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Abstract: Due to the huge demand for textile production in China, fabric defect detection is partic-
ularly attractive. At present, an increasing number of supervised deep-learning methods are being 
applied in surface defect detection. However, the annotation of datasets in industrial settings often 
depends on professional inspectors. Moreover, the methods based on supervised learning require a 
lot of annotation, which consumes a great deal of time and costs. In this paper, an approach based 
on self-feature comparison (SFC) was employed that accurately located and segmented fabric tex-
ture images to find anomalies with unsupervised learning. The SFC architecture contained the self-
feature reconstruction module and the self-feature distillation. Accurate fiber anomaly location and 
segmentation were generated based on these two modules. Compared with the traditional methods 
that operate in image space, the comparison of feature space can better locate the anomalies of fiber 
texture surfaces. Evaluations were performed on the three publicly available databases. The results 
indicated that our method performed well compared with other methods, and had excellent defect 
detection ability in the collected textile images. In addition, the visual results showed that our re-
sults can be used as a pixel-level candidate label. 
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1. Introduction 
The textile industry occupies a significant proportion of China’s industry, and its 

products are widely used in homes, clothing, construction, and even aerospace. In the 
textile industry, the surface quality of products is an important factor that affects their 
price and grade evaluation [1]. Therefore, in the manufacturing process, the industry ar-
ranges an inspection process to ensure that flawless products are delivered to merchants 
or consumers. The traditional detection methods use a human to detect the surface de-
fects, which is not only slow, but also cannot ensure the consistency of the detection effect. 
With the popularization of automatic product lines, automatic fabric defect detection 
equipment based on machine vision is increasingly being applied in fabric defect detec-
tion. 

The core of surface defect detection based on industrial vision is to extract the fea-
tures related to defects from fabric images. However, the visual inspection of surface de-
fects is still difficult due to the diverse sizes, varying brightness, low contrast, complex 
features, and inadequate defect samples for different products. In the past few decades, 
researchers have proposed many surface defect inspection methods to overcome these 
difficulties. These traditional methods rely heavily on handcrafted features. In other 
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words, with the increase of defect types, these traditional methods that rely on prior ex-
perience will not satisfy the automation needs of the industry. 

At present, the data-driven deep-learning method is widely used in many defect de-
tection fields. This method can be divided into three categories: classification, detection, 
and segmentation [2]. Moreover, researchers have attempted to apply methods based on 
convolution neural networks to fabric defect detection in industrial settings. Jing et al. [3] 
proposed an extremely efficient convolutional neural network, Mobile-Unet [4], to achieve 
end-to-end fabric defect segmentation. Mobile-Unet introduced depthwise separable con-
volution, which dramatically reduced the complexity cost and model size of the network. 
Zhu et al. [5] designed the modified densenet [6] for automatic fabric defect classification 
with edge computing. Wu et al. [7] proposed a wide-and-light network structure based 
on Faster R-CNN for detecting common fabric defects. The feature extraction capability 
for fabric defects was enhanced by a multiscale dilated convolution kernel. In [8], a cas-
caded mixed feature pyramid network was proposed for guiding the localization of fabric 
defects. Although the above methods achieved good detection results, training these mod-
els was required to be supervised in the form of annotations. These annotations can be at 
the image level, bounding box level, or even pixel level, which will lead to some disad-
vantages. First, annotations in supervised methods often require an experienced inspector, 
and pixel-level annotations require a lot of time and costs. Secondly, these methods can 
only map existing defect types to known defect types, and cannot handle unknown types 
of anomalies. Finally, the difficulty of collecting flawless images is much lower than that 
of defective images in industrial sites. Hence, some fabric defect detection methods based 
on unsupervised learning have also attracted the interest of researchers, such as Markov 
random field [9], low-rank decomposition [10], and sparse dictionary [11]. However, these 
shallow-feature networks limit the detection ability of surface defects, resulting in the in-
ability to adapt to complex and real industrial environments. 

In this paper, we propose an unsupervised fabric defect detection method based 
on feature-compared training on defect-free samples. To avoid using a large number 
of training samples, feature extraction based on the pretrained model was applied. 
This approach could directly capture the normal variability of training data. Then, the 
obtained features went through the SFC architecture, which contained the self-feature 
reconstruction module (SRM) and the self-feature distillation (SFD). The surface de-
fects were obtained by using combined judgment criteria based on feature reconstruc-
tion errors and feature distillation errors. Compared with the traditional methods op-
erating in the image space, the comparison of feature space can better locate the anom-
alies of fiber texture surfaces. In this work, a combined feature reconstruction and 
feature distillation were utilized, and its normal features were learned simultaneously 
through a direct network and an indirect network. 

The rest of this paper is organized as follows. In Section 2, the related works re-
garding unsupervised learning for anomaly detection are introduced and summarized. 
In Section 3, the proposed network is described and discussed in detail. In Section 4, 
experiments are designed to demonstrate the performance of our method, which in-
cludes the fabric datasets, experimental setups, results with comparative study, and 
extended application. Finally, we conclude the paper in Section 5. 

2. Related Works 
In this section, the related works regarding popular unsupervised learning for anom-

aly detection are introduced and discussed. 
Anomaly detection is used to find outlier abnormal samples in a group of normal 

samples. Such methods attempt to generate defect-free images with autoencoders (AE) 
or generative adversarial networks (GANs) to determine an abnormal area by com-
paring input images and output images. Bergman et al. [12] proposed a modified AE 
by introducing the SSIM index into the loss function. This enforced the network to 
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yield a more real image. Mei et al. [13] designed a multiscale denoising encoder based 
on unsupervised learning to reconstruct normal features in textile images. The recon-
struction errors were utilized to realize automatic defect detection. Liu et al. [14] de-
signed a multilevel unsupervised model to reconstruct realistic surface fabric defects 
by using the generation characteristics of GANs. In [15], a GAN-based anomaly de-
tection technique named AnoGAN was proposed. Some methods based on varia-
tional AE were also proposed for anomaly detection, including FAVAE [16], VAE-
grad [17], and VE-VAE [18]. In the industrial scenario, these anomaly detection meth-
ods based on generating models are limited to the restrictions of training samples. 
They often have difficulties when excavating deep-level features, and only pay atten-
tion to the local pixel-level features, resulting in difficulties in achieving good results. 

Some researchers transfer the direction of anomaly detection from the compari-
son in the image level to the feature level. Cohen et al. [19] first attempted to extract 
features from pretrained models, and used KNN to compare features. In [20], anom-
aly detection based on feature reconstruction was proposed. However, it required ad-
ditional feature fusion modules. Bergman et al. [21] proposed the largest industrial 
anomaly detection dataset, MVTec, and designed a method based on knowledge dis-
tillation for feature comparison. In order to improve the accuracy of anomaly locali-
zation, the input image in the model had to be divided into patches, which greatly 
increased the time and costs. 

Different from the current conventional anomaly detection methods, our novel 
approach mainly focused on anomaly localization (i.e., segmentation) instead of 
anomaly detection (classification level). Moreover, it put forward the idea of two 
anomaly comparison modules in the feature space instead of image space. Our 
method was evaluated on the carpet database, and showed the abilities of unsuper-
vised methods in surface defect detection. The extensive experimental results demon-
strated the effectiveness of the proposed method in other industrial applications. 

3. The Proposed SFC Framework 
The proposed framework SFC had two parts, which are presented in Figure 1. The 

two parts were the pretrained feature extraction and the feature comparison. In the pre-
trained feature extraction part, the normal samples without defects were input into the 
network for feature extraction. Then, the extracted features were employed as the input 
for the next part. The feature comparison part contained the SRM and SFD. In the training 
stage, the purpose of these two modules was to model the feature representation of nor-
mal samples, ensuring that the input and output of the module were the same. The SRM 
was an AE-based reconstruction network to reconstruct the input feature. The SFD net-
work was based on a knowledge-distillation network. Its structure was a simplified ver-
sion of the pretrained network, and was also used to mimic the input features. In the in-
ference stage, the features differed between the input and output of the SRM, representing 
the anomaly score. Moreover, the features that differed between the pretrained feature 
extraction and output of the SFD also represented the anomaly score. Both components of 
the SFC framework were trained simultaneously. 

Next, we will introduce various component modules in the model in detail, including 
feature extraction, SRM, SFD, and the final module for obtaining anomaly scoring, which 
are presented in Section 3.1, Section 3.2, Section 3.3, and the final Section 3.5. The loss 
function of the network is described in Section 3.4. 
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Figure 1. The pipeline of the SFC architecture. 

3.1. Pretrained Deep Feature Extraction 
In the image-reconstruction-based methods [15–17], the features were trained by the 

GAN and the encoder in the AE. Due to few training samples being available in industrial 
scenarios, directly using network training to extract features was not a sensible approach. 
The image-based pretrained model was a very effective feature extractor, and the features 
had generalization ability in different scenes. We used unlabeled training data x = xk ∈ X 
sampled from the manifold X of images showing normal anatomy. With n = 1, 2,..., N, we 
employed a collection of N fabric images that exclusively depicted normal anatomy, 
where Xn ∈ Ru×v is an intensity image of size u × v. We defined the feature extractor as F. 
When a training image xk is input, the corresponding extracted features can be expressed 
as: 

F  = F(xk) (1) 

The resolution of the obtaining features F  is h×w×d, and d represents the dimension 
on the feature channel. The feature maps were processed by extensive convolutional and 
nonlinear operations. As the pretrained weights were fixed, the h×w×d dimension fea-
tures could be quickly obtained, and no additional network training was required. In the 
pretrained network, the size of each critical layer Fi extracted was inconsistent. To ensure 
that the features extracted from each critical layer Fi could be fused, it was often necessary 
to use the resize operation. Generally, the feature maps after the pooling operation were 
selected as F i. The final F i was generated by upsampling and concentrated into the final 
feature tensor F. Moreover, each position in the original input image xk corresponded to 
the position in F (i,j) after feature extraction. There was only a scaling relationship, which 
was convenient for exact anomaly localization. 

3.2. Self-Feature Reconstruction Module 
Motivated by the image-reconstruction method [18,20], we trained a feature recon-

struction to automatically reconstruct F. F  represented a feature distribution that was 
used to describe the distribution of normal features in defect-free sample X. During AE 
training, the network was optimized for the difference between the input and output. 
Given input F  from feature space∈Rh×w×d of dimension d, the auto-encoder was em-
ployed to produce features that were as close as possible to the input. In this step, the SRM 
attempted to reconstruct features of the normal sample distribution. 

The detailed network structure in the SRM is shown in Figure 2. In order to ensure 
that the size information of the image was not lost, 1 × 1 convolution was utilized in the 
network. The encoding unit in the SRM contained three convolution layers that were com-
pressed in the bottleneck layer. The size of the input feature was constant, but the number 
of channels gradually compressed from d to d3. In the decoding unit, three convolution 
layers were also employed, and the number of channels of the three convolution layers 
corresponded to the encoding unit. This ensured that the SRM could restore input features 
F. 
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Figure 2. The architecture of the SRM. 

3.3. Self-Feature Distillation 
SFD aims to train a student network, S, that uses a pretrained network to locate 

anomalies in images. It is trained to mimic the comprehensive behavior of a teacher net-
work T. In order to reduce the network parameters, most of the early knowledge distilla-
tion methods migrate the information in the complex network to the network with smaller 
parameters, and ensure its performance is unchanged. These methods are essentially 
based on the consistent output of large network T and small network S. In the SFD, the 
intermediate feature of F on the normal training data is transferred to the student network 
instead of the final output. 

Since F  was obtained from several critical blocks, the SFD promoted the student 
network to gain F’s knowledge on normal samples by conforming its intermediate repre-
sentations in layers to F ’s representations. Hence, i represented the i-th intermediate 
layer in the networks, and the source features of that intermediate layer as F i and the 
cloner’s features as Si. The feature maps after the pooling operation were selected as Si. 
The final S was generated by concentrating the branch feature Si. Our knowledge distilla-
tion concept was not to ensure that the final outputs of T and S were consistent, but to 
make their intermediate feature outputs consistent. 

In this paper, VGG19 was selected for the pretrained feature extraction network. As 
can be seen in Figure 1, the three feature maps from different layers constituted a final 
extracted feature F ‘. The features of different layers represented different semantic infor-
mation. Compared to the front layer, the semantic information of the rear layer was more 
abundant. The structure of the SFD is shown in Figure 3.  

Exacted feature

Exacted feature

VGG19

SFD

F 

F '

Compare
block1 2 3 4 5

 
Figure 3. The architecture of the SFD. 

In order to better simulate the output of T, the structure of S was not consistent 
with T. S used a simplified convolutional neural network. It only needed to ensure 
that the output of the key intermediate feature layer was consistent with the output 
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of the teacher network. As the teacher network was VGG19, we selected the three 
convolutional block layers to conduct the knowledge distillation. The names of the 
three layers in the VGG19 were block3_conv4, block4_conv4, and block5_conv4. As 
shown in Figure 3, each layer feature was upsampled and then concentrated into the 
final feature tensor. The detailed structure of the student network is shown in Table 1. 

Table 1. The structure of the student network in the SFD. 

Layer Number of Filters Kernel Size Stride 
Input - - - 
Conv1 64 3 × 3 1 
Conv2 64 3 × 3 1 

Max pool1  - - 2 
Conv3 64 3 × 3 1 
Conv4 256 3 × 3 1 

Max pool2  - - 2 
Conv5 64 3 × 3 1 
Conv6 64 3 × 3 1 
Conv7 512 3 × 3 1 

Max pool3  - - 2 
Conv8 64 3 × 3 1 
Conv9 64 3 × 3 1 
Conv10 512 3 × 3 1 

BatchNormalization was used after each convolution layer for convergence stability. 
Three layers in the student net—Max pool2, Max pool3, and Conv10—were used for 
matching the teacher networks. The parameters of T came from the pretraining model, 
and could remain unchanged. In the training process of the SFD, the parameters of S were 
optimized.  

3.4. Training Loss 
Two losses were used to optimize the proposed network. Lsrm and Lsfd were each as-

pect from the SRM and SFD. The first, Lsrm, attempted to optimize the similarity between 
F and its reconstruction feature F r. The loss function for guiding the training of SRM is: 

∑=
N

i
srmL ||F （xi）-F r（xi）||2 (2) 

where ||·|| is the L2 norm, and xi is the input image.  
The SFD was used to optimize the composite intermediate layers of T and S, and 

ensure that the outputs of S and T were as close as possible. Hence, Lsfd is expressed as: 

∑=
N

i
sfdL ||F -F ‘||2 (3) 

By considering the two parts losses, Ltotal is formulated as:  

sfdsrmtotal λLLL +=  (4) 

where λ in the formula adjusts the contributions of the different parts. In Section 4.4, we 
will analyze the influence of different λ values on the anomaly segmentation effect in the 
dataset. 
 

3.5. Detection of Fabric Anomalies 
After the training phase, the SFC had learned the ability to map features of normal 

samples into themselves in the SRM. Moreover, the SFD also had the ability to reproduce 
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the features of normal samples. In the test phase, the abnormal score could be obtained by 
calculating the affinity between the F and its reconstruction or distillation results. The 
anomaly scoring could be obtained from the reconstruction branch and distillation branch. 
The final anomaly heatmap was produced by the fusion of two anomaly scores: 

S(xi) = β1UP(||F -F r||2) + β2UP(||F -F ‘||2) (5) 

where xi is the test sample; β1 and β2 represent the influence coefficient of different 
branches on the final anomaly score; and UP(.) is the upsampling process, which em-
ployed a bilinear interpolation operation to enlarge the difference to the size of the input. 

4. Experiments 
To evaluate the performance of the proposed method, several sets of experiments 

were conducted. In this section, the experimental datasets and implementation details are 
given first. Then, the overall performance of our method is compared with several state-
of-the-art models. Third, the ablation analysis of the model is discussed. Finally, we de-
ploy the model in a real industrial environment for practical usage. 

In our experiments, the classical fabric carpet dataset in MVTec AD was utilized. The 
carpet dataset is a real-world dataset composed of five different industrial defect types, 
and defects were manually generated that occur in real-world industrial inspection sce-
narios. It has been widely used for performance verification. The training set contained 
280 defect-free images. 89 defective images of five defect types (color, cut, hole, metal_con-
tamination, and thread), and 28 defect-free images were included in the testing sets. An 
image of an example for each defect type is shown in Figure 4. For quantitative compari-
son of the performances of the different methods, a threshold-independent evaluation in-
dicator, the pixel-level area under the receiver operating characteristic curve (AUROC), 
was adopted; this indicator is widely used for performance evaluation of anomaly locali-
zation. All the experiments were conducted with the deep-learning toolbox Keras with an 
NVIDIA 3090 GPU. The main architecture of the SFC in the experiment is shown in Figure 
1. All input images were scaled to 256 × 256 pixels. 

good

color cut  hole metal_contamination thread

good good good good

 
Figure 4. Examples of good and defective images from the carpet dataset. 
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4.1. Overall Performance Comparison 
To verify the effect of the proposed method more fully, the segmentation perfor-

mance of the proposed method was compared with several state-of-the-art methods, in-
cluding autoencoders (AE-SSIM [12] and multiscale AE [13]), a generative adversarial net-
work (AnoGAN [15]), variational methods (FAVAE [16], VAE-GRAD [17], and VE-VAE 
[18]) and other superior unsupervised algorithms (SPADE [19], DFR [20], and US [21]). 
The results of the methods [12,13,15–21] were taken from the literature. 

The segmentation results of these methods on the carpet dataset are exhibited in Ta-
ble 2. The table reports the segmentation results, which showed that margins of 0.80% and 
1.30% were achieved compared with the second-best and third-best methods. The pro-
posed method handled the fabric textured surfaces well, demonstrating the superiority 
and stability of our method and its potential to be a unified model for defect inspection in 
industrial applications. 

Table 2. Results for the carpet dataset (pixel AUROC). 

Method Pixel AUROC 
AE-SSIM [12] 87.0 

Multiscale AE [13] 89.0 
AnoGAN [15] 54.0 
FAVAE [16] 96.0 

VAE-grad [17] 74.0 
VE-VAE [18] 78.0 
SPADE [19] 97.5 

DFR [20] 97.0 
US [21] 93.5 

Ours 98.3 

4.2. Visual Inspection Result 
The visual inspection results of our proposed method using the carpet dataset are 

shown in Figure 5. The proposed method could locate the anomaly accurately on five 
classical defects. It can be seen that the thin texture changes could be captured well by our 
model. This indicated that our approach has application prospects in real scenarios. 
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Figure 5. Inspection results of our proposed method using the carpet dataset. The first row to the 
last row represent the color, cut, hole, metal_contamination, and thread defects, respectively. The 
first column is the original image, the second column is the ground truth, and the third column is 
an anomaly map. 

4.3. Influence of a Single Module 
Previous studies showed that the single reconstruction module or distillation module 

had the fine discrimination ability of anomaly segmentation. The proposed method ex-
perimentally explored the effect of combination modules for fine industrial anomaly seg-
mentation. Table 3 shows the influence of a single module on anomaly localization.  

Table 3. Influence of a single module on the SFC. 

Method Pixel AUROC 
Single SRM 98.1 
Single SFD 97.4 

Ours 98.3 

As shown in Table 3, the single SFD showed the weakest discriminability, while the 
combination modules had the highest discriminability. However, the effect of the SRM 
module exceeded that of the SFD. This was because the reconstruction branch was highly 
discriminative compared to the distillation branch. The method of distillation was only 
mimicking input features to some extent, but it ignored subtle abnormalities. 

4.4. Influence of the Hyperparameter λ 
The hyperparameter λ was used to balance the relative contributions of the SRM and 

SFD in the training phase. The best value was achieved when the data with normal fea-
tures could be well modeled. To illustrate the influence of λ intuitively, the carpet dataset 
was employed to perform the verification. Table 4 shows the influence of hyperparameter 
λ. When the λ increased, the inspection performance of the carpet increased smoothly. 
This occurred because the loss of the SRM dominated the entire loss. The loss of the SFD 
can be regarded as an auxiliary loss. 

Table 4. The influence of hyperparameter λ in the carpet dataset. 

λ 0.001 0.01 0.1 1 
Pixel AUROC 98.1 98.1 98.3 98.3 

4.5. Setting of the Hyperparameter βi in Equation (5) 
The fusion mechanism aimed to take advantage of the anomaly representation in dif-

ferent feature spaces. The values of βi, which represented the significance of SRM and SFD, 
were used to obtain the fusion in Equation (5). This was a critical parameter that affected 
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the inspection result. We aimed to investigate the sensitivity of the combination of βi. Ta-
ble 5 shows the outcomes of various combinations. It can be seen in Table 5 that the fusion 
experimental effect was generally better than that of a single branch. The experimental 
results showed that fusion could improve segmentation performance. 

Table 5. Results of various βi combinations in the carpet dataset. “√” means the value of βi was 1, 
otherwise it was set to 0. 

β1 β2 Pixel AUROC 
√ - 98.2 
- √ 97.6 
√ √ 98.3 

4.6. Applications 
To further assess its practical performance, we applied our method to two compli-

cated fabric datasets in real industrial environments established by the AOI equipment.  
The star-patterned fabric dataset [22] was published by H.Y.T. Ngan and G.K.H. 

Pang of the University of Hong Kong, and is composed of 50 images acquired with an 
AGFA Scan1236 scanner in 2003. The images in the dataset can be regarded as a composite 
texture of stars according to periodicity. The training dataset contains 25 normal images 
without defects. At the same time, the test set contains 25 defect images in five categories. 
The size, shape, and type of defects in different defect images were different, which was 
quite different from the periodic texture of the background. Anomalies in target images 
included broken-end, hole, netting-multiple, thick-bar, and thin-bar. All images used in 
the evaluations are 256 × 256 pixels in gray-value level scale. The details are shown in 
Table 6. 

The color fabric dataset [23] was released by the Tianchi platform [24]. Since the orig-
inal dataset was used for the object detection task, we produced a new dataset for unsu-
pervised fabric defect localization. It consisted of 168 nondefect samples for training. The 
test sample included 200 defective samples and 24 defect-free samples. The image size in 
all datasets was 256 × 256 pixels. The anomalies in the target images were varied, includ-
ing long-span scratches and small dots. Pixel-level labeled ground-truth images were pro-
vided for evaluation. Accurately locating anomalies on a complicated actual texture back-
ground was a difficult challenge. The details are shown in Table 7. 

Table 6. Star-patterned fabric dataset and inspection results. 

Dataset 
Training 
Images 

Testing Images Pixel 
AUCROC 

Time/ms 
Broken-End Hole Netting-Multiple Thick-Bar Thin-Bar 

Star-patterned 
fabric 

25 5 5 5 5 5 99.0 120 

Table 7. Color fabric dataset and inspection results. 

Dataset 
Training 
Images 

Testing Images Pixel 
AUCROC 

Time/ms 
Defect Good 

Color fabric 168 200 24 87.6 200 

The anomaly maps of the two datasets are described in Figures 6 and 7, demonstrat-
ing the great potential of our method in industrial applications. Our approach was not 
only suitable for a uniform texture background, but also adapted to defect detection with 
a challenging nonuniform color background. 
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Figure 6. Inspection results of our proposed method on the star-patterned fabric dataset. The first 
row to the last row represent the broken-end, hole, netting-multiple, thick-bar, and thin-bar defects, 
respectively. The first column is the original image, the second column is the ground truth, and the 
third column is an anomaly map. 
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Figure 7. Inspection results of our proposed method on the color fabric dataset. The first two rows represent a tiny dot 
defect, and the latter two rows represent large-span scratch defects. The first column is the original image, the second 
column is the ground truth, and the third column is an anomaly map. 

In addition, the comparison of different methods (AE-SSIM [12], multiscale AE [13], 
FAVAE [16], SPADE [19], and US [21]) used on the above two datasets is shown in Figure 
8. We compared our method with AE-SSIM [12] and multiscale AE [13] using their pub-
licly official code. Since the official projects are not publicly available, we used third-party 
implementations for FAVAE [16], SPADE [19], and US [21]. 

 
Figure 8. The comparison of different methods used on the two datasets. 

As for the star-patterned fabric dataset, three methods, including FAVAE [16], 
SPADE [19], and US [21], also achieved a more than 97% pixel AUROC value. In the color 
fabric dataset, the variations between the images were large, our method achieved the best 
results. Although the FAVAE [16] could obtain internal defect-free features, when the ex-
ternal imaging difference between defect-free images was large, tiny defects were covered 
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up in complex textures, resulting in false detection. The pixel AUROC of FAVAE [16] was 
not over 75%. SPADE [19] and US [21] were lower than our method in the color fabric 
dataset, at 2.1% and 3.3%, respectively. Overall, the proposed SFC method achieved a 
comparable result against the state-of-the-art methods. 

5. Conclusions 
A unified model for texture defect inspection in industrial applications was designed 

in this paper, and was driven in an unsupervised learning fashion. This method was 
trained on only a few defect-free samples. It utilized the SFC architecture, which contained 
the SRM and the SFD. The anomalies were detected via a combined anomaly score based 
on feature reconstruction and feature distillation. Compared with the traditional methods 
operating in image space, the comparison of feature space could better locate the anoma-
lies of fiber texture surfaces. Extensive experimental results showed that the proposed 
method achieved state-of-the-art inspection performance. In the future, we will apply our 
methods to more industrial surfaces, not just fabric surfaces. 
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