and we choose
[100,200,300,...,1000] as the random seed list. In the € — greedy
policy, € linearly decreases from a maximum value of 0.99 to a
minimum value of 0.001 and remains at the minimum value. In
the CartPole-vl environment, the descent is maintained for
10000 interaction steps and in other environments 5000. In the
prioritized experience replay buffers, new transitions are given
the highest probability of being sampled and are later updated
based on the absolute values of TD-1 errors. For each transition,

B
1 1 o
<N . PT!’)) , where N is the

size of the replay buffer, P(i) is the probability of being sampled
and parameter f controls the amount of importance sampling
and it is annealed linearly from 0.4 to 1.

The parameters 4, /,, A3 determine how the weights of the dif-
ferent losses are assigned and they are important for the hybrid
loss function. In all experiments, 2; = /; = 0.5, 13 = 0.001. Accord-
ing to our experimental experience, Z; and 1, are more appropriate
between 0.1-0.7. Too large will easily lead to a decline in the mod-
el’s self-learning ability, while too small will result in a weaker
impact of expert loss on the hybrid loss function and slower learn-
ing speed. /3 is leveraged to avoid overfitting but too large will
restrict the model’s expressive ability significantly, causing diffi-
culty in model convergence. 1e — 3 is an appropriate magnitude
and the L2 regularization is provided by the optimizer in the
PyTorch. The large margin in DQfD is fine-tuned and set to be 1.
In case of a margin set too large, the model tends to rely on the
supervised learning process heavily and lose its ability to learn
independently; conversely, a margin that is too small will cause
the advantages of supervised learning unavailable.

Model architecture Since the state of experiment environ-
ments are vectors, fully-connected layers are appropriate for the
experiments and they are leveraged to construct the Q network
and the BC model as well. In the BC model, the hidden unit number
of all two fully-connected layers are [150,64] and LeakyRelu is

the sampling weight is denoted as w;

Table 1

Neurocomputing 467 (2022) 300-309

selected as the activation function. The Q network which has
[150,120] hidden units in every hidden layer and the activation
function is Relu.

Termination condition Within 1000 episodes (it is 500 in
CartPole-v0 and v1), the average episode score of last 30 consecu-
tive episodes is greater than certain scores (CartPole-v0: 190,
CartPole-v1: 490, Acrobot-vl: —100, LunarLander-v2: 200), then
end the current execution. The models are considered as success-
fully converged if the termination conditions are satisfied. Each
method is repeated 10 times with different random seeds.

5.2. Perfect demonstration results

In terms of convergence speed and learning capability with per-
fect demonstrations, the proposed DQfDD-BC model achieved bet-
ter results than DQfD model, far better than DQN, DDQN and Duel
DQN. Fig. 2 shows the episode rewards of various methods in three
gym environments. All learning curves are averaged over 10 ran-
dom seeds and the shades in the figures are designed to show
the experimental results of multiple trials. The solid line in the fig-
ure is the average of the results of multiple experiments (denoted
as i), while the range of the shaded area is determined by the stan-
dard deviation (demoted as &) of the results of multiple experi-
ments. The upper and lower boundaries of the shaded area are
U+o and u— o, respectively. In CartPole-v0, the DQfDD-BC
approach has a slightly faster convergence speed than DQfD during
the early learning stage. Although some runs of DQfDD-BC and
DQfD failed to satisfy the termination condition, the Table 1 shows
that the DQfDD-BC has a smaller average stop episode and it also
gained a small advantage in the final performance score. In
CartPole-vl and LunarLander-v2 environments, the DQfDD-BC
shows obvious faster-learning speed and fewer episodes are
needed for DQfDD-BC to get a higher score than DQfD.

Before the experiment was forced to stop in CartPole-v1, both
DQfD and DQfDD-BC can obtain a full score, which proves that
the demonstration improves the learning ability of DRL agent,
while the DQN, DDQN and Duel DQN failed to trigger the termina-
tion condition due to lack of demonstration. The DQfDD-BC
method retains the advantages of the DQfD algorithm and further
improves the supervised loss function so that all self-generated
data can obtain supervised losses, which helps to improve the
learning speed.

5.3. Imperfect demonstration results

The adaptability of the DQfDD-BC method is validated with
imperfect demonstrations. Since perfect demonstrations are diffi-
cult to define and acquire in many scenarios, it is more relevant
and better to train the agent with imperfect demonstrations than

Performance comparison in OpenAl Gym environments. (lower episode is better and higher score is better).

Env DQN DDQN DuelDQN Perfect Demonstration Imperfect demonstration
DQfD DQfDD-BC DQfD DQfDD-BC
Average stop episode
CartPole-v0 254 + 24 310 + 85 325+91 162 + 170 161 £ 170 - -
CartPole-v1 500 + 0 500 + 0 500 + 0 121+ 19 91 + 27 500 + 0 411+ 179
Acrobot-v1 500 + 0 198 + 123 425 + 76 51+4 49 + 5 261 + 136 143 £ 11
LunarLander-v2 443 + 69 263 + 21 289 + 28 65 +3 65+9 402 + 192 119 £ 17
Env Average training score for last 10 episodes
CartPole-v0 199 + 0.4 193 £ 0.6 190 + 4.6 190 + 10.7 194 + 9.7 - -
CartPole-v1 155 + 26.8 133 +12.1 166 + 11.9 498 + 3.9 500 + 0.3 348 + 25.1 429 + 46.0
Acrobot-v1 -161+17.8 -97+53 -112 £ 3.1 -95+4.0 -91+25 -96+5.3 -95+738
LunarLander-v2 206 +12.4 23165 186 + 19.2 219 £ 8.7 223 + 6.1 234+ 44 211 +£204

305

X. Li, X. Wang, X. Zheng et al.

200 F T T T T T T T

175

J—

wn

(=1
T

—

I3

[
T

""""""" DuelDQN

- DQfD

—— DQfDD-BC]
Demo

Average Reward
-
(=3
(=}
T

N
W
T

wn
(=}
T

25 FL

1 1 1
0 50 100 150 200 250 300 350 400

Episodes

(a) CartPole-vO

DQN

777777 DDQN
,,,,,,,,,,,, DuelDQN
--— DQID

Average Reward

0 1 T 1 1 1 1 1
0 50 100 150 200 250 300 350 400
Episodes
(b) CartPole-v1

200

100
=
<
£ 0
=2
(5]
&
5 —100
>
<

[; DuelDQN
-200 &/ ——— DO
—— DQfDD-BC
=300 1 Demo]
1 1 1 1 1
0 50 100 150 200 250 300

Episodes
(¢) LunarLander-v2

Fig. 2. The training episode scores of different methods with perfect demonstra-
tions in different environments. The horizontal green line is the average episode
scores of the perfect demonstrations.

the random policy. Some off-line optimization methods can also be
used to generated imperfect demonstrations. Fig. 3 (a) shows the
episode scores of different method with imperfect demonstrations
in the CartPole-v1 environment. The results show that the DQfDD-
BC model outperforms DQfD by a significant margin in terms of
convergence speed. By keeping the demonstrations updated, the

306

Neurocomputing 467 (2022) 300-309

500 [T) T T T T T T
400 : i.
- 1 DA e i Ay A N
= i
< 3 []
g 300p |}]
R j
o 3 i
% L i
5 200 |/
> s I
< ro|)
100 | |/
/.
0 baarearsares s T T 1 1 1 1]
0 50 100 150 200 250 300 350 400
Episodes
(a) Average training scores
T T T T T T T T T T
0.6 L expert loss 1
------ TD-1 loss
TD-n loss 7
[-
=
<
>
8
=
01 'I‘I' e N | ¥ I '- 1 BV { . i d“lh | \ ‘ i
Rt TR T §'ﬂﬁur!i'iﬁl'l
0.0 1 1 1 1 1
0 50000 100000 150000 200000 250000
Steps
(b) Losses of DQfD
LI A EE A AL B L |
expert loss |
o8rpy TD-1 loss
TD-n loss
o 0.6F
2
<
>
5 04
|
0.2
e ——
0 5000 10000 15000 20000

Steps
(c) Losses of DQfDD-BC

Fig. 3. Experimental result with an imperfect demonstration. (a) The training score
of different methods in the CartPole-v1 environment. The horizontal green line is
the average score of the demonstrations. (b) and (c) show the loss function value
during the training process.

proposed DQfDD-BC method allows the newly updated demon-
stration to avoid the negative influence brought by the imperfect
demonstration and eventually converge to a better performance
level.

X. Li, X. Wang, X. Zheng et al.

The proposed DQfDD-BC method can adapt to imperfect
demonstrations well and obtain a higher average final performance
than DQfD, which shows great dependence on the demonstration
and ultimately converges to the vicinity of the demonstration;
therefore, imperfect demonstrations degrade the performance of
the DQfD method. To figure out the reason of DQfDD-BC’s outper-
forming DQfD, the variation of each component of the complete
loss function is examined. Fig. 3 (b) shows that the TD losses
(TD-1, TD-n) of DQfD have been stabilized within a small fluctua-
tion range in the later stages of self-learning while the expert loss
fluctuated in a wide range. This is partially due to the action output
by the learned policy can be quite different from those sampled
from the imperfect demonstrations. The agent can obtain a better
policy through the TD losses and provides an appropriate action.
However, the supervised loss draws the learned policy near the
policy represented by the imperfect demonstration and inapposite
actions are provided. Additionally, the fixed imperfect demonstra-
tion is not immune to its own negative effects, resulting in the
inability to converge to the highest score. The expert loss of
DQfDD-BC is more steady as shown in Fig. 3 (c) and the agent
achieves a better final performance. The dynamic demonstration
has the ability to reduce the disadvantage of imperfect demonstra-
tion and expand the state-action space covered by the
demonstration.

Table 1 shows the comparison between DQN, DDQN, Duel DQN,
DQfD and DQfDD-BC in different gym environments. The average
stop episode means the average stop episode number among dif-
ferent runs and roughly represents the learning speed and the
average final score illustrates the final performance of these meth-
ods. In all environments, the proposed DQfDD-BC method is suc-
cessfully converged in the smallest number of episodes and
obtains the best final performance in almost all environments,
which demonstrates the significant advantages of DQfDD-BC in
learning speed and performance. Need to mention that the termi-
nation condition of CartPole-vO0 is much easier to be satisfied com-
pared to the CartPole-v1. In some lucky episodes, the termination
condition can be triggered in CartPole-v0, which is almost impos-
sible in CartPole-v1. The imperfect demonstration of CartPole-vO
is hard to be distinguished from the random policy and trained pol-
icy. Therefore we omit the test with an imperfect demonstration of
CartPole-vO0. The quality of imperfect demonstration of CartPole-v1
is more reliable compared to CartPole-vO0.

5.4. Ablations

To confirm the importance of both dynamic demonstrations
and expert loss with BC model in the proposed DQfDD-BC method,
the method without dynamic demonstration or BC model are
tested in the CartPole-v1 environment. Fig. 4 shows the effect of
integrating dynamic demonstrations and BC model to the original
DQfD model. Clearly, when the dynamic demonstration is added
to the DQfD algorithm (new model named DQfDD), the DQfDD
model presents a significant improvement in training speed during
the early stage. The DQfDD can also converge to the highest score
and ended the training process in a short time, while the DQfD
needs some more time. This indicates that by adding new samples
to the demonstrations, a large number of high-performance transi-
tions can improve the generalization ability and training stability
of the model.

In the case of only BC model triggered (new model named
DQfD-BC), the training speed of the DQfD-BC model is significantly
improved compared with DQfD. As shown in Fig. 4, the average
training score of the DQfD algorithm reaches only about 80% of
the convergence state, while the DQfD-BC model finishes the train-
ing process. The DQfD-BC has a slightly lower learning speed than
the DQfDD-BC method during the learning process but the DQfD-

307

Neurocomputing 467 (2022) 300-309

500 T T
400 - -
o
s
z 300 []
Q
2
[
=
I
S 200 F .
<
—— DQD
wl LS S T DQDD
........... DQfD—BC
-~- DDfDD-BC
0 1 1 1 1 1 1 1
0 20 40 60 80 100 120 140 160
Episodes

Fig. 4. Ablation experimental results. The dynamic demonstration (DQfDD) and
expert loss with a behavioral cloning model (DQfD-BC) are added to the original
DQfD method.

BC ends the learning process earlier. By introducing a supervised
model, the self-generated transitions can be utilized to generate
an expert loss. Therefore higher sample efficiency is achieved and
the learning speed is improved significantly. The proposed
DQfDD-BC method, which combines the benefits from dynamic
demonstrations and the expert loss generated from BC model,
can improve the learning speed simultaneously and retain excel-
lent performance with an imperfect demonstration.

6. Conclusion

In this work, we propose the SADRL framework and develop the
DQfDD-BC method to enhance the learning efficiency and perfor-
mance of DRL. The experimental results demonstrate that regard-
less of the perfection of historical demonstrations, DQfDD-BC can
effectively improve the learning speed and achieve comparable
final performance in generic environments. From an ablation
experiment, the dynamic demonstration and expert loss with the
BC model showed their potential to improve the learning quality.

The proposed model provides a feasible solution to bridge the
DRL methods and the decision-making problems in complex real-
world environments by learning from the human experience to
improve the DRL agent while resisting the interference from the
imperfect demonstration. In the future, to fully extract and utilize
the human experience and examine the potential of SADRL, real-
world settings, such as power grid operation systems, are consid-
ered. Considering the properties of recorded human demonstra-
tions, we will explore and improve the ability of the proposed
method to handle engineering issues in data sparsity, human
diversity, etc.

CRediT authorship contribution statement

Xiaoshuang Li: Conceptualization, Methodology, Software,
Investigation, Writing - original draft. Xiao Wang: Data curation,
Writing - review & editing, Funding acquisition. Xinhu Zheng:
Writing - review & editing. Junchen Jin: Validation, Writing -
review & editing. Yanhao Huang: Resources, Writing - review &
editing, Funding acquisition. Jun Jason Zhang: Writing - review
& editing, Funding acquisition. Fei-Yue Wang: Supervision, Fund-
ing acquisition.

X. Li, X. Wang, X. Zheng et al.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

Research supported by the National Key R&D Program of China
(2018AAA0101500, 2018AAA0101502). We thank Dr. Peidong Xu,
Dr. Xingyuan Dai for their advice and technical supports. We
appreciate the help from the implementation of https://github.-

References

[1] D. Silver, A. Huang, CJ. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, et al.,
Mastering the game of Go with deep neural networks and tree search, Nature
529 (7587) (2016) 484.

[2] D. Silver,]. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, et al.,
Mastering the game of Go without human knowledge, Nature 550 (7676)
(2017) 354.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G. Bellemare, et al.,
Human-level control through deep reinforcement learning, Nature 518 (7540)
(2015) 529.

[4] F. Li, Q. Jiang, S. Zhang, M. Wei, R. Song, Robot skill acquisition in assembly
process using deep reinforcement learning, Neurocomputing 345 (2019) 92—
102.

[5] Y. Xiong, G. Zheng, K. Xu, Z. Li, Learning traffic signal control from
demonstrations, in: Proceedings of the 28th ACM International Conference
on Information and Knowledge Management, 2019, pp. 2289-2292.

[6] T.Hester, P. Stone, Texplore: real-time sample-efficient reinforcement learning
for robots, Mach. Learn. 90 (3) (2013) 385-429.

[7] G. Shani, D. Heckerman, R.I. Brafman, C. Boutilier, An mdp-based recommender
system, J. Mach. Learn. Res. 6 (9) (2005).

[8] J.Li, X. Shi, J. Li, X. Zhang,]. Wang, Random curiosity-driven exploration in deep
reinforcement learning, Neurocomputing 418 (2020) 139-147.

[9] Z. Zhao, Q. Wang, X. Li, Deep reinforcement learning based lane detection and
localization, Neurocomputing 413 (2020) 328-338.

[10] B.R. Kiran, L. Sobh, V. Talpaert, P. Mannion, A.A.A. Sallab, S. Yogamani, et al.,
Deep reinforcement learning for autonomous driving: A survey. arXiv preprint
arXiv:200200444 2020..

[11] J. Garrido, W. Yu, A. Soria, Human behavior learning for robot in joint space,
Neurocomputing 155 (2015) 22-31.

[12] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, et al., Deep g-
learning from demonstrations, in: Association for the Advancement of
Artificial Intelligence, 2018.

[13] J. Matas, S. James, AJ. Davison, Sim-to-real reinforcement learning for
deformable object manipulation, in: Conference on Robot Learning, 2018, p.
734-743..

[14] S. Schaal, Learning from demonstration. In: Advances in neural information
processing systems, 1997, p. 1040-1046..

[15] F. Behbahani, K. Shiarlis, X. Chen, V. Kurin, S. Kasewa, C. Stirbu, et al., Learning
from demonstration in the wild, in: 2019 International Conference on Robotics
and Automation (ICRA), IEEE, 2019, pp. 775-781.

[16] S. Xu, Y. Ou, J. Duan, X. Wu, W. Feng, M. Liu, Robot trajectory tracking control
using learning from demonstration method, Neurocomputing 338 (2019) 249-
261.

[17] H.v. Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double g-
learning, in: Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence. 2016, p. 2094-2100..

[18] B. Piot, M. Geist, O. Pietquin, Boosted bellman residual minimization handling
expert demonstrations, in: Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, Springer, 2014, pp. 549-564.

[19] B. Piot, M. Geist, O. Pietquin, Boosted and reward-regularized classification for
apprenticeship learning, in: Proceedings of the 2014 international conference
on Autonomous agents and multi-agent systems. International Foundation for
Autonomous Agents and Multiagent Systems, 2014, pp. 1249-1256.

[20] F. Torabi, G. Warnell, P. Stone, Behavioral cloning from observation. arXiv
preprint arXiv:180501954 2018..

[21] A. Biihler, A. Gaidon, A. Cramariuc, R. Ambrus, G. Rosman, W. Burgard, Driving
through ghosts: Behavioral cloning with false positives. arXiv preprint
arXiv:200812969 2020..

[22] C. Ma, L. Chen, J. Yong, Au r-cnn: Encoding expert prior knowledge into r-cnn
for action unit detection, Neurocomputing 355 (2019) 35-47.

[23] H. Ravichandar, A.S. Polydoros, S. Chernova, A. Billard, Recent advances in
robot learning from demonstration, Annu. Rev. Control Robotics Autonomous
Syst. 3 (2020).

308

Neurocomputing 467 (2022) 300-309

[24] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, et al.
End to end learning for self-driving cars. arXiv preprint arXiv:160407316
2016..

[25] X. Li, Z. Guo, X. Dai, Y. Lin, J. Jin, F. Zhu, et al., Deep imitation learning for traffic
signal control and operations based on graph convolutional neural networks,
in: 2020 IEEE 23rd International Conference on Intelligent Transportation
Systems (ITSC). IEEE, 2020, pp. 1-6.

[26] J. Duan, Y. Ou, S. Xu, M. Liu, Sequential learning unification controller from
human demonstrations for robotic compliant manipulation, Neurocomputing
366 (2019) 35-45.

[27] A. Hussein, M.M. Gaber, E. Elyan, C. Jayne, Imitation learning: a survey of
learning methods, ACM Comput. Surveys (CSUR) 50 (2) (2017)
1-35.

[28] D.S. Brown, W. Goo, S. Niekum, Better-than-demonstrator imitation learning
via automatically-ranked demonstrations, in: Conference on Robot Learning,
2020, p. 330-359..

[29] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, et al., Deep
imitation learning for complex manipulation tasks from virtual reality
teleoperation, in: 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 1-8.

[30] X.Li,P.Ye,].]Jin, F. Zhu, F.Y. Wang, Data augmented deep behavioral cloning for
urban traffic control operations under a parallel learning framework, IEEE

Trans. Intell. Transp. Syst. (2021) 1-10, https://doi.org/10.1109/
TITS.2020.3048151.
[31] M. Bansal, A. Krizhevsky, A. Ogale, Chauffeurnet: Learning to drive by

imitating the best and the worst.

arXiv:181203079 2018.

S. Ross, G. Gordon, D. Bagnell, A reduction of imitation learning and structured

prediction to no-regret online learning, in: Proceedings of the fourteenth

international conference on artificial intelligence and statistics, 2011, pp. 627-

635.

W. Sun, A. Venkatraman, G.J. Gordon, B. Boots,].A. Bagnell, Deeply aggravated:

Differentiable imitation learning for sequential prediction, in: International

Conference on Machine Learning, 2017, pp. 3309-3318.

[34] J. Ho, S. Ermon, Generative adversarial imitation learning, in: Advances in
neural information processing systems, 2016, pp. 4565-4573.

[35] B. Wang, E. Adeli, H.k. Chiu, D.A. Huang, J.C. Niebles, Imitation learning for
human pose prediction, in: Proceedings of the IEEE International Conference
on Computer Vision, 2019, p. 7124-7133..

[36] G. Zuo, K. Chen, J. Lu, X. Huang, Deterministic generative adversarial imitation
learning, Neurocomputing 388 (2020) 60-69.

[37] B. Kang, Z. Jie,]J. Feng, Policy optimization with demonstrations, in:
International Conference on Machine Learning, 2018, p. 2469-2478..

[38] J. Song, H. Ren, D. Sadigh, S. Ermon, Multi-agent generative adversarial
imitation learning, in: Advances in neural information processing systems,
2018, pp. 7461-7472.

[39] T. Brys, A. Harutyunyan, H.B. Suay, S. Chernova, M.E. Taylor, A. Nowé,
Reinforcement learning from demonstration through shaping, in: Twenty-
fourth international joint conference on artificial intelligence, 2015.

[40] H.B. Suay, T. Brys, M.E. Taylor, S. Chernova, Learning from demonstration for
shaping through inverse reinforcement learning, in: Proceedings of the 2016
International Conference on Autonomous Agents & Multiagent Systems, 2016,
pp. 429-437.

[41] N. Jiang, S. Jin, C. Zhang, Hierarchical automatic curriculum learning:
converting a sparse reward navigation task into dense reward,
Neurocomputing 360 (2019) 265-278.

[42] L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R.H. Campbell, K. Czechowski,
et al, Model-based reinforcement learning for atari. arXiv preprint
arXiv:190300374 2019;..

[43] N.O. Lambert, D.S. Drew,]. Yaconelli, S. Levine, R. Calandra, K.S. Pister, Low-
level control of a quadrotor with deep model-based reinforcement learning,
IEEE Robot. Autom. Lett. 4 (4) (2019) 4224-4230.

[44] B. Thananjeyan, A. Balakrishna, U. Rosolia, F. Li, R. McAllister,].E. Gonzalez,
et al., Safety augmented value estimation from demonstrations (saved): safe
deep model-based rl for sparse cost robotic tasks, IEEE Robot. Autom. Lett. 5
(2) (2020) 3612-3619.

[45] J. Oh, Y. Guo, S. Singh, H. Lee, Self-imitation learning, in: International
Conference on Machine Learning, 2018, pp. 3878-3887.

[46] M. Vecerik, T. Hester,]. Scholz, F. Wang, O. Pietquin, B. Piot, et al., Leveraging
demonstrations for deep reinforcement learning on robotics problems with
sparse rewards. arXiv preprint arXiv:170708817 2017..

[47] T.P. Lillicrap,].J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, et al., Continuous
control with deep reinforcement learning. arXiv preprint arXiv:150902971
2015..

[48] R.S. Sutton, A.G. Barto, Reinforcement learning: An introduction, MIT press,
2018.

[49] T. Schaul, J. Quan, I. Antonoglou, D. Silver, Prioritized experience replay. arXiv
preprint arXiv:151105952 2015..

[50] G. Brockman, V. Cheung, L. Pettersson,]. Schneider, J. Schulman, J. Tang, et al.,
Openai gym. arXiv preprint arXiv:160601540 2016..

[51] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, N. Freitas, Dueling
Network Architectures for Deep Reinforcement Learning, in: International
Conference on Machine Learning. PMLR, 2016, pp. 1995-2003.

synthesizing arXiv preprint

[32]

[33]

https://github.com/asdiijj/implementation-of-dqfd
https://github.com/asdiijj/implementation-of-dqfd
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0005
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0005
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0005
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0010
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0010
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0010
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0015
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0015
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0015
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0020
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0020
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0020
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0025
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0025
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0025
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0025
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0030
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0030
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0035
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0035
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0040
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0040
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0045
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0045
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0055
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0055
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0060
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0060
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0060
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0060
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0075
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0075
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0075
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0075
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0080
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0080
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0080
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0090
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0090
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0090
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0090
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0095
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0095
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0095
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0095
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0095
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0110
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0110
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0115
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0115
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0115
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0125
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0125
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0125
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0125
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0125
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0130
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0130
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0130
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0135
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0135
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0135
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0145
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0145
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0145
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0145
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0145
https://doi.org/10.1109/TITS.2020.3048151
https://doi.org/10.1109/TITS.2020.3048151
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0160
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0160
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0160
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0160
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0160
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0165
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0165
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0165
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0165
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0170
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0170
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0170
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0180
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0180
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0190
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0190
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0190
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0190
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0195
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0195
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0195
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0195
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0200
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0200
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0200
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0200
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0200
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0205
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0205
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0205
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0215
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0215
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0215
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0220
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0220
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0220
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0220
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0225
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0225
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0225
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0240
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0240
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0240
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0255
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0255
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0255
http://refhub.elsevier.com/S0925-2312(21)01442-9/h0255

X. Li, X. Wang, X. Zheng et al.

Xiaoshuang Li received B.S. degree in automation from
Wuhan University, Wuhan, China in 2017. He is cur-
rently pursuing the Ph.D. degree in control theory and
control engineering at the State Key Laboratory of
Management and Control for Complex Systems, Insti-
tute of Automation, Chinese Academy of Sciences. His
research interests include intelligent transportation
systems, deep learning and deep reinforcement learn-
ing.

Xiao Wang received the bachelor’s degree in network
engineering from the Dalian University of Technology,
Dalian, China, in 2011, and the Ph.D. degree in social
computing from the University of Chinese Academy of
Sciences, Beijing, China, in 2016. She is currently an
Associate Professor with the State Key Laboratory for
Management and Control of Complex Systems, Institute
of Automation, Chinese Academy of Sciences. She has
published more than a dozen SCI/EI articles and trans-
lated three technical books (English to Chinese). Her
research interests include social transportation, cyber-
movement organizations, artificial intelligence, and
social network analysis. Dr. Wang has served the IEEE Transactions on Intelligent
Transportation Systems, the IEEE/CAA Journal of Automatica Sinica, and ACM
Transactions on Intelligent Systems and Technology as a Peer Reviewer with a good
reputation.

Xinhu Zheng received the B.S. degree in control science
and engineering from Zhejiang University, Hangzhou,
China, in 2011. He is currently pursuing the Ph.D. degree
in electrical and computer engineering with the
University of Minnesota Twin Cities, Minneapolis, MN,
USA. His research interests include social computing,
machine learning, and data analytics.

Junchen Jin received the B.Eng. degree in traffic engi-
neering from Beijing Jiaotong University, Beijing, China,
and the M.Sc. and Ph.D. degrees in transport science
from the KTH Royal Institute of Technology, Stockholm,
Sweden, in 2014 and 2018, respectively. He was the Vice
Director at the Smart Transportation Research Institute,
Enjoyor Co., Ltd., Hangzhou, China. He is also a Post
Doctoral Researcher with the State Key Laboratory for
Management and Control of Complex Systems, Institute
of Automation, Chinese Academy of Sciences, Beijing.
His research interests include intelligent transport sys-
tems, traffic simulation and control, recommender sys-
tems, artificial intelligence, deep learning, and
reinforcement learning.

Yanhao Huang received his Ph.D. degree in Power
System Automation from China Electric Power Research
Institute, Beijing, China, in 2015. His research interests
include power system simulation, intelligent technolo-
gies and electric power big data.

309

Neurocomputing 467 (2022) 300-309

Jun Jason Zhang received the B.E. and M.E. degrees in
electrical engineering from the Huazhong University of
Science and Technology, Wuhan, China, in 2003 and
2005, respectively, and the Ph.D. degree in electrical
engineering from Arizona State University, USA, in 2008.
He is currently a Professor with the School of Electrical
Engineering and Automation, Wuhan University. He
authored/coauthored over 70 peer reviewed publica-
tions. His research interests include the areas of sensing
theory, signal processing and implementation, time-
varying system modeling, and their applications in
intelligent power and energy systems. He is the Tech-
nical Co-Chair of the 48th North American Power Symposium (NAPS 2016).

Fei-Yue Wang received his Ph.D. degree in computer
and systems engineering from the Rensselaer
Polytechnic Institute, Troy, NY, USA, in 1990. He joined
The University of Arizona in 1990 and became a Pro-
fessor and the Director of the Robotics and Automation
Laboratory and the Program in Advanced Research for
Complex Systems. In 1999, he founded the Intelligent
Control and Systems Engineering Center at the Institute
of Automation, Chinese Academy of Sciences (CAS),
Beijing, China, under the support of the Outstanding
Chinese Talents Program from the State Planning
Council, and in 2002, was appointed as the Director of
the Key Laboratory of Complex Systems and Intelligence Science, CAS. In 2011, he
became the State Specially Appointed Expert and the Director of the State Key
Laboratory for Management and Control of Complex Systems. His current research
focuses on methods and applications for parallel intelligence, social computing, and
knowledge automation. He is a fellow of INCOSE, IFAC, ASME, and AAAS. In 2007, he
received the National Prize in Natural Sciences of China and became an Outstanding
Scientist of ACM for his work in intelligent control and social computing. He
received the IEEE ITS Outstanding Application and Research Awards in 2009 and
2011, respectively. In 2014, he received the IEEE SMC Society Norbert Wiener
Award. Since 1997, he has been serving as the General or Program Chair of over 30
IEEE, INFORMS, IFAC, ACM, and ASME conferences. He was the President of the IEEE
ITS Society from 2005 to 2007, the Chinese Association for Science and Technology,
USA, in 2005, the American Zhu Kezhen Education Foundation from 2007 to 2008,
the Vice President of the ACM China Council from 2010 to 2011, the Vice President
and the Secretary General of the Chinese Association of Automation from 2008-
2018. He was the Founding Editor-in-Chief (EiC) of the International Journal of
Intelligent Control and Systems from 1995 to 2000, the IEEE ITS Magazine from
2006 to 2007, the IEEE/CAA JOURNAL OF AUTOMATICA SINICA from 2014-2017,
and the China’s Journal of Command and Control from 2015-2020. He was the EiC
of the IEEE Intelligent Systems from 2009 to 2012, the IEEE TRANSACTIONS ON
Intelligent Transportation Systems from 2009 to 2016, and is the EiC of the IEEE
TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS since 2017, and the
Founding EiC of China’s Journal of Intelligent Science and Technology since 2019.
Currently, he is the President of CAA’s Supervision Council, [EEE Council on RFID,
and Vice President of IEEE Systems, Man, and Cybernetics Society.

	SADRL: Merging human experience with machine intelligence via supervised assisted deep reinforcement learning
	1 Introduction
	2 Related works
	3 Preliminaries
	3.1 Q-function and DQN
	3.2 DDQN and DQfD

	4 Methodology
	4.1 Framework of SADRL
	4.2 Dynamic demonstrations
	4.3 Expert loss with supervised BC model
	4.4 Training process

	5 Experiments and results
	5.1 Overview
	5.2 Perfect demonstration results
	5.3 Imperfect demonstration results
	5.4 Ablations

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References

