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Abstract

Agrifood system actors operate within diverse socio-

cultural, economic, and biophysical settings. For

growers, crop planning, usually a yearly business plan,

is a key decision to make on when, what, and how

many to plant. It is a challenging task as it deals with

multiple constraints in volatile economic and/or cli-

mate environment. Most crop planning models have

difficulty in adapting to changing situation. In this

study, a parallel system of crop planning composed of

the artificial system, computational experiment, and

parallel execution is proposed. The farmers are

described as agents, and the decision is made based on

the heuristic searching of optimal plan; the adaption of

plan is triggered autonomously given strong environ-

ment changes. Focus is given to economic environ-

ment, which is indicated as product price. In a case

study, the economic environment of the artificial sys-

tem is built based on the monthly and weekly price

information for 13 products during 7 years. The com-

putational experiment provides the initial cropping

plan and harvest time, with social and ecological con-

straints. Result shows that the cropping plan can fur-

ther adapt to price variation. This flexible cropping

plan system can strengthen the capability of

cooperatives serving small‐scale farmers.
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1 | INTRODUCTION

Many actors (growers, distributors, consumers, etc.) in agrifood systems make decisions in-
dependently in pursuit of their own objectives and naturally most objectives end up in conflict
with each other.1 Agrifood system actors operate within diverse sociocultural, economic, and
biophysical settings. In China and many Asian countries, small‐scale farms are dominating,
and it is expected to last for a long time.2 Although it is recognized that small‐scale farms are
more ecologically sustainable than large‐scale industrialized farms,3 due to information in-
consistency and geographical distance, it is often reported that agricultural products are too
cheap to harvest at the supply side, which harms the income of farmers and causes waste.
Farmers often decide when and what to plant according to the near temporal and spatial
information, a similar behavior to how a driver chooses its way at road. Low economic benefits
lead to a lot of idle farmland,4 which produces many potential risks.

Crop planning is the decision on when, what, and how many to plant.5 It is supposed to be a
key service to small‐scale farmers by agricultural cooperative, which is expected to strengthen
small‐scale farmers by providing technical support and information service.6 Being a joint orga-
nization of individual farmer, a cooperative can provide considerable products to deal with big
market need, which seems to be a solution to overcome the information inconsistency. The modern
agricultural cooperatives is expected to become knowledge developers and disseminators, for the
benefit of members and their communities.7 However, the operators of cooperatives are often
unable to provide desired services due to the lack of knowledge or capacity.

In previous crop planning, ecological, social and economic constraints have been considered.8

Among them, product price is a key factor for evaluating the profit.9 However, due to its com-
plexity, the uncertainty in price was simply modeled as stochastic variable without temporal
information.10 Although solutions can be provided for a given situation, many crop planning
models have difficulty to adapt to evolving environment.11 The age of big‐data brings new chances
as the daily price information is open and accessible in web. The prediction of price for the
following days, weeks, or months becomes possible,12 which allows the corresponding adjustment
of crop planning to adapt to evolving conditions.

In this study, a parallel system of crop planning is proposed based on the theory of artificial
system, computational experiment, and parallel execution. The farmers are described as agents,
the decision is made based on the heuristic searching of optimal plan, and the adaption of plan
is triggered autonomously given strong environment changes. The aim is to maximize the total
income of cooperative with multiple constraints. Focus is given to economic environment,
which is indicated as product price. Both monthly and weekly prices are used for deciding the
initial plan and harvest time. The cropping plan is adapted according to price variation through
the interaction between the actual and digital systems.

The novelties of this paper lie on (1) a parallel management framework is proposed for flexible
crop planning with closed loop between theoretical plan and actual situation; (2) the artificial
system composed of farmers, crops, and economic environment based on price of weekly and
monthly scales is described, which can serve the decision on cropping plan and harvest time.

This paper is organized as follows.
The literature review of related works is presented in Section 2. The materials and methods

are presented in Section 3, describing the three components of the parallel system of crop
planning, which are artificial system (A), computational experiment (C), and parallel execution
(P). An illustrative example is developed and analyzed to validate the algorithm in Sections 4
and 5. Sections 6 and 7 are dedicated to Discussion and Conclusions, respectively.
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2 | RELATED WORKS

2.1 | Crop planning

Crop planning is an extensively studied topic that can be dated back to 1893.13 An excellent
review has been made by Glen14 concluding the state‐of‐the‐art of models in the year 1987. In
2012, another extensive review was made on this domain that discussing the several aspects of
crop planning.8 It points out that the crop planning at date is mainly based on the static
concept, and the uncertainty of information is generally defined as random factors or prob-
ability of occurrence, so it is impossible to dynamically adjust the cropping plan in the process
of planting.

According to the emphases of the optimization objectives and constraints, the crop planning
problems can be roughly distinguished to two issues: the issue focusing on ecological sus-
tainability and the issue focusing on social and economic attributes.

Regarding to the issue of ecological sustainability, the maximum of land‐use efficiency is
usually used as the optimization objective. The constraints involving crop rotation include spatial
and temporal ones,15 including (1) the crops of the same botanic family cannot be planted in
adjacent plots, (2) each plot cannot grow crops of the same botanic family in sequence, (3) to
improve soil fertility, green manure crops should be planted in each rotation cycle, (4) the fallow
period should be designed in each rotation cycle, so that the free growth of weeds can restore the
animals and structure of the soil. Moreover, crops can be allocated according to the characteristics
of different land, so as to reduce soil erosion and improve soil fertility.16 To achieve these goals, the
“unacceptable planting sequence” can be added as constraints.17

Regarding to the economic and social attributes, the optimization objective is generally to
maximize the total profit. Filippi et al.18 used Conditional Value‐at‐Risk as the objective
function to model the crop planning problem by considering the effect of price fluctuation on
farmers' profit, which was in line with farmers' expectation of reducing risks. Regarding to the
economic constraints, the most common one is the satisfaction of cooperative demands.19

Pakawanich et al.20 considered the balance of income among farmers in a cooperative.
Najafabadi et al. arrange the cropping plan according to the actual soil conditions of each plot
to reduce the resource consumption and scheduling costs.21

Since the definition of planting planning problem, the linear programming model has been
introduced,22 and the method based on operational research has become the main solution.14

Usually the 0–1 linear programming model is chosen as the model of agricultural planning.19

Sometimes, the integer linear programming model is applied to represent the multiple harvest
characteristics of crops.23 Regarding to problem‐solving methods, the column generation
method is commonly used: after the original problem is decomposed by Dantzig Wolfe, the
branch‐and‐price‐and‐cut approach with different rules is used to solve the problem.19,23

In the existing economic models, the modeling of general price is of relatively coarse scale,
taking one year or one month as a cycle. Often a fixed‐price information is used.18,24,25

However, dynamic price information based on price prediction is rarely used.

2.2 | Parallel management

The agricultural system is a complex system, which is hard to model. Although a mathematical
model can perfectly define a crop modeling problem, the gap between theory and practice
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hinders the application of crop planning into practice. This is actually a typical challenge for
many sophisticated mathematical models.

Parallel method is proposed to solve the Uncertainty, Diversity, and Complexity (UDC) pro-
blem of a system. It has been used in the description and management of different complex
systems, such as a transportation system,26 large factories,27 power grid,28 and social public opi-
nion.29 Parallel management provides a framework of managing complex system with Artificial
system, Computational experiment, and Parallel execution.30 The knowledge and data from the real
world help build the artificial system, while the almost costless computational experiment in cyber
world gives decision support to the actual system. One can continuously adjust the artificial system
through the feedback of the real system.31 For the application of parallel management method in
agricultural, the crop models with the physical information can be integrated.32 An analogy in
industry is digital twins. A parallel system can not only describe and simulate the actual physical
system like digital twins, but also guide the adaptive optimization of the actual system through the
virtual and real interaction with parallel execution.33

In reality, farmers need to constantly adjust their planting plans to achieve sustainable
agricultural development according to changes in climate, market, and policies and regula-
tions.8 For example, if the price of a crop is expected to augment, a new planting schedule for
future needs to be made for the cooperative. If the price of crops in the following weeks will
change, suggestion on the harvest time should be given accordingly. Thus, the frame of parallel
management is applied to fit the volatile situation.

2.2.1 | Building the artificial system with agent‐based modeling

A key method for building the artificial system for a parallel system is agent‐based modeling.
An agent is defined as a human or a robot of physical and information world with four
characteristics of autonomy, sociality, responsiveness, and initiative.34 The interactions
between agents and environment can affect the performance of the system by defining the state
and behavior of agents in the system. The idea of agent‐based modeling has been widely used in
economics,35 traffic,36 smart grid,37 and social evolution.38 Li et al.25 applied agent‐based
method to the crop planning problem.

The key to solve the agent‐based model lies in the construction of an agent decision‐making
system, that is, how to choose the next action according to the current environmental in-
formation. This idea can play a very important role in dealing with the interaction between
multiple agents in the system.

2.2.2 | Price forecast model, the economic environment in an artificial
system

As mentioned, product price is the indicator of economic environment affecting the decision of
growers. The prices of agricultural products are affected by many factors, which are highly
complex and nonlinear.39 Many methods have been used for the short‐term price forecast of
agricultural products, including “cobweb theory” by combining the demand and supply of
agricultural products with economic principles,40 autoregressive integrated moving average
(ARIMA) model,41 vector autoregression model,42 support vector machine (SVM) method,43

neural network prediction algorithm,44 recurrent neural network,12 and so forth. Like the stock
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or climate, long‐term prediction of price is no more precise. This led to the idea of using price
data of different temporal scales.

3 | MATERIALS AND METHODS

The overall framework is as in Figure 1.45 This figure shows the parallel management framework in
agricultural crop planning. An agent‐based artificial system is to be built in cyberworld which
describes the real system, composed of farmers, crops, and their environment; the price forecast
model is to give the economic environment to compute the total profit. Computational experiment is
to find the best planning process (optimization) with given situation (price, demand, type of crop,
number of farmers, area of field, etc.). The computed plan gives the prescription to the real system; in
case that the real system deviates from the expected one, new solution is to be given based on the
current situation, which is parallel execution, forming closed loop between the real and artificial
systems. The description module is built and adjusted according to the crop data and price data
collected from the real system. After the prediction and prescription module, it outputs the in-
struction on crop planning and recollects the data from the real system to repeat the above processes.
This loop continues until the end of cropping period. The components are described below.

3.1 | Artificial system with agent‐based modeling

3.1.1 | Problem formalization

Both farmer and crop are modeled as agents. Each individual farmer in a cooperative is defined
as an agent. The total number of farmers in the cooperative is L. The status of a farmer is
defined in Equation (1).

farmer id area schedule k L= { , , }, = 1, …, .k k k k (1)

Among them, idk is the identification (ID) of a farmer, areak is the total planting area of
farmer k, schedulek is a set of crop sequences of farmer k in the production cycle. For example,
schedule cabbage tomato turnip= { , , }k means that the planting order of farmer k is cabbage,
tomato, and turnip.

FIGURE 1 Framework of a parallel system for cropping plan
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The total number of produced crops is supposed to be I, with each type being distinguished
with an index i. The attributes of vegetables involved in crop planning are defined in Equation
(2), where namei is the name of crop i, familyi represents the botanical family of crop i. The
total number of botanic families is NF. pti is the length of planting duration of crop i, hti is the
length of a harvest period of crop i, ci is the cost per hectare of planting crop i, yi is the yield per
hectare of crop i, Di is the total demand of crop i, priceij is the price of crop i at time j, and Dni is

the demand that has not been completed under the current crop plan of all farmers.

crop name family pt ht c y D price Dn i I j J= { , , , , , , , , }, = 1, …, , = 1, …, .i i i i i i i i ij i (2)

The predicted monthly price, priceij, is used to guide the overall scheduling plan.
The main parameters in the model are shown in Table 1.

3.1.2 | Price forecast model

Prices of different scales have different characteristics. The monthly average price reflects the
overall trend of price in a year, while the weekly average price gives a more detailed indication
of changes in a short period. The accuracy of weekly or monthly price forecasts over a long
period is poor.12 Fortunately, 3 or 4 months is enough to cover the growth period of most crops.
Therefore, monthly price prediction can be used for crop planning. For the initial plan, the
monthly average price of crops in the past few years is selected to express the change of price
data within 1 year, which can well reflect the trend of price, eliminating the influence of
random disturbance. The price information at a finer temporal scale, weekly price, is used for
short‐term crop harvest decision.

The time series decomposition tool Seasonal and Trend decomposition using Loess (STL)
was used to analyze the information in the weekly average price (Supporting Information).46

The STL decomposition on the weekly price data shows that they are nonstationary time
series with strong random volatility, thus the ARIMA model is not suitable. Hence, the
Gradient Boosting Decision Tree (GBDT) algorithm47 is applied to forecast the weekly price.

The weekly average price of the first 20 weeks is used to predict the price of the next week.
The weekly price data from July 9, 2014 to October 9, 2019 and from October 10, 2019 to April
29, 2020 are used as the training set and testing set, respectively. Storable and nonstorable
products are distinguished for price prediction.

3.2 | Computational experiment for crop planning

3.2.1 | Objective and constrains

For farmers, a 0–1 linear crop planning model is established. The objective of crop planning is
the maximum of the total profit, as below.

P π a xmax = max .
k

L

i

I

j

J

ij k ijk

=1 =1 =1

   (3)
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Equation (3) shows that the goal of the crop planning model is to maximize the total income
of the cooperative as a whole, where πij is the profit of crop i planted in month j, ak is the area of
land owned by farmer k, xijk is the decision variable: if farmer k plants crop i at time j, it is 1,
otherwise it is 0.

For single harvest crops, πij is calculated as shown in Equation (4), where ci is the cost per
hectare of planting crop i.

π price y c= − .ij i j pt i i( + )i (4)

For multiple harvest crops, the calculation of πij is shown in Equation (5), where hti is the
harvest period of crop i, y t( )i is the distribution of crop yield during harvest period. In this
paper, it is simply assumed that the yield of multiple harvest crops is uniformly distributed in
the harvest period, although with crop models, the yield can be estimated according to climate
data.32

π price y t c= ( ) − .ij

t j

ht

it i i

=

i (5)

The constraints of the model can be defined as follows:

x k L j J= 1, = 1, …, , = 1, …, ,
i

I

ijk

=1

 (6)

TABLE 1 Attributes in descriptive models

Notions Descriptions Unit

L Total number of farmers –

J Total length of crop planning cycle Month

P Total profit of all farmers CNY

ak The area of land owned by farmer k Hectare

I Total number of crops –

NF Total number of botanic families in crops –

F p( ) A set of crops in the botanic family p –

πij The profit of crop i planted in month j CNY/hectare

pti The total planting period of crop i Month

hti The harvest period of crop i Month

ci Cost per hectare of planting crop i CNY/hectare

yi Yield per hectare of crop i kg/hectare

priceij The monthly price of crop i at time j CNY

Di Total demand of crop i kg
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x p NF j J k L1, = 1, …, , = 1, …, , = 1, …, ,
i F p r

pt

i j r k

( ) =0

( − )

i  


(7)

pt x J k L, = 1, …, ,
i

I

j

J

i ijk

=1 =1

   (8)

y a x D i I, = 1, …, .
k

L

j

J

i k ijk i

=1 =1

   (9)

Constraint (6) ensures that each farmer can only plant one crop at a specific time.
Constraint (7) requires that the crops of the same botanic family cannot be planted

sequentially.
Constraint (8) limits the total time of the crop planning of each farmer, where pti is the total

planting period of crop i, J is the total length of crop planning cycle. Thus, the total crop
planning time of farmer k does not exceed the scheduling period J.

Constraint (9) ensures that the yield of crop i produced by all farmers under the current
crop plan can exceed the crop i orders accepted by cooperatives, where yi is the yield per
hectare of crop i, ak is the area of land owned by farmer k, and Di is the total demand of crop i.

3.2.2 | Profit maximization

Heuristic searching of a feasible solution is applied. Searching is done by adding or deleting
schedule sequences. In doing so, the agents judge the status of themselves and the system:
average_check is used to check whether the profit per hectare exceeds the overall profit per
hectare; pt_check is to check whether the total planting time exceeds the limit of crop planning
period; demand_check is to check whether the demand of all crops has been met.

The calculation of average profit of the farmer k with schedulek is shown in Equation (10),
where averagek is the average profit of the farmer k with schedulek, pti is the length of planting
time of crop i.

average π t pt .= , where =k
i

schedule

it

m

i

m
=1 =1

−1k  (10)

When the farmer agents add crops to their own crop sequence, they can select according to the
net profit per month of crops profit_based or the uncompleted demand of crops demand_based.
To model the complexity of the system, Boltzmann Softmax distribution of profit or demand is used
when the agent chooses their crops.24 This method increases the randomness of agents' choice and
makes the model more comprehensive to the actual situation. The Boltzmann Softmax distribution
based on profit and uncompleted demand is shown in Equations (11) and (12), where P i j( , )profit is
the probability distribution of agent selecting crop i based on profit at time j, P i( )demand is the
probability distribution of agent selecting crop i based on uncompleted demand.

P i j π y c pt π y c pt( , ) = (( − )/ )/ (( − )/ ),profit ij i i i
i

I

ij i i i
=1

 (11)
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P i Dn Dn .( ) = /demand i

i

I

i

=1

 (12)

When the agents delete crops from their own scheduling sequence, deletion strategies are
generated, respectively. If average_check finds that its own profit is lower than the average
value, it will delete the crop with the smallest net income per month and its follow‐up in
the crop plan, which is average_based. If pt_check finds that the total planting time exceeds
the crop planning period, the crop with the longest growth period and its follow‐up are deleted,
which is called pt_based.

The algorithm can be described as below.

(a) Initialization: The crop sequence of all agents was randomly initialized to meet the con-
straints (6)–(8).

(b) Agents first do average_check. If their profit exceeds the average profit of
all the agents, they do not update their own schedule. Otherwise, they do
average_based.

(c) Agents do demand_check, if there are still some crops not meeting the demand, they do
demand_based to select crops; if not, they do profit_based to select.

(d) Agents do pt_check. If it is far less than the crop planning period, do the selection
above; if it exceeds the scheduling cycle, do pt_based; if the total planting time of the
agent k is very close to the crop planning period J, as shown in Equation (13), the update
will end.

J pt0 − 1.
i schedule

i

k

 


(13)

(e) In each iteration of the system, all agents update their crop schedule in order according to
steps (b)–(d).

The workflow is shown in Figure 2.
When solving the crop planning problem based on agent‐based method, the convergence of

the algorithm depends on whether and when the scheduling system enters into the end-
less loop.

3.3 | Parallel running

Under the framework of parallel management, when the external conditions change during
planting, the crop schedule should be adjusted according to the actual situation. Two different
scales of adjustment strategies are designed in this study.

3.3.1 | Decision on replanning

If the crop schedule needs to be adjusted during planting, the crops that agent has planted
before the current month are fixed already in its crop schedule. The coming action is re-
optimized starting from the current situation. For the actions of the agent, the average based_
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is changed to delete the crop with the smallest net income per month and its follow‐up in the
changeable crops, the pt based_ is changed to delete the crop with the longest growth period
and its follow‐up in the changeable crops. Then, the agent updates its own scheduling plan in
the iterative process according to Figure 2.

There are many scenarios of crop planning adjustment, such as adjusting crop demand,
adding or deleting crop types, and some crop prices fluctuate strongly. Accordingly, the cor-
responding parameters in the algorithm will update and make effect. For example, the ab-
normal price fluctuation will influence the price in the next few months and trigger the
following plan adjustment: if the price of crop i in the month m fluctuates, the monthly price of
the next year price′ij will change according to Equation (14). Let γ represent the level of the

abnormal fluctuation, it is calculated according to Equation (15), where realPriceim is the
abnormal price of crop i in month m. Under more general case, the price forecast model should
be updated automatically according to monitored data.

price γ price′ = (1 + ) ,ij ij (14)

γ realPrice price price .= ( − )/im im im
(15)

3.3.2 | Decision on final harvest date

The above adjustment of the crop schedule is based on the monthly average price, and the
temporal scale is a month. With the weekly average price, one can help make a finer scale of
adjustment. On the basis of the predicted weekly average price from the GBDT algorithm, the
exact harvest week during that month can be decided, so that farmers can harvest crops in the
week with the highest forecast price.

FIGURE 2 Heuristic searching of farmer's crop schedule
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4 | CASE STUDY

We worked on an agricultural cooperative with 30 farmers (L= 30). The planting area (in
hectare) of farmers in the cooperative is from the literature.25

a = [1.07, 0.87, 0.73, 1.07, 0.6, 1.2, 0.93, 1, 1.13, 0.53, 0.6, 1, 0.53, 1, 0.8, 0.93, 0.8,

0.53, 0.8, 0.8, 0.53, 0.53, 1.2, 1, 0.73, 0.8, 0.6, 0.8, 0.73, 0.73].

The types of vegetables are selected from 13 common crops in Beijing agricultural products
market, and the specific information of crops is shown in Table 2. Among them, harvest period
is mainly used to distinguish single harvest and multiple harvest crops, where “–” represents
single harvest and other numbers represent corresponding harvest period (between the first
and last harvest time); the demand can be adjusted according to actual orders of the co-
operative, but the overall demand cannot exceed the production capacity of cooperative.

The price data are from “China National Agricultural Product Price Database.” We chose
13 common crops: pakchoi, broccoli, cabbage, turnip, lettuce, Chinese watermelon, cucumber,
green bean, tomato, green pepper, potato, eggplant, and celery. The daily price records of crops
in Beijing Xinfadi Agro Wholesale Market (the biggest market in Beijing) from January 1, 2014
to October 31, 2020 are obtained from the website.

For each crop product, a total of 82 monthly average price data and 357 weekly average
price data are obtained.

5 | RESULTS

5.1 | Price data analysis and prediction

Product price of long‐term and short‐term storage is distinguished, the latter is further dis-
tinguished for fruit and leafy product (Supporting Information, Figures 1–3). Figure 3 shows
the average monthly and weekly price for potato (long‐term storage), cucumber (short‐term
storage and fruit vegetable), and pakchoi (short‐term storage and leaf vegetable),
respectively. Both show similar trends, but the weekly price shows more detail.

For the short‐term storage products like turnip, potato, and Chinese watermelon, the
average price remains relatively stable within 1 year, with a soft peak around April. For short‐
term storage fruit vegetables like cucumber, tomato, green bean, green pepper, and eggplant,
the monthly average price of these crops fluctuates greatly within 1 year, reaching the peak
around Spring Festival (usually around February) and the bottom around May (starting of
open‐field products). For short‐term leaf vegetables, such as pakchoi and lettuce, the monthly
average prices are similar to those of fruit vegetables. However, the peak is around August and
the bottom is around April.

The GBDT method is used for weekly price with and without considering the seasonal
components, both of them are tested five times, respectively. The mean value of the mean
absolute errors (MAEs) on the testing set for each crop is shown in Table 3, with (MAE_1) or
without (MAE_2) considering the seasonal components.

The MAEs of tomato, green bean, and green pepper with a strong periodicity of prices have
large differences. Thus, the prediction accuracy can be improved by stripping off the seasonal
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TABLE 2 Parameter values involved in the agent‐based model

Crop name
Botanic
family

Planting
time
(month)

Cost
(CNYha−1)

Yield
(kg ha−1)

Harvest
period
(month)

Demand
(kg)

Pakchoi Brassicaceae 1 27,000 21,000 – 100,000

Broccoli Brassicaceae 4 54,000 36,000 – 100,000

Cabbage Brassicaceae 5 30,000 45,000 – 100,000

Turnip Brassicaceae 4 21,000 49,500 – 100,000

Lettuce Compositae 2 37,500 30,000 – 100,000

Chinese
watermelon

Cucurbitaceae 3 60,000 63,000 1 150,000

Cucumber Cucurbitaceae 4 73,500 45,000 2 100,000

Green bean Leguminosae 4 75,000 25,500 2 100,000

Tomato Solanaceae 5 82,500 48,000 2 100,000

Green pepper Solanaceae 4 50,000 27,000 1 100,000

Potato Solanaceae 4 30,000 30,000 – 100,000

Eggplant Solanaceae 5 71,000 52,500 3 100,000

Celery Umbelliferae 4 27,000 31,500 – 100,000

FIGURE 3 The weekly and monthly average price for potato, cucumber, and pakchoi
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components when the seasonal components are high. For other crops the MAE_1 and MAE_2
are similar. Therefore, the predicted weekly average price is given using the GBDT with a
smaller MAE on the testing set. The real and the predicted values with smaller MAEs for each
crop are shown in Figure 4.

5.2 | Results of computational experiment

The iterations with the maximum total profit are shown in Figure 5. At the beginning, the total
profit of farmers rapidly increased and gradually reached the convergence, or fell into a dead
loop. Thus, the heuristic algorithm with 200 iterations is repeated 50 times to prevent the
iteration process falling into the endless loop. The stable values of different iterative processes
differ among the final convergences, since the algorithm may converge to a local optimal value
of the scheduling problem.

The crop schedule will be given when the total profit reached the maximum value
(Figure 5). The maximum value of the total profit is expected to be 7.5 million CNY, and the
crop schedule under this profit is shown in Figure 6. It can be seen that with heuristic
searching, the cropping plan can be produced automatically, otherwise, which is a very
time‐consuming procedure.

5.3 | Replanning on price fluctuation

Experiment is designed to show the autonomous adaption of the crop schedule. Assume
that the monthly average price of green bean increases from 7.2 to 12.5 CNY/kg at the
third month. According to the presented process, the crop schedule adjustment is carried
out to get a new crop schedule shown in Figure 7, where the gray part means the already
fixed schedule, while the blank part is recalculated plan. Due to the rising price of green
bean, the planning frequency of green bean in the new crop schedule increases
significantly.

The profit before and after crop schedule adjustment is shown in Figure 8. The profits of the
two crop schedules are identical in the first 3 months, and begin to differ in the fourth month.
Although the profit before adjustment maybe higher during middle months, the total profits of
the original and adjusted crop schedule are 7.9 and 8.8 million CNY, respectively, showing that
the algorithm can improve farmers' income based on price changes.

TABLE 3 Comparison of MAEs of various crops using the GBDT method

Crop Cucumber Tomato Pakchoi Broccoli Cabbage Turnip Lettuce

MAE_1 0.65 1.00 0.57 0.25 0.16 0.13 0.35

MAE_2 0.53 0.64 0.43 0.42 0.20 0.13 0.47

Crop Chinese watermelon Green bean Green pepper Potato Eggplant Celery

MAE_1 0.12 1.05 0.86 0.27 0.39 0.24

MAE_2 0.19 0.77 0.47 0.38 0.50 0.22

Abbreviations: GBDT, Gradient Boosting Decision Tree; MAE, mean absolute error.
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5.4 | Decision on harvest time

While the cropping plan is computed based on monthly price, at harvest time, the weekly price
is referred. The harvest time adjustment is about the decision on crop schedule according to the
weekly price. In computing the final profit, initially, for single harvest crops, the weekly price of
the last week of the growth period is chosen, and for multiple harvest crops, the weekly price
corresponding to the harvest period is used. The total profit before the harvest time adjustment
is 8.8 million CNY. Given that there is some flexibility for harvest time. That is, crop can be

FIGURE 4 The real and the predicted weekly prices for each crop

FIGURE 5 Iterative process maximizing the total profits
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harvested earlier or later without harming its quality, if the week of highest weekly price for
the single harvest crop is chosen based on price forecast, the total profit is 9.9 million CNY. The
change of the total profit before and after the adjustment of harvest time in 2019 is shown in
Figure 9.

6 | DISCUSSION

6.1 | Comparison on a descriptive model

In this study, the crop planning problem is solved based on parallel method. Compared with
the traditional optimization algorithm, the advantage of this method includes skipping the
process of analytical mathematical modeling, and being more flexible in adding constraints or
changing the parameters, which makes it easy to adapt to the environmental changes. It can
generate a suboptimal solution to meet the constraints, which is important for the the situation
where the calculation accuracy is not necessarily highest. However, the agent‐based algorithm
cannot always find the optimal solution of the problem as it may fall into a local minimum, and
there is also the problem of unstable calculation results. Therefore, the computational ex-
periments need to be repeated many times to output the scheduling plan with the best total
profit. Machine learning algorithm48,49 can be combined to deal with more complex con-
straints, which will be the further work of this study.

FIGURE 6 Crop schedule for 30 farmers in 12months, with the total profit in Figure 5
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FIGURE 7 Crop schedule after adjustment in the third month

FIGURE 8 Total profit before and after the adjustment of crop schedule

The crop planning method for cooperatives combines the price analysis and forecast of
different scales. The monthly average price data are used to solve the overall scheduling plan,
and the weekly average price data are used to adjust the harvest time of crops to maximize the
profit of the cooperative. In doing so, not only scheduling can be made with price expectation,
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but also the profit can be maximized with weekly and even daily (not introduced here) price
forecast. Previous models did not deal with finer temporal scales and can serve only at the
beginning of crop planning. The physical factors are not considered here, such as the local
climate conditions. This could be solved by coupling a knowledge model of crop growth50

containing the environment and suitable cultivar information. Given ecological, physical, and
economic information, different weights can be allocated in building the constraints.51

6.2 | Product price: The key indicator of supply–demand balance

Price contains rich information related to crop production. For the nonstorable crops, the fruit
vegetables such as cucumber, green bean, tomato, green pepper, and eggplant, the prices
fluctuate significantly with strong periodicity. This may be partly because fruit vegetables are
more dependent on the temperature and light. In winter, the planting cost is higher due to
higher energy consumption and lower growth speed. Besides, random fluctuation components
in the price are high for these crops due to the planting complexity and storage difficulty.
Pakchoi and lettuce, as fast‐growing leafy vegetables, also have obvious periodicity, possibly
due to their short growth period. Usually, these kinds of crops will be planted in large quan-
tities in the suitable growth period, which will make their prices drop obviously when they are
harvested. Therefore, the seasonal components of the price of fast‐growing leafy vegetables are
closely related to the growth period of the crop. Of all the crops, the prices of Chinese wa-
termelon, potato, and turnip are most stable. This is due to their storable characteristic. They
can maintain a relatively stable price even in the harvest period. Interestingly, the overall
vegetable prices did not fluctuate significantly in the early 2020, at the outbreak of COVID‐19.

The idea of real‐time adjusting crop schedule according to market price is similar to the
industrial system. In industry, Manufacturing Execution System (MES) is responsible for
implementing the production plan, collecting the data generated in the production process,
and reporting it to the enterprise resource planning (ERP) layer. Then the ERP layer

FIGURE 9 Total profit before and after the adjustment of harvest time in 2019
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formulates and adjusts the production plan according to the information of production and
market demand.52 However, there is a big difference between industry and agriculture, that
is, the time of the feedback of information and the adjustment of production plan. The
acquisition cycle of feedback information is too long to flexibly adjust the agricultural
scheduling plan, not to mention that the crops cannot be changed since they have been
planted on the fields. With the forecast of price data at different scales, the adjustment is
more data based. When the price of a certain crop fluctuates, the agent‐based algorithm can
be rerun to adjust the global scheduling plan. Furthermore, the harvest time of crops can be
adjusted according to the predicted weekly average price. This kind of detailed adjustment
is not involved in the other related works.25

6.3 | Price is the environment or the result of agent behavior?

Through the observation of the actual price fluctuation, it is often found that after a large
sharp rise, the price will drop seriously, even lower than the price of the same period in
previous years. This maybe partial due to the blind “catch‐up” psychology of growers. When
the price is very high, many farmers begin to plant this crop. When a large number of crops
come into the market, the price will drop seriously. Although the frequent implementation
of scheduling adjustment can better complete the price fitting, they may cause further
“catch‐up” phenomenon and affect the total profit.25 Such phenomenon can be modeled
through game theory53 where conflict may exist, and the price become an emergent
property of the system. In that case, to predict the price only is not sufficient. Instead, the
price pattern, such as low variation of price, can be set as target and guide the behavior of
individual participants through reinforcement learning. The best prediction of the future is
to create the future, especially for a human‐involved system. The agent‐based crop planning
model, as presented in this study, will be useful in computing the reward in reinforcement
learning for a target price pattern.54

6.4 | Conditions for a closed loop in parallel management

For parallel management, there must be a closed information loop, including planning, pre-
paration, production, and evaluation. While the planning system provides the recommendation
to farmers, the decision of farmers, the actual planting and harvest dates, planting area, and the
final yield are preferably noted and give feedback for evaluation. Such information should be
part of a product tracing system that can promote the reliability of the product; application of
block train techniques55,56 help further in building the transparency of field production.
Otherwise, the field activity remains black‐box as it is, which causes information inconsistency
for markets and third‐party service (e.g., insurance). Farmers may be not willing to record the
planting information by hand. In such case, making the best use of mobile phones, which are
very common in countryside, can provide information with little effort, such as the land use.57

However, in practice, a challenge is that farmers may not accept the recommended planning
because of the lack of trust. Delivering explainable recommendation instead of simply the result
could increase the acceptance as proved in other domain.58
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7 | CONCLUSION

The crop planning problem is solved under the framework of parallel management.
The cropping plan is produced during planting based on two different temporal scales of
price. The monthly average price is used to guide the formulation of the whole cropping plan; if
the monthly average price fluctuates sharply, the agent‐based algorithm can update the fol-
lowing plan. The predicted weekly average price is used to decide the harvest time of the crop,
to ensure that the crops are harvested at the highest price. Better profit is achieved with such
adaptive planning. This method can support agricultural cooperatives with decision making on
crop planning, by making full use of the price information.
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