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Cross-lingual dialogue systems are increasingly important in e-commerce and customer service due to the
rapid progress of globalization. In real-world system deployment, machine translation (MT) services are often
used before and after the dialogue system to bridge different languages. However, noises and errors introduced
in the MT process will result in the dialogue system’s low robustness, making the system’s performance far
from satisfactory. In this article, we propose a novel MT-oriented noise enhanced framework that exploits
multi-granularity MT noises and injects such noises into the dialogue system to improve the dialogue system’s
robustness. Specifically, we first design a method to automatically construct multi-granularity MT-oriented
noises and multi-granularity adversarial examples, which contain abundant noise knowledge oriented to MT.
Then, we propose two strategies to incorporate the noise knowledge: (i) Utterance-level adversarial learning
and (i) Knowledge-level guided method. The former adopts adversarial learning to learn a perturbation-
invariant encoder, guiding the dialogue system to learn noise-independent hidden representations. The latter
explicitly incorporates the multi-granularity noises, which contain the noise tokens and their possible correct
forms, into the training and inference process, thus improving the dialogue system’s robustness. Experimental
results on three dialogue models, two dialogue datasets, and two language pairs have shown that the proposed
framework significantly improves the performance of the cross-lingual dialogue system.
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1 INTRODUCTION

Task-oriented dialogue systems aim to achieve specific user goals such as navigation inquiry or
calendar scheduling within limited turns via natural language. Over the past several years, we have
witnessed the explosions of research and real-world applications of dialogue systems from both
academia and industry. Due to the simplicity and promising performance, end-to-end dialogue
systems, which receive plain text as input and generate responses as output directly, currently
attract great attention and have been applied to many virtual assistants and customer conversation
services [5, 22, 23, 44, 45, 47].

With the rapidprogress of globalization and the popularity of cross-border e-commerce, it has
become an urgent need for companies to develop and deploy cross-lingual dialogue systems. A
natural way is to collect training data and train the dialogue system for each language. However,
it is quite expensive and time-consuming to collect and perform human annotation of high-quality
dialogue data. However, many internet companies, including Google, Baidu, Microsoft, and so on,
have deployed their machine translation (MT) systems on-line, making the MT services easy
to obtain. Therefore, in this article, we adopt MT systems as the language bridge before and after
the dialogue system. The workflow is shown in Figure 1, and it can be divided into three steps.
(1) Translation step: We adopt a machine translator to translate a user’s utterance (language e) into
the language that the system can deal with (language f). (2) Dialogue step: The dialogue system
accepts the translated utterance and generates a response in language f. (3) Back-translation step:
Another machine translator is adopted to translate the response back into language e.

Although the performance of MT systems has been greatly improved due to the rapid develop-
ment of deep learning, general-purpose translators are usually developed based on the corpora in
the news domain, which is different from the dialogue domain. Therefore, the translation step will
inevitably introduce a variety of noises and errors to the dialogue module. The original dialogue
system is usually trained on clean data, making it difficult to handle such noisy input properly.
Many studies have demonstrated that even minimal changes in the input can fool state-of-the-art
neural networks with high probability [16, 39]. For example, Belinkov and Bisk [4] has shown that
neural machine translation (NMT) models can be easily brittle to small perturbations applied
to inputs. End-to-end dialogue system is also facing the same problem. Considering the example
in Figure 2, the end-to-end dialogue system will generate two entirely different responses for the
translations of one sentence. Moreover, this problem is even crucial in dialogue systems since most
conversations consist of multiple turns, and a small mistake in an early turn could cascade into a
big misunderstanding later. In this article, instead of improving the NMT system’s performance, we
focus on making the dialogue system tolerate the perturbations introduced by machine translation
to enhance the robustness of the whole system.

This problem has been studied in text classification [1, 12, 30, 51] and machine translation
[4, 18] tasks. However, to the best of our knowledge, there has been little research focusing on
the dialogue system’s robustness. Furthermore, none of the existing work has focused on the ro-
bustness of the cross-lingual dialogue system. Therefore, this article studies a robust end-to-end
dialogue system in the cross-lingual scenario that can overcome noises or errors introduced by
MT. To this end, we propose a novel MT-oriented noise enhanced framework that exploits multi-
granularity MT noises and injects such noises into the dialogue system to improve the dialogue
system’s robustness. Specifically, to capture the noises introduced in the MT process, we first de-
sign a method to construct multi-granularity MT-oriented noises automatically. Here, we adopt the
word alignment and back-translation technique to extract multi-granularity MT-oriented noises,
which are then used to generate multi-granularity adversarial examples at word-level, phrase-level,
and sentence-level. These multi-granularity MT-oriented noises and adversarial examples contain
abundant noise knowledge.
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Fig. 1. The workflow of utilizing machine translators to deploy a cross-lingual dialogue system. Language e
is the user’s language, and language f is the dialogue system’s language. MT1 and MT; are e—f MT engine
and f—e MT engine, respectively.

User HERRILW R L
(qing gao su wo zui jin de za huo dian zen me zou)

Input_1 give me directions to the closest grocery store.

Response_1 The nearest grocery store is whole foods, it’s 2 miles away.

Input_2 tell me the direction of the latest grocery store.

Response_2 the nearest grocery store is sigona farmers market, it’s 4 miles away.

Gold Response  there are whole foods 2 miles away and sigona farmers market 4 miles away. where do we go?

Fig. 2. The non-robust problem of the end-to-end dialogue system. The Input_1 and Input_2 are the trans-
lation results of the user’s utterance by using two different machine translators. However, the responses
generated by the dialogue system are quite different, shown as Response_1 and Response_2.

Furthermore, we propose two strategies to incorporate noise knowledge: Utterance-level ad-
versarial learning and Knowledge-level guided learning. In the utterance-level adversarial learn-
ing, we propose a multi-granularity adversarial training method to enhance the dialogue system’s
robustness. This method adopts the adversarial training over the multi-granularity adversarial ex-
amples and the clean training data to learn a perturbation-invariant encoder, guiding the dialogue
system to learn noise-independent hidden representations. In the knowledge-level guided learn-
ing, we enhance the robustness of the dialogue system from the perspective of knowledge. The
multi-granularity noises contain the noise tokens and their possible correct forms. We incorporate
the multi-granularity noises into both the training and the inference process to explicitly restrain
the user’s utterance, thus improving the dialogue system’s robustness. One advantage of our pro-
posed methods is that it does not require any data in the user’s language, which means that a
cross-lingual dialogue system can be deployed without any human effort once a MT system and
an original end-to-end dialogue system are available.

We employ the proposed MT-oriented noise enhanced framework on several state-of-the-art
end-to-end dialogue models. We conduct cross-lingual experiments on Chinese-to-English and
German-to-English. Experimental results have shown that our proposed framework significantly
improves the dialogue systems’ performance on cross-lingual data.

Our main contributions are summarized as follows:

e We present a novel MT-oriented noise enhanced framework to improve the robustness
of the end-to-end dialogue system in the cross-lingual scenario. To our best knowledge,
this is the first work toward building a cross-lingual task-oriented dialogue from such an
aspect.
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e We propose a method to construct multi-granularity MT-oriented noises and multi-
granularity adversarial examples. Furthermore, we propose two strategies to incorporate
these two noise knowledge: (i) Utterance-level adversarial learning and (ii) Knowledge-level
guided learning.

e The experimental results have shown that our proposed framework significantly improves
the dialogue system’s performance on cross-lingual data. Moreover, extensive experiments
indicate that the combination of these two strategies can further improve the performance.

2 RELATED WORK

This article focuses on the robustness of the cross-lingual dialogue system, and the related work
can be divided into the following three categories.

Task-oriented dialogue systems. Task-oriented dialogue systems are designed to assist users
in achieving specific goals. They can be divided into two categories by the implementation method:
modularized and end-to-end. For the modularized systems [45, 46], a set of modules including spo-
ken language understanding (SLU) [3, 9, 29, 48], dialog state tracking (DST) [19, 52], dialogue
policy learning [38, 41-43], and natural language generation [36] are used. These modules are de-
signed separately, resulting in high costs and error propagation. However, end-to-end approaches
[5, 13, 14, 20, 27, 45, 47, 49] have shown promising results. Wu et al. [47] proposed the global-to-
local memory pointer (GLMP) network, which is composed of a global memory encoder, a local
memory decoder, and a shared external knowledge to incorporate the external knowledge into the
learning framework effectively. Unlike GLMP, Lei et al. [20] and Zhang et al. [49] explicitly model
the process of belief tracking and proposed TSCP and LABES-S2S, respectively, both of which are
a two-stage copy-augmented Seq2Seq model. Though the above methods have some differences,
our proposed framework can be applied to any of the end-to-end dialogue systems. In this article,
we use the GLMP [47], TSCP [20], and LABES-S2S [49] as the monolingual dialogue systems in
the cross-lingual dialogue workflow shown in Figure 1.

Cross-lingual dialogue systems. Adapting dialogue systems to different languages is a chal-
lenging task and has not yet been explored thoroughly enough. The previous work mainly focuses
on the cross-lingual transfer of some modules in the modularized system. Calvo et al. [6, 7] pro-
posed different strategies to convert the SLU training data into the target language through MT
systems so as to train the corresponding SLU model. Bai et al. [2] proposed to use reinforcement
learning to improve the translation for SLU language transferring. Liu et al. [24, 26] proposed to
refine the cross-lingual word embeddings and introduced a latent variable model to improve the
performance of zero-shot cross-lingual SLU. Chen et al. [8] studied the problem of cross-lingual
DST and proposed a teacher-student framework for building cross-lingual DST. Schuster et al. [35]
presented a multilingual intent and slot filling dataset and explored different cross-lingual transfer
learning methods to improve intent and slot detection models for other languages. Liu et al. [25]
leveraged a mixed language training framework for cross-lingual transfer of SLU and DST. Qin
et al. [34] introduced a data augmentation framework to generate multi-lingual code-switching
data for zero-shot cross-lingual tasks including SLU and DST. Different from prior work, our work
directly uses a machine translator to translate user utterance into target language to interact with
the system. Moreover, we mainly concentrate on building a robust cross-lingual dialogue system
toward the machine translator. This is a totally different aspect from prior work.

Adversarial learning in Natural Language Processing. Using adversarial learning to
improve the system’s robustness has been applied to various natural language processing tasks,
including text classification [12, 30], machine translation [4, 10, 11], dialogue generation [21], and
so on. The basic idea is to attack the well-trained network by constructing adversarial samples so
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Fig. 3. Task description of cross-lingual dialogue system.

that the network parameters can be adjusted to improve the robustness and resist these attacks.
Belinkov and Bisk [4] improved the robustness of character-based neural machine translation
models by including adversarial examples in the training data. Niu and Bansal [31] revealed the
over-sensibility and over-stability of the generative dialogue models, in which they generated
adversarial examples using different strategies, including random swap, stopword dropout,
data-level paraphrasing, generative-level paraphrasing and grammar errors. Unlike previous
work, ours generates adversarial examples oriented to the MT so that the trained dialogue system
can uttermost handle the noises or errors introduced by the machine translator.

3 TASK DESCRIPTION

Our cross-lingual dialogue system’s objective is to allow the users to interact with the system using
other languages different from the training language, avoiding the expensive cost of collecting
training data for each language. Thus we employ machine translators to bridge the language gap
between users and the dialogue agent. We use the following two resources to deploy the cross-
lingual dialogue system:

(1) Dialogue dataset in language f: Dy = {(Xf, B, Y)}, where X denotes the dialogue con-
text and B denotes the knowledge base (KB) information. Y denotes the response given the
dialogue context and KB. This dialogue dataset is used to train the end-to-end dialogue agent in
language f.

(2) MT engines, which can translate sentence from e to f (denoted as MT,—, r) and back-translate
from f to e (denoted as MTy,.). Hence, the cross-lingual dialogue system for language e can be
formalized as the following three steps:

Xf = gl(Xe|MTe$f)s (1)
Yy = g2(X7|Dp), ()
Ye = g3(Y¢IMT,= ). ®3)

As illustrated in Figure 3, the first step utilizes the machine translator to convert the user’s input
X, into X¢. This will always introduce unexpected noises and errors, such as the translations of
entities, the expression modes, and words chosen by the translator. However, the dialogue systems
are usually trained on clean datasets, making them vulnerable to these noises and produce undesir-
able and unintended outputs. For example, in Figure 2, both input_1 and input_2 are the translation
results of the same source sentence using two different machine translators. When feeding these
two translations to a dialogue system separately, the system generates two entirely different re-
sponses. We do not aim to improve the machine translator’s performance because there are many
translation services on-line for hundreds of language pairs, and we can directly use such services
to quickly deploy a cross-lingual dialogue system. Instead, our goal is to enhance the robustness
of the dialogue system to handle the noisy input generated by machine translation systems. Our
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goal can be formalized as follows:

Yy = Robust(X¢| Dy, MTemsp, MTe= 7). (4)

4 BACKGROUND

End-to-end task-oriented dialogue systems usually use the dialogue history X = (x1,...,x5,)
and the KB information B as input and directly output system response Y = (yi,...,yn). The
probability of a response is defined as follows:

m
p(YIX.B) = | [ pilyrs - yi-1, X, B). (5)
i=1

Unlike the other typical Seq2Seq text generation task, the success of a task-oriented dialogue
system heavily depends on KB queries’ accuracy. The current end-to-end models can be divided
into two sub-categories. The first category is those that extend the Seq2Seq architecture, which
does not explicitly perform belief tracking. Meanwhile, Eric et al. [13], Madotto et al. [27], and Wu
et al. [47] adopt a copy mechanism that allows copying information retrieved from the KB to the
generated response. The latter two work adopt Memory Networks to memorize the KB entities
and words appearing in the dialogue history.

The second category lies in explicitly modeling the process of belief tracking, which is necessary
to form KB quires. All of these works [17, 20, 37, 49, 50] are based on the copy-augmented Seq2Seq
learning framework proposed by Lei et al. [20], which introduced the belief span to track the
dialogue belief states and facilitate KB retrieval. The TCSP [20] is a two-stage decoding process.
In the first stage, the Seq2Seq model decodes the belief span B; unconditionally. The B; is used
to perform KB search, resulting in k;. Then in the second stage, the Seq2Seq model continues to
generate a machine response R; on the additional conditions of B; and k;. The two-stage decoding
can be formularized as follows:

B; = seq2seq(B;-1R;_1U;]0,0), (6)

Rt = SquSeq(Bt_lRt_lUABt,kt). (7)

Without loss of generality, we use several end-to-end dialogue models from the above two cate-
gories, including GLMP model [47], TSCP model [20], and LABES-S2S model [49], to evaluate our
proposed MT-oriented noise enhanced framework.

5 OUR METHOD

This article aims to learn a robust dialogue system that can overcome perturbations in the input sen-
tences introduced by the machine translator under the cross-lingual scenario. The critical problem
is how to bridge the semantic gap between the noise text and clean text. To achieve that, we present
a novel MT-oriented noise enhanced framework to improve the dialogue model. Specifically, we
first construct multi-granularity MT-oriented noises. Then, we make use of the multi-granularity
MT-oriented noises to construct adversarial examples. Finally, we propose two strategies to make
the dialogue system learn from the adversarial examples and MT-oriented noises. We will describe
the above three steps in the following sections.

5.1 Multi-Granularity MT-Oriented Noises Construction

To overcome MT noises, we need to know what kind of words or phrases the MT prefers to output.
We utilize the bi-directional MT systems and monolingual data in language f to construct word-
level and phrase-level MT noises. Given a sentence of k words in language f Sy = {wy, wa, ..., wi},
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ALGORITHM 1: Multi-granularity MT-oriented noises construction.
Input:
A set of monolingual data in language f Sy = {S}‘}N ; Two MT systems:(MTo—r, MTr= };

n=1>
predefined lexical translation threshold: y;; predefined phrase translation threshold: y,

Output:
multi-granularity MT-oriented noises
Sentence pair set SP < @
for each Sj’l € S do

Translate S }‘ into T7! through MT¢_,.; Back-translate T3 into G; through MT—;

Add sentence pair (S]’Z, GJ’}) to the set SP;
end for
Conduct bi-directional word alignment on SP using GIZA++;
Obtain the word alignment information Asp by the intersection of the two alignments;
Extract lexical and phrase translation table L = {(w;, w;)} and M = {(m;, m’i)} from Agp;
Word-level noises LEX ;s < @; Phrase-level noises PHR,yise < D;
for each (w;, w;) € Ldo

if p(wilw) > py and p(wi|w;) > p; then

Add (w;, w;) to the set LEX,pise;

end if
end for
for each (m;, ml) € M do

if (len(m;) > 2 and len(m'i) > 2) and (p(ml|m/l) > Uy and_p(m;|mi) > y12) and (the boundary

words are not function words and must be aligned) then
17: Add (m;, ml) to the set PHR,pise;
18:  endif
19: end for
20: return LEX, ise U PHR,pise;

Do AR L R e

e e
AN A A v

we first employ the MTy_,, to translate the sentence from f to e and then use the MT,, ¢ to back-
translate the sentence into f Gy = {W;’W,z’ e, w;}. Through this cyclic translation procedure,
we create a group of pseudo data {(S¢, Gr)}, and such data contain the noises introduced by MT.
In this article, borrowing the idea of statistical machine translation, two granularity noises are
constructed utilizing the pseudo data {(S¢, Gr)}. The process for multi-granularity MT-oriented
noises construction is shown in Algorithm 1.

(1) Word-level Noises {(w;, w;)}, where w; is the correct word and w;. is the corresponding noise
word. In this article, word alignment [32] is used to construct lexical noises. First, GIZA++! is
adopted to conduct bi-directional word alignment on {(S¢, Gr)} to establish the relationship be-
tween words in Sy and those commonly used in the MT system, such as “nearest” and “latest.”
Based on the word alignment result, we can extract lexical translation table L = {(w;, w;)}. How-
ever, the word alignment always contains many noises, and directly using the alignment will result
in unexpected errors. We adopt the following two strategies to improve the quality of word align-
ment: (a) bidirectional word alignment, which means that only the alignments existing in both
directions are retained; (b) threshold filtering, that is, for a word pair (w;, w;), if its lexical trans-
lation probability is smaller than a preset threshold, it will be removed from the word alignment

Uhttps://github.com/moses-smt/giza-pp.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 20, No. 6, Article 93. Publication date: July 2021.


https://github.com/moses-smt/giza-pp

93:8 L. Xiang et al.

result. The lexical translation table obtained by the above method is denoted as word-level noises
LEXnoise~ , ,

(2) Phrase-level Noises {(m;,m;)}, where m; is the correct phrase and m, is the corresponding
noise phrase, for example, “6 am” and “six in the morning.” Phrase-level noises contain more
contextual information than word-level noises. Similarly, we construct phrase-level noises from
the bidirectional word alignment. To improve the quality of the phrase translation table, we only
preserve the phrase pairs that meet the following conditions: (a) the length of the source phrase
m; and the target phrase m; is no smaller than 2; (b) the boundary words of m; and m/l are not func-
tion words; (c) phrase translation probability must be higher than a preset threshold. The phrase
translation table obtained by the above method is denoted as phrase-level noises PHR,,;se-

5.2 Multi-Granularity Adversarial Examples Generation

Under the cross-lingual scenario, the dialogue system receives the MT result of a user’s utterance as
input. However, due to the noises and errors introduced in the MT process, the dialogue system’s
performance will degrade dramatically. To alleviate this problem, we propose to transform the
clean dialogue training data into noise data that contain MT noises so that the dialogue system can
learn how to deal with the noises. After obtaining the above multi-granularity MT-oriented noises,
we need to inject the noises into the dialogue training data and generate adversarial examples at
the word and phrase level.

(1) Word-Level Adversarial examples.

We substitute words with their candidates from the word-level noises to produce diverse user
utterances containing MT noises at the word level. The entire process is shown in Algorithm 2
and consists of the following two steps:

Step 1: Important Words Selection (lines 4-8) We observe that some keywords are more im-
portant than other words in user utterances. We divide words into two categories: intention-related
and context-related. For example, in the utterance “i want to find an expensive restaurant in the
east part of town,” the words “expensive” and “east” are intention-related words. The other words
like “want,” “find,” “restaurant,” “part,” “town” are context-related words. The intention-related
words express the user’s needs, and it will be much helpful if we can generate a variety of expres-
sions about such words. Hence, we prioritize replacing intention-related words. On the other side,
the context also affects the understanding of the user’s utterance. We also randomly sample one
word from the context-related words to replace. It is worth noting that we do not allow the re-
placement for qualifiers (such as the, a, an), modal verbs (such as can, cannot, could), and personal
pronouns (such as she, hers, herself, it) since changing them could easily lead to inconsistent and
even semantic changes.

Step 2: Candidate Word Replacement (lines 11-16) For a given word w that needs to be
replaced, we first lookup the word-level noises and obtain a set of candidates {wl, e s wk}.
Then we randomly select a word from the candidates to replace the given word w.

Overall, the algorithm first uses Step 1 to filter out words that cannot be replaced and select
intention-related words and context words. Then, the algorithm repeats Step 2 to find replacements
for each word and replace it with the candidate.

(2) Phrase-Level Adversarial examples.

Word-level adversarial examples are relatively straightforward. However, such kind of rewrit-
ing is limited to only a few words. In the real expression of human language, there exist various
phrases with synonymous meanings. To further diversify the adversarial examples, we introduce
the phrase-level adversarial examples through the phrase-level noises. Similarly to the word-level
adversarial example generation, the process for generating phrase-level adversarial examples is
also divided into two steps:
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ALGORITHM 2: The Procedure of Word-Level Adversarial Examples Generation.
Input:

Dialogue training data in language f D¢ = {(Xy, Yr)}; Word-level noises: LEX;5;se
Output:

Word-level adversarial examples: ‘W4, = {(X}, Yr)}

1: Initialization: W,4, = {};

2: Selected words: S = {};

3: for each (Xr,Yr) € Dr do

4 Create a set Lex of all words w; in Xf;

Filter out qualifiers, modal verbs and personal pronouns in Lex;

Divide Lex into intention-related word set Lex; and context-related word set Lex,;
S « Lexy;

wi = randomchoice(Lex,); Add wy into set S;

¥ % 3 o o

10:  Initialization: X4, < Xf;
11:  for each word w; in S do

12: Initiate the set of candidates Candidate by seeking w; in LEX,pise;
13: ¢, = randomchoice(Candidate)
14: Xadv < Replace w; with ¢ in X440;

15 end for

16:  Add (X440, Yr) into set Wy
17: end for

18: return W,4,;

Step 1: Important Phrase Selection. For a user utterance, we extract all the N-grams in the utter-
ance and keep those N-grams with corresponding noise phrases in the phrase-level noises. Then
we give priority to the N-grams, which contain the intention-related words. If none of the kept
N-grams contain the intention-base words, we randomly select one to replace.

Step 2: Candidate Phrase Replacement. For the given phrase m that needs to be replaced,

we lookup the phrase-level noises to obtain a set of candidates {mll, m’z, e, m/l}. Then we ran-
domly select a phrase from the candidates for a replacement to construct phrase-level adversarial
examples.

(3) Sentence-Level Adversarial examples.

Besides the word-level and phrase-level transformation, we can also transform the utterance
in sentence-level. In human conversations, there exist various synonymous expressions with dif-
ferent sentence structures. Here, we use the back-translation technique [53] to generate conver-
sational data containing translation noise. We use the MT system MTy_,. to translate user utter-
ances from language f to e and then use reverse MT system MT,_,r to translate the generated
translations from e back to the original language f. Through this way, we can generate adversar-
ial examples with different expressions while conveying similar information. More importantly,
the sentence-level adversarial examples directly contain the expression preferences of the MT
system.

5.3 Adversarial Strategies

Given the original dialogue training data and the generated multi-granularity adversarial examples,
to make the dialogue model robust to the noises introduced by MT in user utterances, a natural
way is to expose it to the same pattern of noises during training. To achieve this, we present
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Fig. 4. The architecture of a dialogue system with utterance-level adversarial training. The dark solid arrow
lines represent the forward-pass information flow for the clean input dialogue history x, while the red dashed
arrow lines for the noise dialogue history x’.

two adversarial strategies: (a) Utterance-level adversarial learning and (b) Knowledge-level guided
learning. The former strategy aims at learning a universal context encoder that makes the hidden
representations of the clean dialogue context and adversarial examples as similar as possible so
that the encoder can output robust hidden representations independent of noises. Compared to
utterance-level adversarial learning, the latter strategy explicitly adds the multi-granularity noises
into the KB, making the dialogue system learning the correlations between the noise tokens and
their possible correct forms.

5.3.1 Utterance-level adversarial learning. To make the dialogue model robust to the utterance
generated by the MT system, our basic idea is to maintain the consistency of representations
through the context encoder of the dialogue model for the original input x and its perturbed input
x’. When fed with a perturbed input x’, the sequence of representations will be disturbed. Thus,
we aim at learning a perturbation-invariant encoder that can produce similar representations for
x and x’ so that the decoder can output correct response when the input is x’.

Figure 4 illustrates the architecture of our approach. Given a clean dialogue history x and its
perturbed input x’, we hope that the encoded representation Hy: and Hy are very close so that the
decoder is able to generate the robust response y given x’. To this end, in this article, we introduce
another two objectives besides the original objective to improve the robustness of the encoder:

o Ladv(x,x’): This objective is used to encourage the encoder to output similar representations
Hy and Hy for clean dialogue history x and its perturbed dialogue history x’ to achieve
an invariant encoder. This will benefit the external knowledge selection and the decoder
generation.

o Loise(x’, KB, y): This objective is used to guide the decoder to generate response y given
the noise dialogue history x” and the knowledge base.

® Liean(x, KB, y): This is the original training objective, which is used to guide the decoder
to generate response y given a clean dialogue history x and knowledge base. It can guar-
antee the performance of the dialogue system while keeping the stability of the dialogue
model.
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Formally, given the clean dialogue training data and the multi-granularity adversarial examples,
the adversarial training objective is given in Equation (8),

-E = Lclean (Xv KB, y) + -Enoise (X,7 KB, y) +a* Ladv(xv XI)9 (8)

where « is an adversarial learning hyper-parameter. x and x’ are clean dialogue history and corre-
sponding adversarial dialogue history. y is the ground-truth response.

Our goal of the perturbation-invariant encoder is to make the representations produced by the
encoder indistinguishable when fed with a clean dialogue history x and its perturbed noise di-
alogue history x’. We adopt the adversarial learning framework [15] to solve the problem. The
encoder serves as the generator G that generates a sequence of hidden representations Hy given a
dialogue history x. We adopt another discriminator D to distinguish Hy and Hy . The generator G,
which refers to the encoder here, is to generate similar representations for x and x’ that can fool
the discriminator, while the discriminator D tries to distinguish the two representations. G and D
are optimized using a min-max loss function, and the loss function is formalized as follows:

-Ladv(x’ X,§ G, D) =Ex~s [_IOgD(G(x))] + Ex’~N(x) [_log(l - D(G(x,)))] (9)

We adopt the Multi-Layer Perception as the discriminator. The discriminator outputs a classifi-
cation score given an input representation and tries to maximize D(G(x)) and minimize D(G(x")).
The objective encourages the context encoder to output similar representations for the clean dia-
logue history x and noise dialogue history x” so that the discriminator fails to distinguish them.

5.3.2  Knowledge-level guided learning. In the above utterance-level adversarial learning
method, we improve the robustness by encouraging the context encoder to output similar rep-
resentations for the clean data and noise data. Different from the above method, here we improve
the robustness from the perspective of knowledge. We explicitly add the multi-granularity noises
into the KB and incorporate the noise KB to improve the performance of the dialogue system.

In Section 5.1, we have constructed multi-granularity noises at the word and phrase level. We
integrate the word-level and phrase-level noises to enhance the robustness of the cross-lingual
dialogue system. The overall framework is depicted in Figure 5. This method’s main idea is to use
the multi-granularity noises to impact the encoder and decoder of the dialogue module. As shown
in Figure 5, the integration process can be divided into the following two steps:

Step 1: Noise KB Construction. For each record in the KB, we randomly select one column and
replace the value with the word or phrase in the multi-granularity noises. For example, in Figure 5,
for the record “Regent Street City Centre; Centre; Italian; Cheap; Pizza hut city centre, the fourth
column (“PriceRange”) is selected, and we replace Cheap with Economical. Thus, we can inject the
multi-granularity noises into the original clean KB and construct noise KB. We denote the original
clean KB and the constructed noise KB together as the noise KB KB'.

Step 2: Noise KB Integration. After obtaining the noise KB, we use the multi-granularity adver-
sarial examples and the noise KB to retrain the dialogue system and adapt the dialogue system to
be more robust to inputs containing MT noises. The optimization objective function is as follows:

L = Lean(x, KB/, Y) + Lnoise (X,, KB/’ Y) (10)

6 EXPERIMENTAL SETUP
6.1 Datasets

We conduct our experiments on two task-oriented dialogue datasets: CamRest676 [45] and SMD
[13], which are collected through crowd-sourcing on the Amazon Mechanical Turk platform.
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Fig. 5. The Framework of knowledge-level guided learning.

Table 1. Statistics of Datasets

Dataset Train Valid Test Domain
CamRest676 408 136 136  Restaurant reservations
calendar scheduling
SMD 2425 302 302 weather information retrieval
point-of-interest navigation

CamRest676 is a single domain dialogue dataset about restaurant reservations. The dataset has
676 dialogs split into training, validation, and test set by the ratio of 3:1:1. SMD? is a multi-domain
dialogue dataset with three distinct domains: calendar scheduling, weather information retrieval,
and point-of-interest navigation. Data statistics are given in Table 1.

To conduct the cross-lingual experiment, we manually translate the two test sets into Chinese
and German. For each language, one language expert is recruited to translate the test set. We also
need machine translators corresponding to the above two language pairs to conduct experiments,
including Chinese-to-English and German-to-English bi-directional MT systems.

We report results of two test scenarios: (1) Cross-lingual Test, which evaluates whether our
proposed method makes the dialogue system more robust to the noise input translated by the
MT system, and (2) Mono-lingual Test, which evaluates whether our proposed method makes the
dialogue system perform comparable or better on the original clean inputs.

The original CamRest676 dataset can be found in https://www.repository.cam.ac.uk/handle/1810/260970.
Shttps://nlp.stanford.edu/blog/a-new-multi-turn-multi-domain-task-oriented- dialogue-dataset/.
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6.2 Dialogue Models and Evaluation Metrics

To ascertain the effectiveness and applicability of our method, we adopt the following represen-
tative task-oriented dialogue models as the monolingual dialogue systems shown in Figure 1 and
implement the proposed MT-oriented noise enhanced framework on these models:

e GLMP [47]: The framework adopts the global-to-local pointer mechanism to query the
knowledge base during decoding and achieves state-of-the-art performance.

e TSCP [20]: It is a two-stage CopyNet that consists of one encoder and two copy-mechanism
augmented decoders. The first decoder decodes the belief state, which is used to facilitate KB
retrieval. The second decoder generates a machine response based on the generated belief
state and KB search result.

o LABES-S2S [49]: It is also a two-stage copy-augmented Seq2Seq model like Sequicity [20].
The difference is that in LABES-S2S, the belief states are represented as discrete latent vari-
ables and are jointly modeled with system responses given user utterances.

For adversarial examples generation, we compare our proposed multi-granularity adversarial
examples generation with the other data augmentation methods [31]:

e Random Swap: Randomly swapping two adjacent words in a sentence, for example, changing
“Where is the nearest gas station?” into “where is the gas nearest station?”

e Stopword Dropout: Randomly deleting stopwords in the user utterances, for example, chang-
ing “Where is the nearest gas station?” into “Where is nearest gas station?”

e Word Substitution: Replacing words with their synonyms from WordNet, for example, chang-
ing “Where is the nearest gas station?” into “where is the skinny gas station?”

For the GLMP model, we follow previous work [13, 27, 47] to evaluate our system on two au-
tomatic evaluation metrics, BLEU and entity F; score. BLEU [33] is used to measure the language
quality of generated responses with golden responses guidance. For entity F;, we micro-average
over the entire set of dialogue system responses and compare the entities in plain text. This metric
evaluates the model’s ability to generate relevant entities from the underlying KBs and capture
the dialogue’s semantics.

For Sequicity and LABES-S2S model, which explicitly predict belief states, we use BLEU, Entity
Match rate (EMR), and Success F; (Succ. F1) following Lei et al. [20]. Entity match rate evaluates
task completion, and it determines if a system can generate all correct constraints to search the indi-
cated entities of the user. Success F; evaluates task completion, and it is the F; score of requested
slots answered in the current dialogue. We also report a combined score (Comb) computed via
(EMR + Succ. F1) x 0.5 + BLEU for overall quality measure inspired by Mehri et al. [28].

6.3 Experimental Settings

Machine Translator. We need machine translators to translate utterances from the user’s
language into the dialogue system’s language to interact with the dialogue system. Besides,
we also need the machine translators to construct the multi-granularity noises. We use a
Chinese-to-English dataset containing 2.1M sentence pairs to train the Chinese-to-English
and English-to-Chinese translation system. Another German-to-English dataset containing 2M
sentence pairs is used to train the German-to-English and English-to-German translation system.
We apply Byte-Pair encoding with 30K merge operations and maintain the source and target
vocabularies to the most frequent 30K tokens. All of the systems are trained by the transformer
[40] with the “base” version.

Multi-granularity Noises. We use an English monolingual dataset that contains about 800,000
spoken sentences to construct multi-granularity noises. We use our self-trained MT systems to
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translate and back-translate the English dataset and then perform word alignment. Word pairs
with bidirectional lexical translation probability greater than 0.01 are reserved as word-level noises.
Phrase pairs meeting the conditions and the bidirectional phrase translation probability greater
than 0.01 are kept as the phrase-level noises. The constructed multi-granularity noises are used to
generate the multi-granularity adversarial examples.

Implementation Settings. For the base dialogue models, we use the model structures that
follow the default settings in the open-source implementation of GLMP,* TSCP,” and LABES-52S.°
For utterance-level adversarial learning, the vocabulary size is 1,800 for CamRest676 and 2,800 for
SMD. The adversarial learning hyper-parameter « is selected from [0.0, 0.01, 0.05, 0.1, 0.2, 0.3,
0.5, 0.8, 1, 1.5] for CamRest676 and SMD, respectively. For knowledge-level guided learning, the
vocabulary size is 2000 for CamRest676 and 3000 for SMD. We use the Adam optimizer to train the
models, with a learning rate of 0.003 and a decay parameter of 0.5.

7 RESULTS AND ANALYSIS
7.1 Cross-lingual Experimental Results

The experimental results using TSCP, LABES-S2S, and GLMP on SMD and CamRest676 are shown
in Table 2, Table 3, and Table 4, respectively. Both Chinese to English (CH—EN) and German to
English (DE—EN) cross-lingual experimental results are reported. The results are grouped into
two columns according to the test set (Cross-lingual Test/Mon-lingual Test).

We observe some common conclusions supported by the experimental results on the three di-
alogue models. First, the noises introduced in the MT process greatly influence the performance
of the dialogue systems. Comparing the results of Cross-lingual Test and Mono-lingual Test on
original dialogue models, the dialogue systems’ performance drops down sharply when given the
utterances translated by the MT systems. In the CH—EN cross-lingual experiment, TSCP and
LABES-S2S drops from 1.0020 to 0.7385, 1.0422 to 0.6864 on SMD datasets, respectively (the first
line and the fourth line in Table 2). In the DE—EN cross-lingual experiment, the performance of
the three dialogue models also falls heavily. This demonstrates that the noises in the MT process
do seriously affect the dialogue systems, and the robustness of the dialogue systems is poor.

Second, our proposed two strategies significantly improve the system’s performance in Cross-
lingual Test. Compared with the original dialogue model, whether in CH—EN cross-lingual test
or DE—EN cross-lingual test, both the utterance-level adversarial learning and knowledge-level
guided learning can significantly improve the performance. Our proposed methods bring substan-
tial improvements for all the three dialogue architectures regarding all the evaluation metrics. Such
improvements are consistent across both dialogue datasets and two language pairs, affirming the
superiority and general applicability of our proposed methods. We can also find that utterance-
level adversarial learning outperforms the knowledge-level guided learning in most cases. This
may be because we incorporate the multi-granularity adversarial examples by adversarial learn-
ing to learn a robust context encoder in the utterance-level adversarial learning. In contrast, in the
knowledge-level guided learning, we mix the multi-granularity adversarial examples directly into
the clean training data. The improvement of utterance-level adversarial learning over knowledge-
level guided learning suggests that the adversarial learning method provides a more robust way of
utilizing the additional information in the multi-granularity adversarial examples. The proposed
knowledge-level guided learning outperforms the original dialogue model since the noise KB pro-
vides strong clues for the MT translated noise utterance during the decoding process.

4https://github.com/jasonwu0731/GLMP.
Shttps://github.com/WING-NUS/sequicity.
®https://github.com/thu-spmi/LABES.
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Table 2. Cross-Lingual Experimental Results on SMD Dataset

Lang Model Cross-lingual Test Mono-lingual Test
BLEU EMR Succ.F1 Comb | BLEU EMR Succ. F1 Comb
TSCP 0.1744  0.4218 0.7063  0.7385 | 0.2081 0.7927 0.7951  1.0020
CH w/ Utt-adv | 0.1951° 0.48007 0.7986* 0.8344 | 0.2061 0.7855  0.7977  0.9976
w/ Kno-gui | 0.1913"  0.4657* 0.7951%  0.8217 | 0.2097 0.7545 0.8304 1.0022
Eli\l LABES-S2S 0.1735“ 0.3835_ 0.6423¢ 0.6864 | 0.2328 0.8393 0.7794 1.0422
w/ Utt-adv | 0.2029" 0.48447 0.7234% 0.8068 | 0.2250 0.7747 0.7791  1.0019
w/ Kno-gui | 0.1856 0.4664"  0.6942%  0.7659 | 0.2069 0.7582  0.7632  0.9676
TSCP 0.1612  0.3964 0.7200  0.7194 | 0.2081 0.7927  0.7951  1.0020
DE w/ Utt-adv | 0.1729 0.5636* 0.79701: 0.8532 | 0.1887 0.8109 0.8092  0.9987
. w/ Kno-gui | 0.1862 0.5616% 0.8005% 0.8672 | 0.2078 0.7899 0.8134 1.0094
EN LABES-S2S 0'1958. 0.3761 0'6649. 0.7163 | 0.2328 0.8393 0.7794 1.0422
w/ Utt-adv | 0.2239% 0.5021% 0.7635" 0.8567 | 0.2269 0.7802 0.7847  1.0093
w/ Kno-gui 0.2257% 0.4774% 0.7521%  0.8405 | 0.2418 0.7527  0.7722  1.0043

w/ Utt-adv denotes that the model is trained using our proposed utterance-level adversarial learning method with the
multi-granularity adversarial examples. Kno-gui denotes that the model is trained using our proposed knowledge-level
guided learning method. The metrics Entity Match rate, Success F;, and Combined Score are abbreviated as EMR, Succ.
F1, and Comb. The best results in each group are highlighted in bold. The significant test is conducted under
Cross-lingual Test. (7, §) indicates that the improvement over the corresponding baseline is statistically significant
where p < 0.05 (0.01, 0.001).

Table 3. Cross-Lingual Experimental Results on the CamRest676 Dataset

Lang Model Cross-lingual Test Mono-lingual Test
BLEU EMR Succ.F1 Comb | BLEU EMR Succ. F1 Comb
TSCP 0.1731 0.4776  0.6485 0.7362 | 0.2001 0.9328 0.8204 1.0767
CH w/ Utt-adv | 0.2182 0.4776 0.7858 0.8499 | 0.2223 0.8731  0.7920  1.0549
w/ Kno-gui | 0.1974 0.4254 0.8092  0.8147 | 0.2085 0.8433 0.8398 1.0501
EJi\T LABES-S2S | 0.1764 0.7273  0.7154  0.8978 | 0.2132 0.9727 0.8205 1.1098
w/ Utt-adv | 0.2340 0.7963 0.7943 1.0293 | 0.2561 0.9074 0.8438 1.1317
w/ Kno-gui | 0.2227 0.7182  0.7912  0.9774 | 0.2299 0.9000 0.8246  1.0922
TSCP 0.1695 0.5299 0.6777  0.7732 | 0.2001 0.9328 0.8204 1.0767
DE w/ Utt-adv | 0.2210 0.4552 0.7714 0.8344 | 0.2217 0.8955 0.7748  1.0569
w/ Kno-gui | 0.2196 0.4478 0.7754 0.8312 | 0.2293 0.8731  0.7938  1.0627
Eli\l LABES-S2S | 0.1941 0.7545 0.7631  0.9529 | 0.2132 0.9727 0.8205 1.1098
w/ Utt-adv | 0.2446 0.7963 0.8524 1.0690 | 0.2356 0.9074  0.8049  1.0918
w/ Kno-gui | 0.2376 0.6818  0.8005  0.9788 | 0.2600 0.8727  0.8139 1.1033

The best results in each group are highlighted in bold.

Third, our proposed methods can not only improve the performance of the dialogue system
under the cross-lingual scenario but also can maintain a comparable performance for the source
language. In some cases, our methods can improve the dialogue system’s performance in dealing
with the source language. For example, On SMD, the performance of the dialogue system can
be improved from 1.0020 to 1.0094 (Mono-lingual Test results reported in line seven and nine of
Table 2). On CamRest676, the Mono-lingual Test performance can be improved from 1.1098 to
1.1317 (line four and five in Table 3).
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Table 4. Cross-lingual Experimental Results on SMD Dataset Using GLMP Model

CH — EN DE — EN
Cross-lingual Test | Mono-lingual Test | Cross-lingual Test | Mono-lingual Test
Model BLEU Ent.F1 | BLEU Ent.F1 | BLEU Ent.F1 | BLEU Ent. F1
GLMP 0.0831 0.3998 | 0.1339  0.5408 0.0921 0.3982 0.1339  0.5408
w/ Utt-adv | 0.1009  0.4452 0.1222 0.5357 0.1234  0.4583 0.1216 0.5318
w/ Kno-gui | 0.0915 0.4258 0.1343 0.5255 0.1248  0.4246 0.1197 0.5000
The metric Ent. F1 denotes entity F; score. The best results in each group are highlighted in bold.

Table 5. Chinese to English Cross-Lingual Experimental Results Using Different Adversarial Examples

Dataset Adversarial Cross-lingual Test Mono-lingual Test
Examples BLEU EMR Succ.F1 Comb | BLEU EMR Succ. F1 Comb
TSCP 0.1731 0.4776 0.6485 0.7362 | 0.2001 0.9328 0.8204 1.0767
Swap 0.1759 0.4851 0.6599 0.7484 | 0.2159 0.9104 0.7639  1.0530

Stopword 0.1692 0.5000 0.6347 0.7365 | 0.2300 0.9179 0.7803 1.0791
Cam Word Sub 0.1805 0.4403 0.7051  0.7532 | 0.2159 0.9030 0.7824  1.0586
Word-Level 0.1987 0.4104 0.7805 0.7942 | 0.2046 0.8507 0.8108  1.0353
Phrase-Level 0.1869 0.4925 0.7231  0.7947 | 0.2020 0.8955 0.7672  1.0334
Sent-Level 0.1595 0.5821 0.7179 0.8094 | 0.1632 0.8582 0.7116  0.9481

TSCP 0.1744 0.4218 0.7063  0.7385 | 0.2081 0.7927 0.7951  1.0020
Swap 0.1751 0.4436  0.7122  0.7531 | 0.2056 0.8400 0.8033 1.0273
Stopword 0.1676 0.4327 0.7183  0.7431 | 0.1961 0.8109 0.8016  1.0023
SMD Word Sub 0.1680 0.4145 0.7234 0.7370 | 0.1944 0.8109 0.7898  0.9947
Word-Level 0.1851 0.4655 0.7455 0.7906 | 0.2092 0.8000 0.8197 1.0191
Phrase-Level 0.1909 0.4545 0.7764 0.8063 | 0.1973 0.8109 0.8263 1.0159
Sent-Level 0.1849 0.4291 0.7598  0.7793 | 0.2054 0.7964 0.7875  0.9973

Cam denotes the dataset CamRest676. TSCP means using cleaning training data to train the dialogue model without
adversarial examples. Swap, Stopword, and Word Sub denote random swap, stopword dropout, and synonym substitution.
The Word-Level, Phrase-Level, and Sent-Level are the adversarial samples of different granularity proposed in this article.
The best results in each group are highlighted in bold.

7.2 Experimental Results of Different Adversarial Examples

In this part, we investigate the effectiveness of our multi-granularity adversarial examples gen-
eration with the other data augmentation methods, including Random Swap, Stopword Dropout,
and Word Substitute Perturbation. For a fair comparison, we adopt the same dialogue model and
the same way to utilize different kinds of adversarial examples. We directly add the adversarial
examples to the clean training data and retrain the dialogue system. We conduct the CH—EN
cross-lingual experiments using the TSCP model. The experimental results are given in Table 5.
Not surprisingly, as shown in Table 5, our multi-granularity adversarial examples outperform
the baseline methods on most metrics in the Cross-lingual Test. This implies that our proposed
method effectively generates multi-granularity adversarial examples that are more related to the
noises introduced by MT systems. On CamRest676, utilizing the word-level adversarial examples
can achieve the best BLEU and Succ. F;, while the EMR reaches the best when using the sentence-
level adversarial examples. On SMD, the best BLEU and Succ. F; are obtained by using phrase-level
adversarial examples, while the best EMR is achieved by using word-level adversarial examples.
We observe that the EMR metric of the word-level (0.4104) on CamRest676 is much lower com-
pared to other methods. This is potential because the size of the training data is relatively small
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Table 6. All Adversarial Examples vs. Multi-Granularity Adversarial Examples

Dataset Adversarial Cross-lingual Test Mono-lingual Test
Examples BLEU EMR Succ.F1 Comb|BLEU EMR Succ. F1 Comb
TSCP 0.1731 0.4776 0.6485 0.7362|0.2001 0.9328 0.8204 1.0767

Cam mix-all 0.2058 0.4478 0.7636 0.8114 [0.2256 0.8657 0.8033 1.0601
multi-granularity 0.2124 0.4478 0.7655 0.8191] 0.2255 0.8806 0.7916 1.0616
TSCP 0.1744 0.4218 0.7063 0.7385|0.2081 0.7927 0.7951 1.0020

SMD  mix-all 0.1708 0.4691 0.7629 0.7868 | 0.1836 0.7927 0.8051 0.9825
multi-granularity 0.1877 0.4727 0.7902 0.8192| 0.2068 0.7891 0.8078 1.0052

mix-all denotes using all the adversarial examples, including random swap, stopword dropout, word substitute,
word-level, phrase-level, and sentence-level. multi-granularity means only using the multi-granularity adversarial
examples, including word-level, phrase-level, and sentence-level. The best results in each group are highlighted in bold.

with only 408 dialogues, making the learning of perturbations at the word level is much more com-
plicated than the phrase level and sentence level. The word-level adversarial examples are gener-
ated by substituting words in user utterances with their candidates from the word-level noises,
and we give priority to the substitution of the intention-related words. Therefore, the EMR score,
which evaluates task completion and determines if a system can generate all correct constraints
to search the indicated entities of the user, may drop despite the BLEU and Succ. F; increases.

We also observe some diverse results on Cross-lingual Test and Mono-lingual Test. Under the
cross-lingual test setting, the improvements gained by our multi-granularity adversarial examples
are higher than the baseline methods. For the monolingual test, Stopword Dropout achieves best
on CamRest676, and Random Swap achieves best on SMD. Even then, the combined score of word-
level (1.0191) and phrase-level (1.0159) is better than that of the original TSCP model (1.0020)
on SMD. Hence, our proposed multi-granularity adversarial examples generation method is more
helpful in enhancing the robustness of the dialogue system under the cross-lingual scenario.

We further experiment with all adversarial examples, including random swap, stopword dropout,
word substitute, word-level, phrase-level, and sentence-level, to retrain the dialogue system. The
experimental results are given in Table 6. Compared to the dialogue model trained using all adver-
sarial examples, only using our proposed multi-granularity adversarial examples achieves better
performance both under Cross-lingual Test and Mono-lingual Test.

7.3 Ablation Study

7.3.1  Word-level vs. Phrase-level vs. Sentence-level. In our framework, we implement three gran-
ularity adversarial examples at word-level, phrase-level, and sentence-level. Word-level enriches
the original clean training data by substituting words with their candidates from the word-level
noises. Phrase-level augments the original training data through phrase-level noises. And the
sentence-level paraphrases the original training data through back-translation. We evaluate their
performances on CamRest676 and SMD and report results in Table 7. Table 7 shows the Chinese
to English cross-lingual experimental results during utterance-level adversarial learning. All three
granularity adversarial examples improve the performance over the original dialogue model, in-
cluding TSCP and LABES-S2S. We observe that in most cases, the sentence-level and phrase-level
augmentation performs better than word-level on most evaluation metrics. One possible reason
is that sentence-level and phrase-level capture more phenomenon in the MT process, while word-
level is limited to only a few words.

7.3.2  The effect of adversarial learning. To investigate the impact of adversarial learning, the
adversarial learning hyper-parameter « varies from [0.0, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.8, 1, 1.5].
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Table 7. Ablation Test for Word-Level, Phrase-Level, and Sentence-Level Adversarial Examples during
Utterance-Level Adversarial Learning

Dataset Adversarial Cross-lingual Test Mono-lingual Test
Examples BLEU EMR Succ.F1 Comb|BLEU EMR Succ. F1 Comb
TSCP 0.1731 0.4776 0.6485 0.7362 | 0.2001 0.9328 0.8204 1.0767
w/ Word-Level 0.2192 0.3955 0.7704 0.8022 |0.2369 0.8433 0.8125 1.0648
w/ Phrase-Level 0.1949 0.5075 0.7295 0.8134 | 0.2024 0.8657 0.7805 1.0254

Cam w/ Sent-Level ~ 0.1972 0.5672 0.7439 0.8527|0.2099 0.8582 0.7841 1.0310
LABES-S2S 0.1764 0.7273 0.7154 0.8978 | 0.2132 0.9727 0.8205 1.1098
w/ Word-Level 0.2211 0.7636 0.7990 1.0024 | 0.2354 0.9455 0.8109 1.1136
w/ Phrase-Level 0.2209 0.7818 0.7783 1.0010 | 0.2430 0.9455 0.8092 1.1203
w/ Sent-Level ~ 0.2303 0.7909 0.8010 1.0263|0.2570 0.9727 0.8210 1.1539
TSCP 0.1744 0.4218 0.7063 0.7385 | 0.2081 0.7927 0.7951 1.0020
w/ Word-Level 0.1851 0.4655 0.7455 0.7906 |0.2092 0.8000 0.8197 1.0191
w/ Phrase-Level 0.1791 0.4945 0.7795 0.8161 |0.1999 0.8364 0.8211 1.0287

SMD w/ Sent-Level ~ 0.1927 0.4909 0.7582 0.8172|0.1931 0.8400 0.7767 1.0014
LABES-S2S 0.1735 0.3835 0.7063 0.6423 | 0.2328 0.8393 0.7794 1.0422
w/ Word-Level 0.1912 0.4756 0.7224 0.7902 | 0.2287 0.8132 0.7688 1.0197
w/ Phrase-Level 0.2092 0.4889 0.7152 0.8113]0.2285 0.7857 0.7708 1.0068
w/ Sent-Level 0.2050 0.4756 0.7242 0.8049 |0.2409 0.7967 0.7804 1.0295

The best results in each group are highlighted in bold.

The results are shown in Figure 6, in which Figure 6(a) to (d) are the results using TSCP and
Figure 6(e) to (h) is the result using LABES-S2S model. Each sub-figure in Figure 6 shows five lines
representing the original dialogue model, adversarial learning with different adversarial learning
weights using word-level, phrase-level, sentence-level, and multi-granularity adversarial examples,
respectively.

We can find that: (1) Our proposed utterance-level adversarial learning outperforms the base-
line. Especially for the LABES-S2S model, the adversarial learning outperforms the baseline by a
big margin on all adversarial weights. (2) Training with multi-granularity adversarial examples
can obtain the best performance in most cases except for the sub-figure (d). This implies that the
adversarial examples in different granularities can reinforce each other and provide more diverse
MT noises information. (3) The adversarial weight is more sensitive on the CamRest676. This is
because the training size of the CamRest676 is relatively small, and the adversarial weight has a
great influence on the experimental results.

We also observe that the curve trends are different between different language pairs. For exam-
ple, in the first column of Figure 6, the trend of different granularity is different. For Chinese to
English experimental results on CamRest676 (Figure 6(a) and (e)), the sentence-level outperforms
the word-level and phrase-level in most cases, while the sentence-level underperforms the other
two for German to English (Figure 6(b) and (f)). We guess that the sentence-level adversarial ex-
amples for German to English are generated by cycle translation using the German to English MT
system, and this process introduces more noises than Chinese to English. Conversely, since we use
the word alignment and some pre-defined rules, the word-level and phrase-level noises for Ger-
man to English can filter out many noises. In any event, adversarial learning with multi-granularity
adversarial examples can obtain relatively stable and excellent performance.

7.3.3  Utterance-level adversarial vs. Knowledge-level guide. To integrate the multi-granularity
adversarial examples and make the dialogue model robust to the noises introduced by the MT
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(c) CH — EN experimental results on SMD
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Fig. 6. Comparison of the training with different adversarial learning hyper-parameter a. Multi-granularity
denotes all the three granularity adversarial examples, including word-level, phrase-level, and sentence-level,

are used during the training.

process, we propose two adversarial strategies. Utterance-level adversarial learning adopts
adversarial learning to learn a perturbation-invariant encoder, which can output robust hidden
representations independent of noises. In contrast, knowledge-level guided learning explicitly
adds the multi-granularity noises into the KB, establishing connections between the noise tokens
and their possible correct forms. The experimental results above demonstrate that both methods
can improve system performance. These two methods improve system performance from different
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Table 8. Experimental Results of Combining Utterance-Level Adversarial Learning and
Knowledge-Level Guided Learning

CH — EN DE — EN
BLEU EMR Succ.F1 Comb | BLEU EMR Succ.F1 Comb
LABES-S2S 0.1735 0.3835 0.6423 0.6864 | 0.1958 0.3761 0.6649 0.7163
w/ Utt-adv  0.2029 0.4844 0.7234 0.8068 | 0.2239 0.5021 0.7635 0.8567

Dataset Method

SMD w/ Kno-gui 0.1856 0.4664  0.6942 0.7659 | 0.2257 0.4774 0.7521  0.8405
Combined 0.2046 0.5112 0.7422 0.8313 | 0.2293 0.5144 0.7766 0.8748
LABES-S2S 0.1764 0.7273  0.7154 0.8978 | 0.1941 0.7545 0.7631  0.9529

Cam w/ Utt-adv  0.2340 0.7963 0.7943  1.0293 | 0.2446 0.7963 0.8524 1.0690

w/ Kno-gui 0.2227 0.7182  0.7912 0.9774 | 0.2376 0.6818  0.8005  0.9788
Combined 0.2437 0.7593 0.8281 1.0374| 0.2279 0.8519 0.8441 1.0759

Combined denoted the results of combining the two methods.

perspectives. Hence, we want to explore whether combining the two methods can further improve
the dialogue system’s performance.

We conduct experiments using LABES-S2S on Chinese to English and German to English. The
experimental results of Cross-lingual Test are shown in Table 8. As presented in Table 8, the com-
bination of the two methods further boosts the dialogue system’s performance, which affirms the
effectiveness and robustness of the proposed approach.

7.4 Case Study

The above results show that our proposed methods can improve the performance of the task-
oriented dialogue system when feeding the translated utterance. To better verify our methods,
we conduct several case studies with the LABES-S2S model to illustrate the response generation
quality.

Figure 7 compares the belief span (bspan) and system response generated by the original LABES-
S2S model to those generated by the dialogue model, which is trained using the combination of
our proposed utterance-level adversarial learning and knowledge-level guided learning. The first
two are the examples selected from SMD, and the last one is the example from CamRest676. The
red marks the difference between the original utterance and the MT result. From these three cases,
we observe that when the clean utterance is given to the dialogue model, the system generates
correct bspan, which is quite important since it determines whether the system can search the
user’s indicated entities. However, the original LABES-S2S fails to generate the right bspan after
feeding the MT result. This also demonstrates that the end-to-end dialogue system is very sensitive
to the perturbations in the input utterances. For example, in the first case, the MT system translates
“BIf FIF %Y (the closest parking garage)” into “latest car park.” Since this expression does not
appear in the training data, the original LABES-S2S cannot handle it. Our method generates multi-
granularity adversarial examples that contain different granularities of MT noises and integrates
the noises into the dialogue model. Hence, our method can handle the utterance translated by the
MT system and generate the right bspan.

What is more, the responses generated by our proposed method are even better than the orig-
inal LABES-S2S to some extent. In the second example, the response generated by the original
LABES-S2S is wrong. Although the response generated by our method is not perfect, it is much
better than that of the original LABES-S2S. In the last example, our method generates an appro-
priate question "would you like a certain price range?" to ask user for further information about
the recommended restaurant. These examples suggest that our proposed method can effectively
enhance the robustness of the dialogue system toward the cross-lingual scenario.
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User: BIIEERE L £ LABES-S28 Generated bspan: navigate-poi_type : parking garage

Clean: what are the dircction to the closest parking garage ? (clean input)  Generated response: the closest parking garage is [value_poi] at [value_address]

MT: how can the latest car park go ? LABES-S2S Generated bspan: {}
Gold bspan: navigate-poi_type : parking garage ’ Generated response: the [value_poi] is [value_distance] away .

Gold Response: the closest parking garage is [value_poi] , Generated bspan: navigate-poi_type : parking garage

located [value_dist: t [val dds Combined . . .
ocated [value_distance] away at [value_address] Generated response: the nearest parking garage is [value_poi] at [value_address]
User: L &M EM AN RERERLEL D? LABES-S2S Generated bspan: weather-date : friday , weather-location : mountain view , weather-
Clean: what will be the highest temperature on friday in (clean input) weather_attribute : highest temperature
clean inpu
mountain view ? P Generated response: it will not be [value_weather_attribute] in mountain view on friday .

MT: what is the highest temperature in the mountain city on . .
8 P Y Generated bspan: weather-date : friday , weather-weather_attribute : highest temperature

friday ? LABES-S28 . ) T
. . Generated response: the highest temperature in mountain city is located at [value_address]
Gold bspan: weather-date : friday , weather-location :
mountain view , weather-weather_attribute : highest Generated bspan: weather-date : friday , weather-location : mountain view , weather-
temperature . weather_attribute : highest temperature
Combined N . L P
Gold Response: on friday , the highest temperature in Generated response: the highest temperature on friday in mountain view is gonna be
mountain view is predicted to be [value_temperature] [value_weather_attribute] in mountain view .
y . N e 3 5 Generated bspan: restaurant-area : south
User: . AT B AR — KA £ LABES-$2 P .
Clean: hi . i 'm trying to find a good restaurant in the south (clean input) Generated response: there are several restaurants in the south part of town . would you
like more information ?
part of town .
MT: i 'd like to find a good restaurant in the southern part of Generated bspan: {}
the city . LABES-S28 Generated response: there are no restaurants serving [value_food] food . would you like
Gold bspan: restaurant-area : south to try something else ?

Gold Response: there are several good restaurants in the
P! & Generated bspan: restaurant-area : south

south part of town . do you have a preference for the type of . .
P ¥ P! P Combined Generated response: there are several restaurants in the south part of town . would you

food or price range ? . R
P & like a certain price range ?

Fig. 7. Comparison of response generation results before and after applying our proposed method. User
denotes the user’s utterance, and here the utterance is Chinese. Clean denotes the corresponding English
utterance in the original clean test. MT denotes the translation result of the user’s utterance using the trained
Chinese-to-English MT system. clean input represents the input of the dialogue system is the clean utterance
while the input of the other two is the MT result.

8 CONCLUSION

In the work, we present a novel MT-oriented noise enhanced framework to enhance the robust-
ness of the end-to-end dialogue systems toward the cross-lingual scenario. We first design a
method to automatically construct multi-granularity MT-oriented noises and multi-granularity
adversarial examples containing abundant noise knowledge oriented to MT. Then, we propose
two strategies to incorporate the noise knowledge: (i) Utterance-level adversarial learning and (ii)
Knowledge-level guided method. These two strategies can also be used in combination. Our frame-
work achieves significant improvements when applied to several end-to-end dialogue models on
two datasets and two language pairs.
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