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The Assessment of Upper-Limb Spasticity
Based on a Multi-Layer Process Using

a Portable Measurement System
Chen Wang , Liang Peng , Zeng-Guang Hou , Fellow, IEEE, and Pu Zhang

Abstract— Spasticity is a common disabling complica-
tion caused by the upper motor neurons dysfunction fol-
lowing neurological diseases such as stroke. Currently,
the assessment of the spastic hypertonia triggered by
stretch reflexes is manually performed by clinicians using
perception-based clinical scales, however, their reliability
is still questionable due to the inter-rater and intra-rater
variability. In order to objectively quantify the complex
spasticity phenomenon in post-stroke patients, this study
proposed a multi-layer assessmentsystem based on a novel
measurement device.The exoskeletaldevice was developed
to synchronously record the kinematic, biomechanical and
electrophysiological information in sixteen spastic patients
and ten age-matched healthy subjects, while the spastic
limb was stretched at low, moderate and high velocities.
The mechanical impedance of the elbow joint was iden-
tified using a modified genetic algorithm to quantify the
alterations in viscoelastic properties underlying pathologi-
cal resistance. Simultaneously, the time-frequency features
were extracted from the surface electromyography (sEMG)
signals to reveal the neurophysiological mechanisms of
the spastic muscles. By concatenating these single-layer
decisions, a support vector regression (SVR)-based fusion
model was developed to generate a more comprehensive
quantification of spasticity severity. Experimental results
demonstrated that the stiffness and damping components
of the spastic arm significantlydeviated from the nonspastic
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baseline, and strong correlations were observed between
the proposed spasticity assessment and the severity
level measured by clinical scales (R = 0.86, P = 1.67e − 5),
as well as the tonic stretch reflex threshold (TSRT) value
(R = −0.89, P = 3.54e − 6). These promising results sug-
gest that the proposed assessment system holds great
potential to support the clinical diagnosis of motor abnor-
malities in spastic patients, and ultimately enables optimal
adjustment of treatment protocols.

Index Terms— Spasticity quantification, portable assess-
ment device, modified genetic algorithm, ensemble empiri-
cal mode decomposition (EEMD), multi-layer fusion.

I. INTRODUCTION

SPASTICITY is a motor disorder induced by the hyper-
excitability of tonic stretch reflexes [1], resulting in a

velocity-dependent increase in muscle tone with exaggerated
tendon jerk, as a common clinical manifestation of upper
motor neuron syndrome following central nervous system
injuries [2]–[4]. The pathophysiology of spasticity leads to
movement disorders and functional disability [5], [6], and
therapeutic techniques (e.g. physical and surgical treatments)
are currently available to control the disease progression [7].
In clinical settings, reliable assessment of spasticity is essen-
tial for individualizing the optimal treatment, measuring the
treatment efficacy and monitoring the patients’ functional
recovery [8], [9].

At present, the clinical assessment of spasticity is accom-
plished by manually perceiving limb resistance based on rating
scales (e.g. Ashworth Scale [10], Modified Ashworth Scale
(MAS) [11], Tardieu Scale [12], and Modified Tardieu Scale
(MTS) [13]). Among these scales for spasticity assessment,
MAS is most widely accepted since it has easy-to-use pro-
cedures, for example, clinicians judge the amount of muscle
resistance during the stretch of patient’s relaxed muscles by
using qualitative terms such as no increase (MAS 0), slight
increase (MAS 1 and 1+), more marked increase (MAS 2)
and considerable increase (MAS 3). However, MAS does not
consider the velocity-dependent phenomenon in the induced
stretch reflex, and ignores the evaluation of neural component
in spasticity. Furthermore, the inter-rater and intra-rater relia-
bility of these clinical scales has been questioned due to the
intrinsic limitations of “feel the resistance” [14]–[16].
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TABLE I
AN OVERVIEW OF STUDIES IN THE ASSESSMENT OF UPPER EXTREMITY SPASTICITY

Recently, growing interest in the neurophysiological and
biomechanical analysis of spasticity has emerged to quantify
the severity of abnormalities in spastic patients (e.g. see
Table I). In some studies, the electromyography (EMG) of
flexor and extensor muscles is measured during the clinical
passive stretch motion to quantify the disordered muscle
activation, and there is significant correlation between the
degree of spasticity and features extracted from EMG signals.
In others, portable measurement systems are designed to eval-
uate the velocity-dependent characteristics of spastic behaviors
by monitoring joint angles and angular velocities, such as the
estimation of the tonic stretch reflex threshold (TSRT) [24].
Despite these studies have improved the validity and reliability
of spasticity assessment, there is still no comprehensive quan-
tification method simultaneously emphasizing on kinematic,
biomechanical and electrophysiological information of the
induced stretch motion.

Indeed, researches in animals and humans have suggested
that the velocity-dependent stretch reflex threshold (SRT) is a
more promising index in the severity quantification of spastic-
ity [25], [26], which reflects the motor control impairments in
the Lance’s definition of spasticity. More concretely, the TSRT
identifies the joint angle at which the motor unit recruitment
first appears with zero stretch velocity, and can be estimated
based on the regression model of the dynamic stretch reflex
threshold (DSRT) [24]. Usually, the DSRT is expressed as
the joint angle and angular velocity at which the standard
deviation of EMG signals increases by more than 2 times,
and the biomechanical response of involuntary stretch reflexes
is of little concern. In order to provide a deeper insight
into impairments of neuromusculoskeletal function in spastic
patients, it is crucial to explore not only the neurophysiological

mechanisms, but also the inertial, viscous and elastic char-
acteristics of the affected extremity underlying the resistance
perceived by clinicians.

In this study, we introduce a multi-layer assessment system
to reliably quantify the severity of spastic hypertonia in post-
stroke patients. An exoskeletal assessment device was devel-
oped to synchronously measure the kinematic, biomechanical
and electrophysiological responses evoked by limb stretches,
and a range of stretch velocities were designed to explore
the velocity-dependent characteristics of spasticity. In order
to address the alterations in viscoelastic properties of the
spastic arm, we employed the genetic algorithm (GA)-based
approach to identify the mechanical impedance components of
the human elbow joint, which plays a pivotal role in quanti-
fying the spastic resistance perceived by the clinician. As the
disordered motor control in spastic patients is strongly related
to abnormal neural activation patterns, the non-stationary
surface electromyography (sEMG) signals were decomposed
into multi-frequency oscillations based on the empirical mode
decomposition (EEMD), and a series of statistical features
(e.g. co-activation ratio) were extracted for neurophysiological
analysis. Furthermore, to yield a more comprehensive assess-
ment of spasticity phenomenon, the identified mechanical
impedance and the relevant electrophysiological features were
fused by a multi-level regression model using the supervised
machine learning algorithm. Under the proposed assessment
system, the pathology severity of upper-limb spasticity was
automatically quantified into an easy-to-understand index with
multi-level detailed diagnosis.

Our contributions in quantitatively evaluating the
severity of spasticity comprise three key methodological
achievements:
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Fig. 1. Overview of the spasticity assessment system. The angular-
position sensor and torque sensor are mounted on the 3D-printed
structures, and the sEMG electrodes can be directly attached to the
upper-limb muscles. Multi-modal data were synchronously measured
during the induced stretch movements.

• An exoskeletal spasticity assessment device was designed
to induce stretch reflex responses at different velocities,
as well as record multi-modal information underlying the
spasticity phenomenon.

• The mechanical impedance of elbow joint was identi-
fied to quantify the biomechanical abnormalities of the
spastic hypertonia, and the neurophysiological feature
was extracted to characterize the clinical manifestation
of spastic muscles.

• A multi-layer fusion modal was constructed to generate
an overall quantification of the kinematic, biomechanical
and electrophysiological disorders that impair the motor
function in spastic patients.

The remaining parts of this study are organized as
follows: Section II introduces the spasticity assessment
device and multi-modal data acquisition process, and then
Section III details the experimental methodology including
subject recruitment, experimental set-up and data preprocess-
ing. Section IV presents the multi-layer architecture for
spasticity assessment, and experimental results are detailed
in Section V. Finally, Section VI discusses the results and
concludes the paper.

II. SPASTICITY ASSESSMENT SYSTEM

A. Mechanical Structure

We have developed a novel spasticity assessment device
(see Fig. 1) to capture the kinematic, biomechanical and
electrophysiological abnormalities during the induced stretch
motion. The device mainly consists of 3D-printed handle
and bracket, as well as a multi-modal data acquisition mod-
ule. The main body can couple with the patient’s upper
extremity like an exoskeleton, and provide the clinician a
holding handle to evoke stretch responses at different stretch
velocities. Compared to the existing mechanical devices using
torque motors to impose limb stretches, our assessment
device focuses on quantifying the pathological phenomenon
of upper-limb spasticity in clinical practices. Concretely, the

Fig. 2. The placement of surface electrodes on muscles: pronator teres,
biceps brachii and triceps brachii.

data acquisition module consists of angular-position sensor
(model P3022, PandAuto Inc., China), torque sensor (model
M2210B5, Sunrise Instruments Inc., China) and sEMG sensors
(TrignoTM Wireless System, Delsys Inc., USA), which can
simultaneously measure the kinematic, biomechanical and
electrophysiological responses of spastic stretch reflexes.

B. Multi-Modal Data Acquisition

In order to quantify the elbow flexor and extensor spasticity,
the rotation axis of angular-position and torque sensors were
placed in line with the elbow joint axis, and sEMG sensors
were fixed on forearm and upper-arm muscles (see Fig. 2).
Specifically, the joint angle was acquired within the range
of 0◦ to 180◦ by the angular-position sensor, and the angular
velocity can be calculated accordingly. The resistance torque
was recorded by the torque sensor synchronously, and then
two modal signals were digitized by an A/D converter (model
USB-6009, National Instruments Inc., USA) at a sampling
rate of 1111.1 Hz. Simultaneously, the muscle activation was
measured by sEMG electrodes and sampled at 1111.1 Hz. The
acquisition of all data was transferred to a personal computer
via USB port for further analysis.

III. EXPERIMENTAL METHODOLOGY

A. Participants and Clinical Testing

Sixteen patients with stroke-related spasticity (11 males,
5 females, mean age 51.6 ± 14.1 years) were recruited from
the China Rehabilitation Research Center, and ten healthy
age-matched control subjects (6 males, 4 females, mean age
48.5 ± 15.2 years) were also included in this study. The
inclusion criteria for the spastic patients selection included:
1) sustained a ischemic or hemorrhagic stroke; 2) spasticity
symptoms in the flexors or extensors in at least one elbow;
3) at least a 90◦ passive range of motion in the elbow
joint (MAS score ranges from 0 to 3); 4) no anti-spasticity
medication in the three months prior to the study; 5) no
severe visual or cognitive impairment. The control subjects
met the following inclusion criteria: free of neurological or
musculoskeletal disability, joint pathologies or bone lesions in
upper extremities.

To obtain diagnostic data, all spastic patients were clini-
cally evaluated by an experienced clinician using Brunnstrom
Recovery Stage and Modified Ashworth Scale. The demo-
graphic characteristics of the patients are summarized
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Fig. 3. Overview of the experimental setup. For each subject, the initial position of the elbow joint was defined as the maximum flexion allowed
by the approximation of the upper-arm and the forearm, and the final position was defined as the maximum extension of the joint. The spasticity
phenomenon in the elbow flexors and extensors was evaluated by stretching the handle to make the joint passively move from the initial position
towards the final position at an arbitrary velocity.

TABLE II
DEMOGRAPHIC AND CLINICAL CHARACTERISTICS OF PATIENTS

in Table II. The study was reviewed and approved by the
Ethics Committee of China Rehabilitation Research Center,
and written informed consent was provided by each subject
after notified of experimental procedures.

B. Experimental Protocol

In this study, elbow flexor and extensor spasticity was
assessed in three sessions by considering the velocity-
dependent characteristics of spastic behaviors. To begin with,
the subject was seated on an adjustable chair and the developed
assessment device was mounted on the upper limb using a
self-adhesive belt (i.e. the more affected side for the patient
or the non-dominant side for the healthy control). To measure
the maximum range of motion for elbow flexion and exten-
sion, the subject was instructed to relax completely, and an
experienced clinician pushed or pulled the holding handle to
slowly move the subject’s forearm through the maximum range
allowed by the elbow joint. During slow stretches, the joint
angles for the subject-specific full flexion and full extension
can be recorded.

The following three sessions were designed to evoke the
subject’s stretch reflex responses at different stretch veloc-
ities (i.e. slow (60-99◦/s), moderate (100-139◦/s) and fast
(140-180◦/s)), and each session consists of three stretch move-
ments from the full flexion to full extension (see Fig. 3).
Specifically, the subject stayed seated with the arm coupled
with the assessment device. After a ‘go’ signal, the fore-
arm was stretched through the handle from maximal flexion
towards maximal extension, and then returned to the starting
position at the end of a trial. A metronome was used to
instruct the clinician to perform slow, moderate and fast trials.
As the motor unit is recruited by a minimum time of 6 s dur-
ing the repeated muscle contractions, different sessions were
separated by a rest of 10 s to avoid muscle accommodation
effect [27], [28].

C. Data Preprocessing

1) Kinematic Data: The joint angle measured by the angle-
position sensor was smoothed using a Kalman filter, which
also calculated the angular velocity and angular acceleration
to avoid high-frequency noise introduced by numerical deriv-
atives. First, we defined the joint angle, angular velocity and
acceleration as state variables and a linear discrete-time model
can be built for the elbow joint:

xk = Gxk−1 + ωk−1, ω ∼ N(0, Q)

yk = Cxk + vk , v ∼ N(0, R), (1)

where xk = [
θk θ̇k θ̈k

]T
refers to the kth estimated state,

yk refers to the kth value of the elbow joint angle, ω and v
are the systematic noise and measurement noise respectively,
and

G =
⎡
⎣

1 Ts
1
2 Ts

2

0 1 Ts

0 0 1

⎤
⎦

C = [ 1 0 0 ]
Then, the filter algorithm predicted the current state in terms

of the minimization of mean square error. The filtered angle,
velocity and acceleration could be calculated based on the
current measurement of joint angle and the last estimation of
three state variables. The iterative process consisting of the
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state prediction, covariance prediction, Kalman gain calcula-
tion, state update and covariance update can be formulated as
follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

x̂(k|k − 1) = Gx̂(k − 1|k − 1)

P(k|k − 1) = G P(k − 1|k − 1)GT + Q

K = P(k|k − 1)CT

C P(k|k − 1)CT + R
x̂(k|k) = x̂(k|k − 1) + K (Z(k) − Cx̂(k|k − 1))

P(k|k) = (I − K C)P(k|k − 1),

(2)

where Q and R denote the covariance of ω and v, K is the
Kalman gain, and P is the covariance matrix of the estimation
error.

2) Biomechanical Data: The measured torques were
smoothed using a Butterworth low-pass filter (cut-off fre-
quency: 20 Hz) to remove noises.

3) Electrophysiological Data: The raw sEMG signals were
first filtered using a Butterworth band-pass filter with low/high
cut-off frequencies 20/200 Hz. Then the three-channel sEMG
signals were separately rectified to extract the envelope:

s E MGm
f wr (k) =

∣∣∣s E MGm
f (k)

∣∣∣ , (3)

where s E MGm
f (k) denotes the kth filtered sEMG signal in

the mth channel, and s E MGm
f wr (k) denotes the corresponding

sEMG signal after full-wave rectification. In the following,
a Butterworth low-pass filter (cut-off frequency: 5 Hz) was
used to remove the noise introduced by the above rectification.

IV. MULTI-LAYER ARCHITECTURE FOR

SPASTICITY ASSESSMENT

A. Mechanical Impedance Identification

Mechanical impedance of human joints characterizes the
dynamic relationship between force and kinematics under
external perturbation, and serves as a good basis for analyzing
the changes in joint properties resulting from abnormal muscle
tone. Therefore, we parameterized the instantaneous dynamic
impedance of human elbow joint by a second-order model,
i.e., the time-varying stiffness, damping and inertia function:

τ (t) = I (t)θ̈ + B(t|θ, θ̇ , μ)θ̇ + K (t|θ, θ̇ , μ)(θ − θ0), (4)

where τ (t) is the torque responses to the impose limb
stretches, θ , θ̇ and θ̈ are the joint angle, angular velocity
and acceleration derived from the Kalman filter, respectively,
θ0 is the equilibrium position of elbow joint, μ is the muscle
activation vector, I is the total inertia component of the upper
limb and other coupled body segments, B and K are the joint
damping and stiffness components, respectively.

As the joint torque was mainly determined by torque pertur-
bation applied by the clinician, we can rewrite the model as:
τp(t) = I (t)θ̈ + B(t|θ, θ̇ , μ)θ̇ + K (t|θ, θ̇ , μ)(θ − θ0)

+ GL cos(θ) (5)

where the external perturbation τp(t) was recorded at each
time point, G and L are the gravity of the forearm and the
moment arm, which were estimated on the basis of the height

and weight, according to anthropometric database of adult
population.

Among different identification approaches such as the least-
squares method [29], neural network method [30] and evo-
lutionary computation technique [31], we used a GA-based
identification method to identify the dynamic impedance para-
meters in the time-varying system, due to the capability of GA
to search for global optimum without assumptions about the
search space.

Considering the balance between the identification accuracy
and the computational burden, one set of unknown parameters
were identified from the full flexion to full extension for each
stretch trial. The proposed identification method consisted of
six steps:

Step 1: Initialize the chromosome population by real-value
encoding. Since the equilibrium position cannot be accurately
determined in each motion segment, I , B , K , as well as the
combination of K and θ0 are evolutionally identified within a
population of T chromosomes.

Step 2: Calculate the fitness value of each individual,
and select a group of individuals most successful in this
“competition”.

Step 3: Apply crossover operator to the “surviving” popu-
lation under the probabilistic probability Pc, and produce new
offsprings. Calculate the fitness values for all individuals, and
preserve a new population of T chromosomes.

Step 4: Apply mutation operator to the new population
under the probabilistic probability Pm , and produce new
offsprings. Calculate the fitness values for all individuals, and
preserve a new population of T chromosomes.

Step 5: Go to Step 2.
Step 6: If the fitness value satisfies the stopping criterion or

the generation number is enough, the algorithm ends. If not,
go to Step 3.

In this study, we defined the initial population size T = 50
to ensure the speed of convergence but without increasing
computational expensive. The combination of I , B , K and
K θ0 was optimized by the proposed algorithm, which makes
the fitness function minimum:

ε =
√√√√ 1

M

M∑
t=1

(τp(t) − τest (t))2, (6)

where M is the sample size of the current motion segment,
τp(t) and τest (t) are the measured and estimated torques,
respectively.

Furthermore, the crossover and mutation probabilities were
proportional to the fitness value, therefore, genes from the bet-
ter individuals can propagate into the next generation as much
as possible. We also applied an elite strategy to transfer the
better solution into the next generation without any changes.

B. Neurophysiological Feature Extraction

As the spastic behavior is caused by the lesion in
the descending inhibition of supraspinal motor pathways,
the manifestation of spastic muscles includes the involuntary
and unconscious changes in the electrophysiological output.
In order to quantify the electrophysiological responses evoked
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by different stretch velocities, we started by applying EEMD
to decompose the non-stationary sEMG signals into a series
of intrinsic mode functions (IMFs), thereby extracting time-
domain features from these multi-resolution components.

To begin with, the white Gaussian noise was added to
reconstruct the biceps brachii sEMG signals with uniform
distribution:

xi (t) = x(t) + wi (t) (7)

where x(t) is the preprocessing sEMG signals, and wi (t) is the
identically distributed white noise. The iterative procedures to
decompose the noisy signal xi(t) into IMFs consisted of the
following steps:

Step 1: Identify all the local maxima and minima for the
given time series, and interpolate through the local maxima
and minima respectively, to create the upper envelope e+

i (t)
and lower envelope e−

i (t), respectively.
Step 2: Calculate the mean of the two envelopes, and sub-

tract it from the data signal, resulting in the first component:

mh
i (t) = (e+

i (t) + e−
i (t))

2
hh

i (t) = xi (t) − mh
i (t) (8)

Step 3: Repeat the sifting process (i.e. Step 1 and Step 2)
for the new data signal xi (t) = hh

i (t) until coincides with the
properties of IMFs:

• the number of zero crossings and the number of local
maxima must be equal or differ at most by one;

• the mean value of the upper and lower envelopes must
be equal to zero.

Step 4: Separate the IMF ch
i (t) = hh

i (t) from the given data,
and apply the aforementioned steps repetitively on the residual
signal:

r1
i (t) = xi (t) − c1

i (t), . . . , rn
i (t) = rn−1

i (t) − cn
i (t) (9)

Step 5: The decomposition process continues to find the
IMF containing lower frequency oscillations until the residual
signal rn

i (t) becomes a monotonic function or has only one
extremum.

After multi-level decomposition, the input sEMG signal can
be reconstructed:

xi (t) =
n∑

h=1

ch
i (t)+rn

i (t) (10)

where rn
i (t) refers to the final residual after the extraction of

nth IMFs components.
We added identically distributed white noise to the original

signal multiple times, and the above procedures were repeated
to extract the corresponding IMFs. Furthermore, the optimum
choice of each decomposition level can be determined by:

I M Fh = 1

N

N∑
i=1

ch
i (t) (11)

where N = 50 is the number of noise adding, and I M Fh is
the hth ensemble IMF components. It is worth mentioning

that the standard deviation of noise was set to 0.2 times the
standard deviation of the sEMG signals.

Given the first three IMFs carried most of the valuable
information of the sEMG signals, the mean absolute varia-
tion (MAV) and root mean square (RMS) were extracted from
the corresponding IMFs, which can reveal how the magnitudes
of each IMF change due to the hyperexcitability of stretch
reflexes, and were calculated as follows:

νk = 1

M − 1

M∑
t=2

∣∣∣I M Fh (t) − I M Fh (t − 1)
∣∣∣

σk =
√√√√ 1

M

M∑
t=1

(
I M Fh (t)

)2
, (12)

where M have been defined above.
Since there are evidences that the impairments in spas-

tic patients is mainly due to three disturbances including
decreased muscle activation, decreased threshold of stretch
reflexes and stereotypical muscle co-activation, we further
estimated the TSRT value of biceps brachii sEMG signals by
extrapolating the linear regression line through DSRT values
of various stretch velocities to yield intercept with the joint
angle axis, specifically, the DSRT value was identified as the
joint angle when the sEMG signal increased by two times of
standard deviations above the mean baseline signal.

To quantify the pathological phenomenon in agonist recruit-
ment and antagonist inhibition, the co-activation features
among pronator teres, biceps brachii and triceps brachii were
extracted by calculating the co-activation ratio:

C R1 =
∫ t2

t1

∣∣s E MG1(t)
∣∣dt∫ t2

t1

∣∣s E MG1(t)
∣∣dt + ∫ t2

t1

∣∣s E MG3(t)
∣∣dt

C R2 =
∫ t2

t1

∣∣s E MG2(t)
∣∣dt∫ t2

t1

∣∣s E MG2(t)
∣∣dt + ∫ t2

t1

∣∣s E MG3(t)
∣∣dt

(13)

where s E MG1(t), s E MG2(t) and s E MG3(t) refer to the
preprocessing sEMG signals of pronator teres, biceps brachii
and triceps brachii respectively, t1 and t2 are the starting and
ending times of a stretch trial.

C. Multi-Level Fusion Scheme

In this section, we developed an multi-level regression
model to automatically fuse the quantification of kinematic,
biomechanical and electrophysiological impairments, since
spastic behaviors have been attributed to the alterations
of mechanical and neuronal properties, further combination
of multi-level features can facilitate a more comprehensive
assessment result (see Fig. 4).

To begin with, we defined an experimental sample as
the multi-modal information acquired in a stretch trial, as the
mechanical impedance of elbow joint was identified and the
activation features of related muscles were extracted, the input
vector of the regression model was constituted:

Qi = [
μ1, . . . , μn, . . . , μNF

]T
, (14)
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Fig. 4. The multi-layer architecture for assessing the severity level of the upper-limb spasticity. The multi-modal signals collected in the passive
stretches served as the input vector of the proposed assessment architecture. The mechanical impedance components of the human elbow joint was
identified using the GA-based method to quantify the spastic resistance judged in clinical practices, while the sparsely distributed sEMG signals were
decomposed using the EEMD method to reveal the neurophysiological abnormalities resulting in spastic behaviors. These single-layer decisions Qi
were further fused by a SVR-based model to create an overall quantification of the spasticity severity S̃.

where μn denotes the induced stretch velocity, major
impedance parameters (i.e. damping and stiffness compo-
nents), as well as the MAV, RMS and CR values of spastic
muscles, NF = 11 stands for the dimension of the feature
vector. Note that the corresponding ground truth was set to the
MAS score given by the clinician. Because the inconvenient
category of 1+ in the MAS results, the 1+ score was re-
assigned to a value of 1.5. By adopting the supervised machine
learning approach, the prediction for severity estimation of
spasticity can be obtained:

Si = F(Qi ), (15)

where F denotes the fusion model constructed by the support
vector regression (SVR), in which the kernel was selected as
the radial basis function.

Furthermore, the severity predictions belonging to per par-
ticipant were fused as follows:

S̃ = 1

J

J∑
i=1

Si , (16)

where S̃ stands for the spasticity assessment score (SAS) that
reliably quantify the spastic hypertonia. It can be derived that a
lower SAS score indicates that the upper-limb motor function
approaches a better status.

To improve the generalization performance of the multi-
layer assessment architecture, the full dataset consisting of
multi-modal data measured in 234 trials was separated into
two non-overlapping parts: the training dataset comprised
144 experimental samples collected from 16 individuals
(i.e. 9 samples can be extracted from 9 evoked stretch trials for
each individual), and the remaining samples were divided into
the test dataset. Concretely, the hyper-parameters of the fusion
model were optimized by 5-fold cross validation procedures.

V. RESULTS

A. Identification Performance

Given the crucial role of mechanical impedance identifica-
tion in the quantitative assessment of spasticity phenomenon,

Fig. 5. Quantitative identification results for: (a) inertia, (b) damping and
(c) stiffness components of the elbow joint. The blue, orange and gray
circles represent the impedance parameters averaged over stretch trials
with low, moderate and high velocities, respectively.

we started by investigating the identification reliability of the
inertia, damping and stiffness parameters, thereby analyzing
the biomechanical variation evoked by external perturbation.
Fig. 5 illustrates the identification results of the second-order
impedance model using the GA-based approach for all spastic
and control subjects.

The values of inertia component were found to be more
clustered than that of the damping and stiffness components
across subjects, which can be attributed to the fact that the
human upper extremity has a certain inertia, most of the
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Fig. 6. Identification performance distributions under different velocity
patterns. The blue dot and black line refer to the mean and median of
the corresponding RMSE, respectively.

time assumed to be dependent on the structural parameters.
The damping and stiffness components showed a clear trend
of clustering under different stretch velocities for spastic
patients, and the identification values became higher when
the velocity of the imposed stretches increased. These results
were consistent with the velocity-dependent characteristics of
spasticity emphasized in previous studies, and demonstrated
that the proposed architecture has the potential to distinguish
between spastic hypertonia versus normal muscle tone.

Furthermore, we reported the identification performance in
terms of the root mean square error (RMSE):

εi =

√√√√√
M∑

t=1

[
τ (t) − Ĩ θ̈ − B̃θ̇ − K̃ θ − N(t)

]2

M
(17)

where εi denotes the overall estimation error for the i th trial,
M is the sample size from maximal flexion towards maximal
extension in the current trial, Ĩ , B̃ and K̃ refers to the
GA-based estimations of the inertia, damping and stiffness
parameters belonging to this motion segment, N(t) represents
the bias term including the joint torque at the equilibrium
position and the gravity of the subject’s forearm.

The estimation error distributions of low, moderate and high
stretch velocities are visualized in Fig. 6. Averaging across
subjects, the mean RMSE between the estimated resistance
torque and the measurements was 0.22 Nm with a standard
deviation 0.09 Nm for the slow stretch movements, as well
as 0.24 ± 0.10 Nm and 0.26 ± 0.12 Nm for the moderate
and high velocity patterns. It can be seen that the dynamic
impedance model was accurately identified by integrating the
elite preservation policy into the evolutionary computation
algorithm. These promising results revealed how the vis-
coelastic properties of the spastic arm change underlying the
mechanical resistance manually rated by clinical scales, and
further serve as a good basis for the reliable assessment of
motor deficits in spastic patients.

B. Quantification Performance

Since our purpose is to enable quantitative and compre-
hensive assessment of spasticity symptoms, it is essential to
investigate whether the multi-layer architecture can yield an
easy-to-understand index significantly correlated with clinical
scores for the spasticity severity quantification.

Fig. 7. Representative results of sEMG signal decomposition.

To account for the alterations in neural component of spastic
behaviors, we employed EEMD to decompose the sEMG
signal into multi-dimensional signals, which can reflect mor-
phological changes in the non-linear and non-stationary signals
more precisely. Fig. 7 presents the adaptive decomposition
results containing a set of IMF components for a representative
stretch trial. We can observe that the frequency oscillations
in each IMF were lower than that in the preceding one.
By selecting appropriate IMFs, the statistical features were
extracted to serve as an input vector for the fusion model.

Subsequently, the identified dynamic impedance and
the above electrophysiological features were concatenated
together, and fed into the supervised fusion model. In order to
validate the quantification performance of multi-layer archi-
tecture, we calculated the RMSE between the SASs and
the MAS scores based on the independent training dataset
and test dataset. Averaging across trials, the RMSE values
are 0.25 and 0.39 for the training dataset and test dataset
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Fig. 8. Correlation analysis between the SASs and the MAS scores.

Fig. 9. Correlation analysis between the SASs and the TSRT values.

respectively, which indicates that the propose index was
consistent with the clinical scale, and capable of reliably
quantifying the severity level of the spasticity.

Furthermore, we performed Pearson correlation test [32]
with 95% confidence intervals to analyze the correlation
between the SASs and the MAS scores. The results of cor-
relation analysis and the corresponding Pearson correlation
coefficients are shown in Fig. 8. As can be seen, the proposed
index exhibited a positive relationship with the MAS score
(R = 0.86, P < 0.0001). Therefore, by exploring the com-
plementarity of kinematic, biomechanical and electrophysi-
ological characteristics, the developed system can yield a
quantitative score with superior clinical relevance.

As numerous previous studies have found that the TSRT is
an emerging measurement widely used to quantify the severity
of the spasticity by considering the velocity-dependent onset
of stretch reflex activities, the correlation analysis was also
carried out to demonstrate the association between the SASs
and the TSRT values. Fig. 9 depicts the correlation analysis
results for all spastic subjects. We found a negative correlation
between the SASs and the TSRT derived from biceps brachii
sEMG signals (R = −0.89, P < 0.0001), which was well
agreed with the previous observation, i.e., the lower the TSRT
value, the severer the spasticity progression.

In more detail, the assessment system not only provided a
more comprehensive quantification of upper-limb spasticity,
but also achieved more precise discrimination of the level
of spasticity. For example, the subjects with ID of 1 and
5 have the same MAS grades (i.e. more marked increase

in muscle tone), which means the amount of resistance
to imposed stretches is hard to be distinguished manually.
The SASs obtained from the proposed system, however,
are 1.19 and 1.96 for subject 1 and subject 5, indicating
that the spasticity symptoms in subject 5 are severer than
that in subject 1, and the corresponding TSRT values of
127.50 and 106.90 also prove the difference in spasticity
severity. Therefore, the proposed index improves the sensi-
tivity of the upper-limb spasticity assessment, and features
extracted from different layers are capable of offering detailed
information for the personalized treatment design.

VI. DISCUSSION AND CONCLUSION

The purpose of this study is to develop an assessment
system to comprehensively quantify the upper-limb spasticity
of post-stroke patients. By designing an exoskeletal assess-
ment device, multi-modal data was synchronously recorded
during passive stretch motion under a range of velocities.
As the mechanical impedance can delineate the biomechanical
responses underlying the spastic resistance manually graded in
conventional clinical scales, we started by identifying a para-
metric impedance model consisting of inertia, damping and
stiffness using the modified genetic algorithm. To quantify the
abnormalities in neurophysiological level, the biceps brachii
sEMG signals were decomposed into a series of IMFs through
EEMD process, from which the electrophysiological features
were extracted. By concatenating the quantification output of
biomechanical and neurophysiological levels, a fusion model
was constructed based on the SVR to generate a more reliable
spasticity severity score. Experimental results demonstrated
that the proposed system exhibited superior performance in
quantifying the spasticity symptoms with significant clinical
relevance.

To our knowledge, the identification of mechanical
impedance has seldom been integrated into upper-limb spas-
ticity assessment systems, and ours is the first study to
simultaneously quantify the changes of mechanical and neu-
ronal properties of the spastic limb. By using the elite
preservation policy, the GA exhibited superior performance
in the impedance parameter estimation, as shown in Fig. 6.
Specifically, the quantification of abnormal joint stiffness and
damping has been proven to have inter-subject reliability in
distinguishing spastic patients from healthy controls, which is
suitable to serve as an objective indicator of spastic hypertonia.

As the sEMG signals of spastic muscles are non-stationary
and seem chaotic during the induced stretch reflex, we adopted
EEMD to process the sparsely distributed sEMG signals,
and then extracted the time-frequency features to provide in-
depth information about the agonist recruitment and antagonist
inhibition underlying spastic behaviors. Compared with the
TSRT measurement algorithm focusing only on the time-
domain parameters, the proposed electrophysiological analysis
put the emphasis on the time-varying frequency distributions
of the muscle activation and co-activation.

Unlike the previous studies that have been so far lim-
ited to evaluate the behavioral abnormalities of spasticity in
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a specific level, our assessment system used a SVR-based
fusion scheme to further exploit the complementarity among
kinematic, biomechanical and electrophysiological character-
istics. In general, the proposed system provides an easy-to-use
tool that enables reliable monitoring of spasticity progression,
as well as the objective efficacy evaluation of the existing
treatment. Furthermore, future research with larger sample size
will be pursued to better improve the generalizability of the
multi-layer architecture.
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