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Abstract
Purpose – Human-like musculoskeletal robots can fulfill flexible movement and manipulation with the help of multi joints and actuators. However,
in general, sophisticated structures, accurate sensors and well-designed control are all necessary for a musculoskeletal robot to achieve high-
precision movement. How to realize the reliable and accurate movement of the robot under the condition of limited sensing and control accuracy is
still a bottleneck problem. This paper aims to improve the movement performance of musculoskeletal system by bio-inspired method.
Design/methodology/approach – Inspired by two kinds of natural constraints, the convergent force field found in neuroscience and attractive
region in the environment found in information science, the authors proposed a structure transforming optimization algorithm for constructing
constraint force field in musculoskeletal robots. Due to the characteristics of rigid-flexible coupling and variable structures, a constraint force field
can be constructed in the task space of the musculoskeletal robot by optimizing the arrangement of muscles.
Findings – With the help of the constraint force field, the robot can complete precise and robust movement with constant control signals, which
brings in the possibility to reduce the requirement of sensing feedback during the motion control of the robot. Experiments are conducted on a
musculoskeletal model to evaluate the performance of the proposed method in movement accuracy, noise robustness and structure sensitivity.
Originality/value – A novel concept, constraint force field, is proposed to realize high-precision movements of musculoskeletal robots. It provides a
new theoretical basis for improving the performance of robotic manipulation such as assembly and grasping under the condition that the accuracy of
control and sensory are limited.
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1. Introduction

Since the first industrial robot came online in 1962, more and
more robot systems have entered the industrial production line,
replacing workers to complete the repetitive, dangerous and
heavy-load work, continuously creating remarkable production
benefits for manufacturing enterprises (Peng et al., 2021;
Huang et al., 2021). With the development of information
science and mechanical engineering, robots are expected to be
applied in a wider range of fields, such as high precision
manufacturing (Huang et al., 2020), military mission (Shen
et al., 2021) and medical service (Wang et al., 2021), which
puts forward higher requirements for robots to achieve
high precision and dexterous operation in complex and
unstructured scenes. However, the versatility of the robot at
present is still far from approaching people’s expectations.

As a comparison, the motor system of organisms in nature
possesses extraordinary movement capacity. The rigid-flexible
coupling characteristic of the musculoskeletal robot guarantees
the dexterity of movement and the redundancy of degree
of freedom (DOF) lays the foundation of the versatility of
biological systems – the ability to complete a variety of tasks
in dynamic and complex environments. Therefore, how to
improve the performance of robots by referring to the superior
characteristics of biological motion systems has become an
essential research field.
However, introducing biological characteristics into robots

is not straightforward. Although versatility is guaranteed,
the redundancy of the musculoskeletal robot also brings in
complex computational problems. Due to the number of DOFs
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of the musculoskeletal robot being much larger than that
needed for action, the control patterns recruited for a given
motion are infinite in theory, leading to an “ill-posed”
computational problem. As a preliminary exploration, some
research works have been conducted to solve the control
problem of the musculoskeletal system with redundant
actuators. Dong et al. put forward an efficient muscle coordination
method to adaptively distribute the load throughout the muscles
(Dong et al., 2015). The method is able to keep high
computational efficiency with the increase of muscle number.
Chen et al. proposed a muscle synergy-based controller to realize
human-likemanipulation in amusculoskeletal system (Chen et al.,
2019). Huang et al. combined the mechanism of emotion
modulation to the learning process of a recurrent neural network,
which improves the motion learning performance of a
musculoskeletalmodel in reaching tasks (Huang et al., 2018).
In comparison, organisms have an inborn talent for

efficiently coping with such problems. A newborn wildebeest is
able to walk shortly after birth and the spinal cord of a headless
frog can organize complex trajectories and rapidly correct for
perturbations (Hart and Giszter, 2010; Kargo and Giszter,
2000a). These remarkable motion abilities mainly benefit from
the well-developed regulatory mechanisms of the brain, as well
as the synergies of the spinal cord and muscles. But how the
motor system settles such complex computational problems is
still a matter of concern.
Many neuronal circuitries and mechanisms underlying

motion control have been proposed in previous research (Chen
and Qiao, 2020; Qiao et al., 2021). Some perspectives believed
that to generate voluntary movements in different conditions,
the central nervous system not only relies on the complex
computation in the neuron system in the brain but also takes
full advantage of the biomechanical properties of the limb, such
as the mechanical properties of the muscles and the spatial
organization of the circuits of the spinal cord (Bizzi et al., 1991).
For example, Elwood Henneman proposed the recruitment
principle of motorneurons during movement, which is known
as the Henneman Size Principle (Liggett et al., 2010). This
principle proposed that at the early stage of the movement,
muscles with low innervation ratio are first recruited to provide
small but enduring force, while the muscles with high
innervation ratio are recruited later to provide explosive but
transient force, so as to maintain the stability of posture and
variety of movement. Another typical example is knee-jerk
reactions (Michael et al., 2009). When a muscle is disturbed by
an external disturbance and causes an unexpected change in
length, alpha motor neurons that originate from the spinal cord
will generate a signal to activate the muscle to quickly regain its
original length. This mechanism helps humans maintain the
stability of their limbs when unexpected disturbances occur.
One of the most attractive ideas is the equilibrium point

hypothesis (Bizzi et al., 1991; Giszter et al., 1993). This
hypothesis describes that the microstimulation at a particular
interneuronal zone in the spinal cord will elicit force of limb,
whose direction and magnitude are differed depending on the
position of the limb in space and there is a particular point,
called equilibrium point, that the force vectors converged on it
and the force elicited at it was zero (Georgopoulos, 1994).
Experiments performed in surgically altered frogs have
provided neurophysiological evidence for the equilibrium point

hypothesis. Specifically, in the experiment, the spinal cord of
the frog was first disconnected from the brainstem by surgery.
The isometric forces generated bymuscles of the leg at different
ankle locations were measured when subjected to the same
spinal micro-stimulation. The spatial distribution of the
isometric forces generated by the micro-stimulation presented
a well-defined pattern, called convergent force field, which was
characterized by a single equilibrium point to which the force
vectors converged. The equilibrium point indicated the
position at which the leg of the experimental frog would be at a
steady-state if it were free to move. These experimental results
have suggested that the spinal circuitry can produce precisely
balanced contractions in groups of muscles when it was
activated. The limb was directed toward an equilibrium point
in space with the forces generated by synergistic contractions of
muscles (Bizzi et al., 1998).
The equilibrium point hypothesis was thought to be

significant for the control of voluntary movements (Bizzi et al.,
1991). The cooperation of muscle’s elastic properties and
activation of spinal circuitry internalize as the intrinsic
characteristics of the motion system, which can help the brain
enhance the understanding of the body itself. Research on the
movement of a single joint demonstrated that the formation
of arm trajectories with moderate velocities is able to be
completed by specifying a series of equilibrium positions of the
limb (Bizzi et al., 1982). By analyzing trajectory correction
responses during hindlimb wiping in spinal frogs, William and
Simon confirmed that the vector summation of force-field
primitives can produce a large range of dynamic force-field
structures associated with limb behaviors (Kargo and Giszter,
2000b). Corey B. Hart et al. verified that dedicated sets of
interneurons of the spinal cord relate significantly better to the
spinal motor primitives than to the activation of the individual
muscles (Hart andGiszter, 2010).
The hypothesis of force field with equilibrium point is similar

to previous research in attractive region in environment
(ARIE). The ARIE is an innovative concept for realizing high-
precision manipulation with a low-precision system, which is
initially proposed by Qiao (2000). It is a kind of constrained
region formed by the environment in the configuration space of
the robotic system, from any point of which the uncertainty of
the system can be eliminated by a state-independent input
(Qiao et al., 2015). The concept of ARIE can be easily
understood by the example of a bean-bowl system. Imagine
there is a bean in a bowl. Nomatter where the initial position of
the bean is, it will always drop into the bowl and finally stay at
the bottom of the bowl under the effect of gravity and friction.
Suppose the bean represents the state of the system and the
bowl represents the environmental constraints, if there is a
state-independent input, such as gravity, can drive the state of
the system converging to a stable state in the “bowl,” then such
a “bowl” is called the ARIE. Inspired by this physical
phenomenon, the concept of ARIE provides a theoretical
foundation for realizing high-precision manipulation with a
low-precision system (Li and Qiao, 2019). Su et al. proposed a
strategy based on the ARIE for the assembly of an unfixed
piston-peg-rod of an automotive engine with a tolerance of
approximately 2–7.5mm (Su et al., 2012). With the help of the
ARIE, Matteo Gilli et al. used Barrett Technology’s WAM
Arm, a 7 DOF robotic manipulator with repeatability of 2mm,
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to complete a peg-in-hole insertion task with an accuracy of
0.21mm (Gilli et al., 2014). Li et al. proposed a learning-based
ARIE to realize robust form-closure grasping planning with a 4-
pin gripper (Li et al., 2020).
Based on the research results from the fields of neuroscience

and information science, we found that the convergent force
field of muscle and attractive region in the environment are very
similar: they all have a certain stable point of the system state
and the system can converge to the stable point with state-
independent control inputs. Therefore, how to find a similar
constraint field inmusculoskeletal robots and further leverage it
to achieve robust and accurate movement becomes the focus of
this paper.
In this work, inspired by the two kinds of natural constraints,

the convergent force field found in neuroscience and attractive
region in the environment found in information science, we
proposed a structure transforming optimization algorithm for
constructing a new kind of constraint in musculoskeletal robots,
called constraint force field (CFF). For the musculoskeletal
robotic system with rigid-flexible coupling and variable
structures, by optimizing the arrangements of muscles, a CFF
can be constructed at any specified position in the task space,
which can help the robot to complete precise and robust
movement with constant control signals. The leverage of the
CFF brings in the possibility to reduce the requirement of
sensing feedback during the motion control of the robot. The
main contributions of this paper are listed as follows.
� The dynamic model of the musculoskeletal robot with the

variable arrangement of muscles is built. To describe
the structure variation of the musculoskeletal model,
the attachment points of muscles on the skeletons are
set as independent variables. With the variation of the
position of attachment points, the functions of muscle
length, muscle force and muscle torque are given.

� A structure-transforming optimization algorithm for
constructing CFF in the task space of the musculoskeletal
robot is proposed. Based on the dynamic model of the
musculoskeletal robot with variable arrangements of
muscles, a nonlinear-constrained optimization problem
about the force field formed by the terminal force of the
robot is constructed. By solving the optimization problem,
optimal arrangements of muscles could be found to
construct a CFF, which can help the robot accurately
move to the specified position with constant control
signals.

� The effectiveness of the CFF is verified by theoretical
proof and simulation experiments. The motion stability of
the musculoskeletal robot in the CFF is proved based on
the Lyapunov stability theorem. A musculoskeletal model
with 2 DOFs and 4 muscles is used to verify the wide
existence of the CFF in the task space of the system. The
effectiveness of the CFF in improving movement accuracy
and robustness to control noise is validated. The sensitivity
of the CFF to structure precision is discussed.

The rest of this paper is organized as follows. The theory and
algorithm to construct CFF in musculoskeletal robotic systems
are introduced in Section 2. The effectiveness of the proposed
method is analyzed in Section 3. Section 4 presents the
experimental results to demonstrate the performance of the

proposed method. Conclusion and future work are introduced
in Section 5.

2. Construction of constraint force field

2.1 Dynamics of themusculoskeletal model with
variablemuscles
The main difference between the human motor system and the
traditional robot is that it uses highly redundant and flexible
muscles as actuators. Muscles provide forces for maintaining
posture and generating free movement of the body. Stable
posture is achieved by the balance of competing forces between
themuscles, while freemovement is produced by the imbalance
ofmuscle forces.
To simulate the musculoskeletal model accurately, the

modeling precision of the biological muscle unit is essential.
In this paper, we use a Hill-type model, which is widely used
in biomechanics research, to simulate the biomechanical
characteristics of human muscle (Millard et al., 2013). The
Hill-type model uses a contractile element (CE) and a
passive elastic element (PE) to mimic the muscle fiber. CE
and PE are connected in parallel. CE is adopted to mimic
sarcomere composed of actin and myosin. It can contract to
produce active force in response to neural activation. PE is an
elastic element, which is used to mimic the non-contractile
tissue composed of structural proteins and extracellular
connective tissue. The muscle fiber is a basic structural unit of
muscle. It is the source of active force for the movement of the
skeleton system.
The active force produced by muscle fiber is mainly

dependent on the amplitude of activation a, muscle fiber length
lce and contraction velocity vce. In neurophysiological experiments,
the convergent force field of muscle is composed of the terminal
force of limbs that is generated by isometric contraction of the
muscle under the constant microcurrent stimulation. It means
that the activation of muscle a is constant and the contraction
velocity vce is 0. So the active force generated by muscle fiber is
only related to themuscle fiber length lce.
Suppose the musculoskeletal system hasM muscles. Muscle

i has Ni attachment points on the skeleton. Let lij denote the
coordinate value of the jth attachment point of muscle i in
the reference frame of the skeleton that it attaches to. We use
L ¼ fl11; . . . ; l1N1 ; . . . ; li1 . . . ; liNi ; . . . ; lMNMg it to represent the
coordinate set of all attachment points of the musculoskeletal
system. Based on the coordinate transformation relationship
between joints defined by kinematics, lij can be converted to the
coordinate representation in the world frame of the robot
system. The coordinate value in the world frame is denoted as
wlij. Thus, the length of muscle fiber w.r.t variable arrangements
L is defined as the summation of distances between all
attachment points ofmuscle i:

li Lð Þ ¼
XNi�1

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wlij � wli j1 1ð Þ
� �T wlij � wli j1 1ð Þ

� �
:

q
(1)

Let lmi
0 denote the optimal fiber length of muscle i and f mi

0
denote its maximum isometric force. The biological meaning of
f mi
0 is the maximum force that muscle i can generate by
isometric contraction in length lmi

0 . The value of lmi
0 and f mi

0 are
set according to the biomechanical parameters measured in
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physiological experiments (Holzbaur et al., 2005). Then, the
definition of normalizedmuscle fiber length is given as follow:

~l i Lð Þ ¼ li Lð Þ
lmi
0

: (2)

The active force operator is modeled by an exponential
function (Millard et al., 2013; Holzbaur et al., 2005; Zhong
et al., 2019):

f cei ~l i Lð Þ� �
¼ exp �2 ~l i Lð Þ � 1

� �2� �
: (3)

The passive force operator is modeled by a piecewise function
(Millard et al., 2013; Holzbaur et al., 2005; Zhong et al.,
2019):

f pei ~l i Lð Þ� �
¼

11
kpe

«m
0

~l i Lð Þ � 11 «m
0

� �h i
; ~l i Lð Þ > 11 «m

0

exp kpe ~l i Lð Þ � 1
� �

=«m
0

� �
exp kpeð Þ ; ~l i Lð Þ � 11 «m

0

8>>>><
>>>>:

(4)

where kpe = 0.5 is an exponential shape factor and «m
0 ¼ 0:6 is

the passivemuscle strain due tomaximum isometric force.
With a constant activation a� and muscle arrangements L,

muscle force can be represented as the summation of active
force and passive force:

Fi
~l i Lð Þ; a�
� �

¼ f mi
0 a� � f cei ~l i Lð Þ� �

1 f pei ~l i Lð Þ� �h i
(5)

With the movement of joints, moment arms of muscles to the
joints are changing. The moment arm converts the force
generated by muscles into the rotational torque of the joint. It
plays an important role in determining the change of muscle
length during joint rotation, which will affect the amplitude of
muscle force as in (5). The method to calculate the moment
arm is proposed in our previous work (Zhong et al., 2019). Let
Rji L;ajð Þ represent themoment arm ofmuscle i to joint j, where
aj is the joint angle. The torque generated by each muscle can
be expressed by the product of themuscle force and its moment
arm to the joint. Let t j represent the resultant torque provided
by all muscles in the robot for joint j. Then t j can be solved by
calculating the summation of torque generated by each muscle,
which is formulated as follows:

t j L; a�;aj
� � ¼ XM

i¼1

Rji L;ajð Þ � Fi
~l i Lð Þ; a�
� �

(6)

Based on the dynamics of the rigid body, the dynamics of the
musculoskeletal robot with variable arrangements L can be
formulated as follows:

C L;a�;að Þ ¼ M að Þ ä 1Cc a;a:ð Þa: 1b a:ð Þ1G að Þ1 sf

(7)

where C L;a�;að Þ ¼ ft1 L; a�;a1ð Þ; . . . ; tK L; a�;aKð Þg is the
joint torque vector of the musculoskeletal robot, whose values
are dependent on the arrangements of muscles L, the vector of

constant activations a� and the vector of joint angle a. K is
the number of joints. a: and a:: are angular velocity and
acceleration of joint, respectively. M að Þ is the mass matrix of
the skeleton model. Cc a;a:ð Þ is the Coriolis force matrix. b a:ð Þ
is the damping term.G að Þ is the gravity vector. sf is the friction
torque of the joints.

2.2 Constructing constraint force field by structure
transforming optimization
Traditional articulated robots have fixed body structures. They
rely on precise assembly and tight coordination of all parts,
such as servo motor, harmonic reducer and gearbox, to realize
high-precision movement. Compared with articulated robots,
the muscle actuators of the musculoskeletal robot have
advantages in lightweight, flexibility and variable arrangements,
which provides a structural basis for exploring how to improve
the performance of robots by optimizing the structure. Based
on the dynamics of the musculoskeletal model with variable
muscles, in this part, we propose a structure-transforming
optimization algorithm to find and construct CFF in the task
space of the system.
Similar to the convergent force field of muscle found in

neuroscience, for constructing CFF in the musculoskeletal
robotic system, we first need to convert the joint torque
provided by muscles to the equivalent terminal force of the
robot. Let J denote the Jacobian matrix of musculoskeletal
robots in Cartesian coordinates. The element in the ith row and
the jth column of J is solved by the following equation:

Jij â rð Þð Þ ¼ @xi â rð Þð Þ
@

â j ; i ¼ 1; . . . ;D; j ¼ 1; . . . ;K (8)

where D is the movement dimension of the robot. r represents
the target position of the terminal point of the robot in
Cartesian coordinates. xi â rð Þð Þ is the ith dimension of the
Cartesian coordinate. â rð Þ denotes the joint vector corresponding
to target position r, which can be solved by inverse kinematics of
the robot. Then, the inverse matrix of transpose Jacobian matrix
can be expressed as follows:

A rð Þ ¼ J â rð Þð Þ�T (9)

By multiplyingA rð Þ and joint torque C L;a�;að Þ, we can obtain
the equivalent terminal force of the robot with constant muscle
activations a�, which can be formulated as follows:

Q L; r; a�ð Þ ¼ A rð ÞC L;a�; â rð Þð Þ ¼

XK
j¼1

A1j rð Þt j L;a�ð Þ

..

.

XK
j¼1

ADj rð Þt j L; a�ð Þ

0
BBBBBBBB@

1
CCCCCCCCA

(10)

where Aij rð Þ is the element of the ith row and the jth column in
the matrix A rð Þ. Obviously, given a specific movement target r
and activation pattern a�, (10) only relates to the arrangements
ofmusclesL, so it can be abbreviated asQ Lð Þ.
According to (10), the terminal force Q Lð Þ at different

positions in the task space of the robot can be changed by
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adjusting the arrangements of muscles L. Therefore, for any
specified target position rT in the task space, by optimizing the
muscles’ arrangements L, a CFF with rT as the equilibrium
center can be constructed, which is able to help the robot to
accuratelymove to the target position rT .
To solve the optimal muscle arrangements Lopt for

constructing CFF in the musculoskeletal robot, a nonlinear-
constrained optimization problem is established as follows:

minL W ¼ l 1 �QðLÞTQ Lð Þ

1l 2 �
XG
i¼1

H u ci rT ; rið Þ; f i L; ri ;a�ð Þ� �� �

s:t: Ll � L � Lu (11)

where l 1 and l 2 are penalty factors for balancing the
importance of the two optimization term. Ll ;Lu½ � is the position
range of the attachment points. G is the number of
neighborhood points of rT . The neighborhood points are
equidistantly selected from a circle with center rT and radius
« > 0. ci rT ; rið Þ represents the unit vector that points to rT from
neighborhood point ri. The formula for calculating ci rT ; rið Þ is:

ci rT ; rið Þ ¼ rT � ri
jrT � rij (12)

where j � j is the magnitude of a vector. f i L; ri; a�ð Þ is the unit
vector of the robot’s terminal force Q L; ri ;a�ð Þ at the
neighborhood point ri. The formula for calculating f i L; ri; a�ð Þ is:

f i L; ri; a�ð Þ ¼ Q L; ri ;a�ð Þ
jQ L; ri ;a�ð Þj (13)

ci rT ; rið Þ and f i L; ri; a�ð Þ can be abbreviated as ci and f i,
respectively. Let u ci ; f ið Þ represent the angle between the
vector ci and f i. The penalty function H �ð Þ in (11) is designed
to constrain the direction of terminal forces at the neighborhood
points. It requires the terminal forces at the neighborhood points
contain a force component pointing to the target point, so as to

form a convergent CFF. A hyperbolic cosine function is applied
to constructH �ð Þ, which is formulated as follows:

H u ci ; f ið Þð Þ ¼ b 2 cosh
cos u ci; f ið Þð Þ � 1

b

� �
� 1

� �
(14)

where cosh xð Þ ¼ ex � e�xð Þ=2. The penalty range of H �ð Þ is
dependent on parameter b . As the optimization object is
to make u ci; f ið Þ as small as possible, so the value of b should
make the function H u ci; f ið Þð Þ pay a high cost in
cos u ci ; f ið Þð Þ 2 �1;0½ �, while in cos u ci ; f ið Þð Þ 2 0;1½ � the cost is
low. The effect of H u ci; f ið Þð Þ on optimization is shown in
Figure 1.
To visualize the CFF optimized by (11), within a rectangular

range with the center point rT and side length %, S points are
uniformly selected with stepsize d . Let Sv denote the position
set formed by the selected points. The terminal force of the
robot Q L; rs; a�ð Þ at the selected position rs is normalized
according to the following formula:

~Q rsð Þ ¼ d

2
� jQ L; rs; a�ð Þj

Qmax
; s ¼ 1; . . . ;S (15)

where Qmax is the maximum terminal force of point in the
position set Sv. In the CFF, the force vector at each position of
Sv is drawn in the direction of Q L; rs;a�ð Þ and the length of
~Q rsð Þ. TheCFF can be visualized as shown in Figure 2(a).
Similar to the convergent force field of muscle found in

neuroscience, the CFF constructed in musculoskeletal robot
mainly has two features:
1 The specified target position is the equilibrium center of

the CFF. With constant muscle activations a�, the
terminal force of the robot at the target position is 0, i.e.
Q L; rT ;a�ð Þ ¼ 0.

2 The force vectors in the CFF converge to the equilibrium
center. In a certain neighborhood of the target point rT ,
the terminal force of the robot at each position has a force
component pointing to rT , thus forming a CFF with
approximate centripetal convergence.

Figure 1 The effect ofH u ci; f ið Þð Þ on optimization
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For further analyzing the characteristics of the CFF, a new
definition called centripetal constraint force is introduced.
Centripetal constraint force represents the force component
obtained by prejecting the terminal force of each point (i.e.
Q L; rs;a�ð Þ) into the centripetal direction pointing to the target
position. Let Qcs L; rs; a

�ð Þ denote the centripetal constraint
force, which can be abbreviated as Qcs . The formula for
computingQcs is:

Qcs ¼ cos u cs; f sð Þð Þ � jQ L; rs;a�ð Þj (16)

According to (16), when there is a force component of
Q L; rs;a�ð Þ pointing to the target position rT ; Qcs is positive,
otherwise Qcs is negative. By drawing f rs;Qcsð Þjs ¼ 1; . . . ;Sg,
we find that the CFF optimized by (11) forms a constraint
region with the target position rT as the local minimum point,
which is very similar to the ARIE found robotic manipulation,

such as peg-in-hole assembly (Qiao et al., 2015; Li and Qiao,
2019). We define this constraint region as a centripetal
constraint force field (C-CFF), as shown in Figure 2(b).
The construction of CFF provides a new kind of attractive

region for musculoskeletal robotic systems to realize high precision
movement. By optimizing the arrangements of muscles, a CFF
can be constructed in the task space of the musculoskeletal robot,
which is able to help the robot accurately move to the specified
target position with constant activations. It greatly reduces the
requirements for the feedback of sensing information and the
precision of control signals in the control process of the robot and
provides a theoretical basis for realizing the high-precision
movement of the robot with limited control and sensing accuracy.
The schematic diagram of the algorithm is illustrated in Figure 3.
The blue line represents the optimization process. The orange line
represents that the robot with optimal muscle arrangement moves
to the target positionwith constant activations.

3. Effectiveness analysis of the constraint forcefield

The CFF provides a new kind of method to control the
movement of the musculoskeletal robot. In this part, based on
Lyapunov stability theory, the condition for the robot to stably
reach the target with the help of CFF is discussed.
To stabilize the system under the control based on the CFF, it

is necessary to consider the effects of damping and joint friction
on the system dynamics, so that the total energy of the system is
in a state of continuous dissipation. Taking the movement of a
musculoskeletal robot in a two-dimensional plane as an example,
the proof of control stability is introduced as follows.
Assume re is the equilibrium position of the robot in the

CFF. The joint vector a reð Þ corresponding to re can be solved
by inverse kinematics. The dynamics of the system is
formulated as follows:

M að Þ ä 1Cc a; ȧð Þ ȧ1b ȧð Þ1 sf ¼ C a rð Þð Þ (17)

where C a rð Þð Þ is the joint torque at position r. The damping
term b ȧð Þ and friction torque of the joints sf satisfy that when
a: 6¼ 0; ȧTb ȧð Þ > 0; ȧTsf > 0.
The kinetic energy of the system is taken as the Lyapunov

function:

V ȧð Þ ¼ 1
2
ȧTM að Þ ȧ (18)

whose derivative is:

V ȧð Þ ¼ 1
2
ȧT Ṁ að Þ ȧ 1

1
2
ȧTM að Þ ä 1

1
2
äTM að Þ ȧ

¼ 1
2
ȧT Ṁ að Þ ȧ 1 ȧTM að Þ ä

¼ 1
2
ȧT Ṁ að Þ ȧ 1 ȧT C a rð Þð Þ �Cc a; ȧð Þ � b ȧð Þ � sf

	 


¼ 1
2
ȧT Ṁ að Þ ȧ�ȧTCc a; ȧð Þ

� �
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(19)

According to the characteristics of the CFF, the constraint
force decreases with the distance between the endpoint of the

Figure 2 Constraint force field formed by optimizing the muscle
arrangements
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robot and the equilibrium position. Because of ȧTb ȧð Þ > 0 and
ȧTsf > 0, there is an appropriate b ȧð Þ and sf such that (19) is
negative definite. When ȧ¼ 0; a rð Þ ! a reð Þ, the Coriolis
force and damping term in the dynamics is 0, i.e.
Cc a; ȧð Þ ¼ 0;b ȧð Þ ¼ 0. Then the dynamics of the robot can be
written as follows:

M að Þ ä ¼ C a rð Þð Þ � sf (20)

So the robot will finally be stable in the range of C a rð Þð Þ � sf .
When sf is small enough, the robot will reach the equilibrium
position of theCFF accurately.

4. Experiments

4.1Musculoskeletal model
Movement control of the musculoskeletal model is an
intractable problem due to the strong nonlinearity of the
muscle dynamics. In this paper, we proposed that by
optimizing the arrangements of muscle to construct CFF, the
musculoskeletal robot can realize high-precision movement
with constant control signals, which is conducive to improving
the movement performance of the robot with limited control
and sensory accuracy. To verify the wide existence and
effectiveness of theCFF, amusculoskeletal model with 2DOFs
and 4muscles is used in our experiments.
The musculoskeletal model uses 4 Hill-type muscles as

actuators, including Pectoralis Major (PECM), Deltoid
(DELT), Biceps (BIC) and Triceps (TRI). The dynamics
parameters of the muscle model, such as the optimal fiber
length and the maximum isometric force, are set according to
the biological parameters (Holzbaur et al., 2005), as listed in
Table 1.
The structure of the musculoskeletal model is depicted in

Figure 4. lij is the coordinate value of the jth attachment point of
muscle i in the reference frame of the skeleton that it attaches
to. Especially, an additional attachment point in the TRI
muscle is used to prevent the muscle from penetrating bone,
where l42 = 4 and w = 2/3p . The variable range of the position
of the muscle attachment point is set as Ll ;Lu½ � ¼ 0;30½ �. The
length of the links are L1 ¼ L2 ¼30 cm. Themass of each link is

1 kg. The damping coefficient is 500 and the friction torque of
the joint is 0.001. The range of joint motion is [0, p]. For
parameters in the structure transforming optimization algorithm,
the value of hyper-parameters l 1 and l 2 are, respectively, set to
10 and 1,000. The number of neighborhood points around the
target positionG is set as 8, while the radius of the neighborhood
« is 0.5. Parameter b in the penalty function is 0.2. The constant
activations a� used in optimization are fixed in 1. The step size of
the simulation is 0.01 and 4,000 steps are conducted in each
experiment.

4.2Movement accuracy evaluation
For any given target position in the task space of the
musculoskeletal robotic system, by optimizing the muscle
arrangements, a CFF with the given target as the equilibrium
center can be constructed. When the initial state of the robot is
within the CFF, the robot can accurately reach the target with
constant activations used in optimization.
To demonstrate the effectiveness of CFF for motion control

of the musculoskeletal robot, we randomly select 3 targets in
the task space of the musculoskeletal robot and construct CFF
with the specified target position as the equilibrium center by
using the structure transforming optimization algorithm. In a
2�2 cm rectangle with the target as the center, NS = 100
positions are randomly selected as the starting points of the

Table 1 Parameters of muscles

Muscle Maximum isometric force (N) Optimal fiber length (cm) Tendon slack length (cm)

PECM 515.4 13.8 8.9
DELT 1142.6 10.8 9.3
BIC 624.3 11.6 27.2
TRI 798.5 13.4 14.3

Figure 4 The musculoskeletal model with variable muscle arrangementsFigure 3 The schematic diagram of the algorithm
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musculoskeletal robot. Note that the rectangle is within the
CFF. The constant muscle activation used in optimization is
a�¼ 1. Positioning error (PE), which is defined as the distance
between the target position and the end-effector position of the
robot at the end of the movement, is taken as the statistic index

to evaluate the movement accuracy. The experiment parameters
and results can be found in Tables 2 and 3 and the movement
trajectories of the robot in different CFF are depicted in
Figure 5.
The experiment results demonstrate that starting from any

position within the CFF, with the “guidance” of the constraint
force, the musculoskeletal robot can accurately move to the
target position with constant muscle activation. This process is
very similar to the phenomenon that a bean drop into a bowl.
Specifically, the effectiveness is mainly manifested in the
following two aspects.
� The standard deviations (Std) of PE are very small. It

means that for any movement in the same CFF, even if the
starting point is different, the musculoskeletal robot can
always accurately move to and stop at the equilibrium
center of the CFF with the control of constant muscle
activation.

� The mean values of PE are small. It means that the robot
can reach the target position with high precision. There
are two main reasons for the existence of motion error.
Deviation exists in the position of the equilibrium center
of the CFF and the desired target. In the optimization
problem (11), the optimal solution is dependent on two
optimization terms. The first term with parameter l 1

requires that the terminal force at the target position tends
to be zero. The purpose of this term is to make the
equilibrium center of the CFF closes to the target position
as much as possible. The second term with parameter l 2

requires that the terminal forces at the neighborhood
positions have force components pointing to the target.
Optimizing these two terms at the same time is hard to
guarantee that the l 1 term strictly equals 0. So in some
cases, the optimized equilibrium center of the CFF will be
a bit deviating from the target point rT , which makes it
become the main source of the movement error. The
impact of the joint friction will influence the movement
accuracy. According to (20), the final stable position of
the system is impacted by the friction torque of the joints
sf . So the decrease of joint friction can improve the
movement accuracy of the system.

The experiment results reveal that the proposed method is
beneficial for improving the motion performance of the robot

Table 2 Optimal muscle arrangements

rT l11 l12 l21 l22 l31 l32 l41 l43

(225,9) 5.6247 13.9283 13.1313 16.8818 3.5843 23.8212 0 14.4821
(29,43) 18.2115 16.7706 15.6941 20.7743 20.3978 4.8036 0.2919 21.5759
(5,33) 12.0812 8.3911 8.2609 20.8856 1.9771 20.7219 3.2598 3.3599

Table 3 Statistic index of movement accuracy

rT Min PE (mm) Max PE (mm) Mean PE (mm) Std PE (mm)

(225,9) 0.086 0.531 0.260 2.4e�4
(29,43) 0.177 0.180 0.179 8.4e�4
(5,33) 0.073 0.074 0.074 3.6e�4

Figure 5 Experiments on the effectiveness of the CFF for improving
movement performance of the musculoskeletal robot
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and simplifying the control strategy. It provides a foundation
for a robot to realize high-precision movement with a simple
control signal.

4.3 Noise robustness
A set of constant muscle activations a� has to be specified
before optimizing (11). The ideal CFF is formed when muscle
structures are arranged according to the optimal structure Lopt

and muscle activations are a�. So, when the control signals a�

are disturbed by noise, whether the motion of the robot in the
CFF can still maintain a high precision? In this part, we discuss
the noise robustness of theCFF.
The experiments are conducted in the CFF centered with

rT ¼ �25; 9ð Þ. The constant muscle activations a� used in
optimization are fixed in 1. During the movement of the
musculoskeletal robot in the CFF, the activation of the ith
muscle at time t is disturbed by a random noise with maximum
amplitude j , which can be formulated as:

ai tð Þ ¼ a�i 1 j �U �1; 1ð Þ (21)

where a�i is the constant activation of muscle i used in
optimization andU(–1, 1) is a uniform distribution in the range
of [–1). Different amplitudes of noises are compared in the
experiments. Starting from the same position, 100 motion
experiments are conducted on the robot. The statistic index of
the experiments can be found in Table 4 and the movement
trajectories disturbed by different amplitude noises are
sketched in Figure 6.
According to the data in Table 4, with the increase of the

noise amplitude, the mean value of PE is increasing slightly,
but the motion accuracy is still kept at a high level. It indicates
that the CFF possesses strong robustness to noise. It can
maintain the ability to constrain the robot accurately moving to
the target position under the disturbance of noise.
As shown in Figure 6, when the amplitude of the noise

increases, the movement trajectory of the robot in the CFF
becomes unsmooth and the jitter is enhanced. However, the
motion trend of the system can still approach the target point
gradually along the trajectory without noise. This phenomenon is
similar to a bean falling into a bowl with a bumpy surface.
Although the bean will bounce in the bowl, the environmental
constraints formed by the bowl will still make the bean fall to the
bottom. Similarly, when the muscle activation is disturbed by
random noise, although the terminal force of the robot at different
positions of the CFF is disturbed, for the CFF as a whole, noise
at different positions is approximately counteracted by
accumulation. So the system can maintain a stable tendency of
the movement. But the noise disturbance at the end of the
movement has a great influence on the PEof the system.
To sum up, the CFF has a strong robustness to the noise

disturbance of muscle activation. It can help the robot system

to keep themovement trend stable and reach the target position
with high precision, even the control precision is limited.

4.4 Structure sensitivity
The CFF is constructed by optimizing the muscle
arrangements. Compared with traditional articulated robots
that are driven by a large electrical motor, the muscle actuator
of the musculoskeletal robot is lightweight and easy to adjust,
which is an important prerequisite for structure optimization.

Table 4 Statistic index of noise robustness

Noise amplitude Ratio (%) Min PE (mm) Max PE (mm) Mean PE (mm) Std PE (mm)

n = 0.1 10 0.095 0.542 0.293 0.170
n = 0.3 30 0.103 0.587 0.302 0.148
n = 0.5 50 0.111 0.548 0.380 0.154
n = 1 100 0.236 0.681 0.451 0.144

Figure 6 Experiments for validating the noise robustness
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In this paper, the interior point method is applied to solve the
structure transforming optimization problem (11). However,
the optimal solution often contains multiple decimal places.
Multiple decimal places represent a high precision of muscle
arrangements. This is allowed in theoretical analysis, but can
not be ignored in practical system implementation. If the
requirement of the muscle arrangements’ accuracy is very high,
it would be difficult for the physical system to realize. Hence,
we discuss the influence of structure precision on the CFF in
this part.
The experiments are conducted in the CFF centered with

rT ¼ �25; 9ð Þ. The motion performances of the robot in the
CFF with different arrangements precision are compared. As
mentioned above, a 2 � 2 cm rectangle is adopted to illustrate

the experiment result. NS = 100 positions are randomly
selected as the starting points of themusculoskeletal robot. The
statistic index of experiments can be found in Table 5 and the
movement trajectories are depicted in Figure 7.
The experiment results demonstrate that with the decrease of

muscle arrangement precision, the mean value of PE is
increasing. It reveals that the motion performance of the
musculoskeletal robot has a high sensitivity to the arrangement
precision of muscle. However, it is worth noting that although
the mean error of the system increase, the standard deviation of
the motion error remains at a very low value. It means that
although the final position of the robot at the end of the
movement deviates from the target position, the robot almost
always stops at the same position. So the decrease of precision
of the arrangement actually causes the shift of the equilibrium
center of the CFF, i.e. deviating from the original target
position. But the robot can still move to the new equilibrium
center with high precision under the constraint of theCFF.

5. Discussions and conclusions

The motivation of this paper mainly comes from the
equilibrium point hypothesis in neuroscience. We proposed a
structure transforming optimization algorithm for constructing
CFF in musculoskeletal robotic systems. The CFF, centered
with specified target positions in the task space of the robot, can
be formed by optimizing the arrangements of muscles. It can
help the robot move to the target position with high precision.
Lyapunov stability theory is applied to analyze the condition for
the robot stably reaching the target with the help of the CFF.
Experiments are conducted to evaluate the performance of the
proposed method in movement accuracy, noise robustness and
structure sensitivity. The results demonstrate that the CFF
possesses strong robustness to the noise disturbance, which lays
the foundation for a robot to realize high-precision movement
with limited-precision control.
CFF proposed in this paper is inspired by the convergent

force field found in neuroscience and the attractive region in the
environment found in information science. They are closely
related but very different.
Convergent force field in the organism is formed by

synergistic contractions of muscle (Bizzi et al., 1991; Giszter
et al., 1993). In previous research of neuroscience, a few
convergent force fields with equilibrium points are found in
some specific positions of the limb’s workspace. In this paper,
by optimizing the structure of muscle arrangement, the
equilibrium point of CFF can be set in plenty of different given
positions of robotic workspace, which effectively expands its
application range in robotics.
ARIE widely exists in the configuration space of robotic

manipulation (Qiao et al., 2015; Li and Qiao, 2019). It is an
infeasible region in the configuration space of the robot due to

Table 5 Statistic index of structure sensitivity

Arrangements precision (mm) Min PE (mm) Max PE (mm) Mean PE (mm) Std PE (mm)

1023 0.086 0.531 0.260 2.4e�4
1022 0.382 0.388 0.386 1.95e�4
1021 1.013 1.020 1.018 1.9e�4
1 2.022 2.040 2.027 4.9e�4

Figure 7 The impact of muscle arrangements precision on the CFF
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obstacles or constraints of operation objects (such as the
constraints of the edge of the hole on the peg in the peg-in-hole
assembly task).When the constraint region containing a unique
extreme point is formed in the feasible region, the resulting
“environmental attraction region” can make use of state-
independent control inputs to reach the position state
corresponding to the unique extreme point of the system, so as
to eliminate errors caused by imprecise sensing. Therefore, the
ARIE is essentially the “passive constraint” formed by the
objective environment to help the robot achieve accurate
movement and operation.
Compared with ARIE in robotic manipulation, which

leverages the constraint formed by the operation task passively,
CFF is constructed by optimizing the arrangement of muscle,
which is able to actively form a constraint to help complete
the given task accurately with state-independent control (i.e.
the constant control signal). This capability is of great
significance for robots to complete elaborate manipulation
under the condition of uncertainty, such as assembly and
grasping tasks in complex situations.
In the future, for extending the proposed method to practical

application, we will further ameliorate the structure sensitivity
of the CFF by improving the optimization algorithm. Besides, a
hardware platform with a variable structure will be designed
and constructed to evaluate the performance of the proposed
method in a real system.
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