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Abstract
Inmissile guidance, pursuit performance is seriously degraded due to the uncertainty and randomness in targetmaneuverability,
detection delay, and environmental noise. In many methods, accurately estimating the acceleration of the target or the time-to-
go is needed to intercept the maneuvering target, which is hard in an environment with uncertainty. In this paper, we propose
an assisted deep reinforcement learning (ARL) algorithm to optimize the neural network-based missile guidance controller
for head-on interception. Based on the relative velocity, distance, and angle, ARL can control the missile to intercept the
maneuvering target and achieve large terminal intercept angle. To reduce the influence of environmental uncertainty, ARL
predicts the target’s acceleration as an auxiliary supervised task. The supervised learning task improves the ability of the agent
to extract information from observations. To exploit the agent’s good trajectories, ARL presents the Gaussian self-imitation
learning to make the mean of action distribution approach the agent’s good actions. Compared with vanilla self-imitation
learning, Gaussian self-imitation learning improves the exploration in continuous control. Simulation results validate that
ARL outperforms traditional methods and proximal policy optimization algorithm with higher hit rate and larger terminal
intercept angle in the simulation environment with noise, delay, and maneuverable target.

Keywords Reinforcement learning · Missile guidance · Auxiliary learning · Self-imitation learning

Introduction

The modern missile is expected to cause the maximum
damage to the target under complicated conditions such as
target maneuver, measurement noise, and detection delay.
As shown in Fig. 1, to increase the damage to the target, the
missile should hit the front of the target, which means the
terminal intercept angle and terminal missile velocity should
be as large as possible. These requirements make the missile
guidance task a hard problem.

The problem of designing missile controller can be solved
by many traditional guidance methods, such as sliding mode
tracking control [12], optimal guidance law [19], finite-time
guidance law [28], and Lyapunov-based guidance law [22].
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With the support of radar and other active sensors, the relative
information of the target can be measured, which greatly
improves the controller performance [3,33]. However, it is
still difficult to design a missile guidance law that is capable
of adapting complex environmental conditions [2,4]. On one
hand, due to the limitations of radar technology, the precise
information required by the algorithm is difficult to obtain,
such as the acceleration of the target [8]. On the other hand,
the target can escape out of the range of the guidancemethod,
which causes the guidance method to be invalid.

In recent years, deep reinforcement learning (DRL) pro-
vides a simple way to design the missile guidance controller
[7]. In DRL, the neural network-based agent chooses an
action according to its policy and gathers data from the
environment [24,30]. According to the collected trajecto-
ries, the agent adjusts its policy to maximize the sum of
future rewards. In DRL, conditions and objectives of the task
are naturally set in the environment and reward function.
By interacting with the environment, the algorithm can opti-
mize the policy to achieve the objective without additional
human knowledge [27]. DRL algorithms can be divided
into model-based and model-free methods. The former ones

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-021-00577-6&domain=pdf
http://orcid.org/0000-0001-5384-423X


1206 Complex & Intelligent Systems (2022) 8:1205–1216

Fig. 1 Example of missile guidance engagement geometry. When the
missile intercepts the target, the intercept angle ϕ should be as large as
possible

use a model that predicts the future states and rewards to
derive optimal actions [25], while the latter ones optimize
policy by collected trajectories from interacting with the
environment. Somemodel-based DRLmethods [7,17,29,35]
consider tracking maneuverable targets in a noiseless envi-
ronment. If there exists a mismatch modeling error between
the model and the simulator, the learned policy may be a
suboptimal solution and lack robustness. To enhance the
robustness, some methods introduce the model-free DRL
to design controller [8]. When there is uncertainty in the
observation, due to the low efficiency of model-free DRL,
it needs more data to optimize its strategy [1]. Auxiliary
tasks are a way to improve the efficiency of reinforcement
learning. Auxiliary tasks can take many forms, including
supervised learning [10,31] and unsupervised learning [13].
By designing auxiliary learning tasks, the agent can reduce
noise interference and extract information more efficiently.

In this work, the objective of the agent is to achieve
the largest intercept angle when intercepting the target. The
observation of the agent will have different sizes of the Gaus-
sian white noise and steps of observation delay. During the
interception, the target will try to escape the interception
of the missile in a random direction. The terminal intercept
anglewill be considered as the evaluation of the performance.
Themaneuverability of themissile is limited, and the speedof
the missile decreases according to aerodynamics. There are
two difficulties in training a DRL controller. The first is the
large-scale observation space with noise, which increases the
difficulty in extracting information. The second is the long
simulation step, which increases the difficulty of exploration
and makes a large variance on the value of the state.

To solve the problem, we propose ARL to learn a mis-
sile guidance controller. The main contribution of ARL is
that we introduce assisted learning including auxiliary learn-
ing and Gaussian self-imitation learning to improve training
missile guidance controller for better performance. Auxiliary

learning (AL) requires the agent to predict the acceleration
based on noisy observation. The key idea of AL is to use the
acceleration of the target as a clean label to train the agent
to model the target. Gaussian self-imitation learning (GSIL)
makes the agent imitate its sampled action if the return of
the state is better than the value of the current policy. The
key idea of GSIL is to imitate the good action and encourage
the exploration in good trajectories. Simulation results show
that ARL achieves better performance than proximal policy
optimization (PPO) and traditional methods in both the hit
rate and intercept angle in intercepting 9g-maneuverability
target.

This paper is organized as follows. The next section
reviews the related work mentioned in this paper, including
auxiliary learning, self-imitation learning, and guidance laws
with neural network. The third section describes the inter-
ception scenario, including dynamics, maneuverability, and
noise. The fourth section describes the proposed DRL algo-
rithm with auxiliary supervised learning and self-imitation
learning. The fifth section shows the simulation and results
in different scenarios. Finally, the last section gives the con-
clusion.

Related work

Auxiliary learning

Noisy observation will significantly reduce training effi-
ciency because the difficulty of extracting information
increases. Research has shown that even for low-dimensional
problems, the efficiency of training agents can be improved
through auxiliary learning [16,18,34]. Auxiliary learning
considers multiple related sub-tasks or objectives simulta-
neously. Pablo et al. [10] proposed two architectures to make
the agent learn other agent’s policies as auxiliary tasks. Their
experiments showed that the auxiliary tasks stabilized learn-
ing and outperformed baselines. Laskin et al. [15] proposed
contrastive unsupervised representations for reinforcement
learning, which greatly improved the efficiency of training.

Self-imitation learning

The performance of DRL suffered from the inefficiency of
exploration [6]. Self-imitation learning is a simple way that
makes the policy learn to reproduce the past collected trajec-
tories with high returns. Junhyuk et al. [20] introduced the
self-imitation learning in advantage actor-critic and proxi-
mal policy optimization to improve the performance of the
algorithm in hard exploration environments. Ecoffet et al. [5]
showed the self-imitation learning can significantly improve
the performance of the agent in sparse reward environments
such as Montezuma’s Revenge and Pitfall.
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Guidance lawwith neural network

There are lots of elegant methods that have been pro-
posed in guidance laws, including sliding mode control [9],
dynamics surface control [11], and other traditional control
methods. Gaudet et al. [7] introduced reinforcement learn-
ing in two-dimensional homing-phase guidance law design.
DRL based missile controller shows more flexibility and
efficiency than traditional methods. Recently, Gaudet [8]
introducedmeta-learning and reinforcement learning to solve
the angle-only intercept guidance of maneuvering targets.
The algorithm achieved remarkable robustness in intercept-
ing exo-atmospheric targets. Liang et al. [17] proposed
guidance law based on meta-learning and model predictive
path integral control. The algorithm built an environmen-
tal model based on meta-learning and searched trajectories
throughMonteCarlo trees. By introducing stochastic optimal
control and neural networks, the performance of model pre-
dictive control methods can satisfy complex environmental
conditions. It should be noted that the above methods mainly
focused on miss distance and line-of-sight angle. They paid
less attention to the target posture and neglected the effect of
environmental noise.

Problem formulation

The three-dimensionalmissile–targetmodel canbedescribed
by a six-degree-of-freedom system. Considering aircraft as
a particle, changes in roll angle can be ignored to simplify
the model. The geometry of the guidance system is shown in
Fig. 1, where missile and target share the uniform coordinate
system OXY Z . Both the missile and target kinematic models
are represented as follows:

ait = [Ni
y, N

i
z ] (1)

θ̇ i = g
Ni
y

vi
(2)

ψ̇ i = −g
Ni
z

vi cos θ i
(3)

ẋ i = vi cos(θ i ) cos(ψ i ) (4)

ẏi = vi sin(θ i ) (5)

żi = vi cos(θ i ) sin(ψ i ) (6)

[θ i , ψ i , xi , yi , zi ]t+1 = [θ i , ψ i , xi , yi , zi ]t + Δt[θ̇ i ,
ψ̇ i , ẋ i , ẋ i , ẋ i ]t , (7)

where the superscript i indicates that the variable is about the
missile (M) or the target (TG), xi , yi , zi are the coordinate of
the missile or target, ait is the acceleration, v

i is the velocity,
with direction being defined by θ i and ψ i , the projection of

acceleration command at pitch and yaw angles as Ni
y, N

i
z ,

the projection of the acceleration on pitch θ i and yaw ψ i

as θ̇ i , ψ̇ i respectively, the universal gravitational constant
as g, D is the distance, ϕ is the intercept angle, and t is the
step. The three-dimensional relative coordinates between the
missile and the target can be expressed as follows:

−→
dr = [−→xr ,−→yr ,−→zr ] = [xTG, yTG, zTG] − [xM, yM, zM] (8)
−→
vr = [−̇→xr , −̇→yr , −̇→zr ] = [ẋTG, ẏTG, żTG] − [ẋM, ẏM, żM], (9)

where
−→
xr ,

−→
yr ,

−→
zr are the projection of relative position

−→
dr

on the coordinate axis and
−̇→
xr ,

−̇→
yr ,

−̇→
zr are the projection of

relative velocity
−→
vr on the coordinate axis.

There are three stages in this missile–target problem,
including the beginning phase, maneuvering phase, and ter-
minal phase. The beginning phase and its constraints are
shown in Fig. 2a. The missile is launched to capture the tar-
get when the relative distance is smaller than Db. The initial
coordinates and velocity direction of the target satisfy that
the intercept angle is greater than the threshold of angle ϕb

if the target maintains the velocity direction. At each step t
in the episode, the distance between missile and target is Dt

and the interception angle is ϕt .
In our scenario, the velocity of the target is constant at

vTG, and the initial angle of velocity is θTG0 . The velocity of
the missile is set at vM0 and decreased by the aerodynamic
coefficient Ca shown in Appendix Table 8. The speed decay
of missile can be calculated as follows:

Hdk = yM + xM
2 + yM

2 + zM
2

12756490
(10)

Hq =
{
0.06eλh1·HdkvM

2
Hdk ≤ 1.1 × 104

0.01eλh2·(Hdk−1.1×104)vM
2
Hdk > 1.1 × 104

(11)

vM = vM + Δtg

(
−CaHq Sa

600
− sin(ψM)

)
, (12)

where Hdk is the altitude of the missile in the geometry coor-
dinate system, Hq is the dynamic pressure, Sa = 0.1 is the
effective area, the coefficient λh1 is set to−1.15×10−4, and
the coefficient λh2 is set to −1.62 × 10−4. The speed of the
missile is required to be higher than 500m/s , otherwise, the
episode is considered a failure.

When the missile enters the detection range Dm of the
target, the target begins the maneuvering phase as shown in
Fig. 2b. The target chooses a random direction and escapes
at a fixed acceleration. When Dt is smaller than distance
threshold Dc, the interception is considered a hit and the
episode ends. If the terminal intercept angleϕT is greater than
angle threshold ϕc at the terminal step T , the interception is
considered a true hit. After the episode ends, the terminal
reward of the agent is settled according to the miss distance
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Fig. 2 Three stages in the
missile–target problem. a The
beginning phase and its
constraints in yoz plane. b All
three phases in zox plane

and intercept angle. However, the terminal reward is sparse,
which causes a high variance in value estimation. To stabilize
the learning process, we add the immediate reward to reshape
the reward function at each step. There are two components
in immediate reward, including distance reward and angle
reward. The distance reward is calculated by Dt − Dt+1 and
the angle reward is defined as − cos(ϕt ). The whole reward
function can be described as follows:

rt = w0(Dt − Dt+1) − cos(ϕt ) (13)

rT =
{

(− cos(ϕT ) + 1) × 10, if DT ≤ Dc

0, if DT > Dc
, (14)

wherew0 is theweight of the distance reward. The immediate
reward guides the behavior of the agent to hit the target and
get the terminal reward. The objective of theDRLbased guid-
ance law is to maximize the cumulative reward

∑T
t=0 γ t rt .

With the relative coordinates, the observation of the mis-
sile oM can be described as follows:

D =
√

(
−→
xr )

2 + (
−→
yr )

2 + (
−→
zr )

2
(15)

Ḋ =
−→
xr

−̇→
xr + −→

yr
−̇→
yr + −→

zr
−̇→
zr

D
(16)

qe = arctan

−→
yr√

(
−→
xr )

2 + (
−→
zr )

2
(17)

qb = arctan

−→
yr

−→
xr

(18)

q̇e = ((
−→
xr )

2 + (
−→
zr )

2
)
−̇→
yr −

−→
yr (xr

−̇→
xr )√

(
−→
xr )

2 + (
−→
zr )

2
(19)

q̇b =
−→
zr

−̇→
xr + xr

−̇→
zr

(
−→
xr )

2 + (
−→
zr )

2 (20)

sM = [D, Ḋ, qe, qb, q̇e, q̇b] (21)

oM = Z(sM), (22)

where qe is the pitch angle of the line of sight, qb is the yaw
angle of the line of sight, q̇e is the rate of pitch angle, q̇b is
the rate of yaw angle, and Z represents the process of adding
noise and delay to the observation.

In this paper, we consider the influence of Gaussian ran-
dom noise on the observation. In most studies, these noises
are considered white Gaussian distribution with zero means
[26]. The noise we introduce includes a Gaussian noise with
a variance correlated with distance and a Gaussian noise that
is independent of distance.

Methods

State representation

Among the observation list, the value span of distance infor-
mation D is quite large and easy to cause catastrophic
forgetting [14]. For example, it is difficult to adjust theweight
of the neural network for the distance input because the
value of the relative distance spans from 10 to 10,000. There-
fore, we clip and normalize D to [0, 5000]/5000 and Ḋ to
[0, 1000]/1000.

To further enhance the robustness of the algorithm, we
design a binary mask Cm to randomly choose elements from
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observation in one episode:

c = Cm · oM. (23)

The observation is covered by Cm to simulate the different
combinations of sensors. Different combinations of obser-
vations prevent agent from relying on a certain sensor. The
observation ot has ten dimensions, and can be described as

ot = [ct , ct−2]. (24)

We take two consecutive observationswith one-step skipping
as the controller input to overcome the uncertainty and target
maneuvering. The reason for not using adjacent observations
is that the correlation of the observations is very serious,
which makes the algorithm difficult to converge during the
training process.

Reinforcement learning

An interception problem can be described as a Partially
Observable Markov Decision Process (POMDP) with a 7-
tuple 〈S, A, R, O, T , Z , γ 〉, where S is the state space, A is
the space of available actions, R : S × A → R is the reward
function, O is the set of observations, Z is the set of condi-
tional observation probabilities, T : S × A × S → [0, 1] is
a transition function, T (s, a, s′) is the probability of ending
in state s′ given that action a is taken in state s, r(s, a) is
the expected payoff for taking action a ∈ A in state s ∈ S,
and γ ∈ [0, 1) is the discount factor. The policy π of the
agent with parameters θ specifics an action at ∼ πθ (ot ) for
any observation ot = Z(st ), ot ∈ O at step t . The objective
of the agent is to learn an optimal policy π∗ to maximize
the expected cumulative discounted rewards G(ot , at ) =∑T

k=t γ
k−t rk(ok, ak), which is the total discounted cumu-

lative of rewards from step t . The policy optimization
directly optimizes the policy πθ by gradient ascent on the
performance objective J (θ, ot ) = Eat∼πθ G(ot , at ). Usu-
ally, policy optimization uses value function V πθ (ot ) =
Ea∼πθ [r(s, a)+γ V πθ (ot+1)] to provide the estimated advan-
tage values Aπθ (o, a) = Gπθ (o, a) − V πθ (o). The weights
θ of the agent are updated following the gradient ∇θ J (θ) =
Ea∼πθ [∇θ logπθ (o, a)Aπθ (o, a)].

The proposed ARL algorithm is based on the actor-critic
framework. Table 1 and Fig. 3 show the architecture of ARL
networks. The policy network, prediction network, and the
value function network share the same first and second hid-
den layers. The hidden layer is defined by a fully connected
(FC) neural network, and uses the rectified linear unit (ReLU)
activation function for the network nonlinearity. The pol-
icy network outputs the mean m and the variance σ of the
Gaussian distribution for agent action. We use the tangent

Table 1 ARL neural network architecture

Layer Symbol Units Activation

Mask Cm 2∗obs_dim None

Hidden 1 FC 64 ReLU

Hidden 2 FC 32 ReLU

Mean mt act_dim Tangent

Variance σt act_dim Exponential

Value V (st ) 1 Linear

Predict ûTGt act_dim Linear

activation function for the mean value and exponential acti-
vation function for the variance. The action is sampled from
the outputs of the distribution. The action a of the agent is
limited to [−1, 1] and scaled according to the actual maneu-
verability of the missile. The value is calculated by a fully
connected neural network.

To avoid the gradient explosion, we use the huberloss
instead of mean square error:

huberloss(a, b) =
{ 1

2 (a − b)2 if |a − b| ≤ 1

|a − b| − 1
2 otherwise.

(25)

We deploy PPO-clip [23] to train our agent. The critic is
updated to estimate the value V (ot ) of the observation ot .
The loss of critic is given by

Lcritic(ot ) = huberloss

(
Ea∼πθ

T∑
k=t

γ k−t r(ok, ak), V (ot )

)
.

(26)

The reinforcement loss of the actor is given by

Lppo-clip(ot , at , πold, πθ )

= min

[
πθ (at |ot )
πold(at |ot ) A

πold(ot , at ),

clip

(
πθ (at |ot )
πold(at |ot ) , 1 − ε, 1 + ε

)
Aπold(ot , at )

]
, (27)

where πold is the policy of collecting trajectories, and ε is
clip hyperparameter which limits the updated policy to go
far away from the old policy. To encourage exploration, PPO
introduces entropy regularization. The policy is trained to
maximize a trade-off between future reward and entropy.
Appropriate entropy loss can enhance the exploration ability
of the agent. The loss of the entropy is given by

Lent(ot ) = ln(σt
√
2πe), (28)

where σt is the Gaussian variance output of the agent accord-
ing to the observation ot , and e is the Euler’s numbers. The
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Fig. 3 The learning framework
of ARL, including neural
network architecture of the
agent, reinforcement learning,
auxiliary learning, and
self-imitation learning

PPO loss is given by Lppo-clip + w1Lent, where w1 is the
weight of the entropy.

Auxiliary supervised learning

The noise in measurements significantly reduces the effi-
ciency of reinforcement learning because the agent needs
more training steps to extract the relationship between obser-
vations and actions. To improve the efficiency of extracting
information, we consider labeled data to construct a super-
vised learning task to assist the agent to extract information.
Directly predicting the coordinates and state of the target is
a high-dimensional task, which is too complicated for the
agent. Since the target’s acceleration is strongly related to
the transition of the state, we choose to predict the target’s
acceleration as an auxiliary supervised task. The acceler-
ation of the target and missile can be estimated based on
the changes of observations. Based on the relative position
changes of observations on the trajectory, the relative accel-
eration relationship between the missile and target can be
estimated. At the same time, because AL and RL share the
same network layer, AL has the ability to infer the accel-
eration of the input based on the shared layer. During the
training phase, the state and acceleration of the target can
be obtained from environment. We record the target accel-
eration at each step to establish the dataset of AL training.
The agent predicts the acceleration of the target according to
the input observation ot . The error loss between the predic-
tion and the acceleration of the target can be defined for the
AL during the training phase, and the corresponding network
parameters can be trained using the gradient backpropaga-
tion. In practice, only the action is needed, and prediction is
no longer needed. The loss LAL is computed from huberloss
for every step

LAL(ûTGt , aTGt ) = huberloss(ûTGt , aTGt ), (29)

where ûTGt is the predicted value and aTGt is the acceleration
command of the target at step t . The auxiliary learning guides

the agent to extract information from the observation, which
enhances the robustness of the agent.

Gaussian self-imitation learning

Althoughwe add dense rewards related to the intercept angle,
the objective of intercept angle is still hard to be achieved.
Themain reason is thatwhenwe train the agent,multiple con-
straints and targets may conflict with distance minimization.
For example, in the head-pursuit process, the dense inter-
ception angle reward is the opposite of the distance reward.
Therefore, we need to use self-imitation learning (SIL) [20]
to assist the agent to reproduce trajectories that reach the final
goal. An action whose advantage value is greater than zero
will be considered as a demonstration of the good action. The
vanilla SIL can be described as follows:

LSIL(mt , at , ot )

= −max(G(ot , at ) − V (ot ), 0) logπθ (a|s)
∂LSIL

∂mt
= 1

σt 2
(at − mt )Δ+

∂LSIL

∂σt
= (

1

σt
− (mt − at )2

σt 3
)Δ+, (30)

where Δ+ = max(G(ot , at ) − V (ot ), 0). ∂LSIL/∂σt is non-
negative when the sampled at is in the range of σt . Therefore,
σt will be decreasedwhenminimizing LSIL,which is harmful
to exploration. We hope that SIL will not affect the explo-
ration, so σt is expected to be unchanged by SIL. Therefore,
we treat σt as a constant and integrate ∂LSIL/∂mt over mt to
get a loss form (at −mt )

2Δ+. The type of our Self-imitation
learning is called Gaussian self-imitation learning (GSIL) to
distinguish with vanilla SIL. To prevent gradient exploration,
we replace mean square error with huberloss:

LGSIL(mt , at , ot )

= max(G(ot , at ) − V (ot ), 0)huberloss(mt , at ), (31)
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Fig. 4 The example of
measurement and true value
during one episode

Fig. 5 Comparison results of
training in the scenario,
including ARL (blue line),
PPO+GSIL (gray line),
PPO+AL (red line), PPO (green
line), PPO+SIL (yellow line),
PNG (purple line) and IGL (teal
line). Each experiment was
repeated three times with three
different random seeds. The line
represents the statistical mean,
and the shaded represents the
statistical variance

where ot is the observation in the sampled trajectories, at is
the action in the sampled trajectories, and mt is the mean of
the Gaussian distribution.

The whole policy loss is given by

Lpolicy = −Lppo - clip − w1Lent + w2LAL + w3LGSIL, (32)

where w2 is the weight of the auxiliary tasks, and w3 is the
weight of the GSIL. The procedure of the algorithm is shown
in Algorithm 1.

Algorithm 1 ARL for missile control
1: Define policy π(ot ), value V (ot ), and auxiliary prediction ûTG(ot )

neural network. Initialize network parameters.
2: repeat
3: Collect sets of trajectories (ot , at , ot+1, rt , aTGt ) by running pol-

icy in the environment.
4: Compute expected cumulative discounted rewards G(ot , at ) =∑T

k=t γ
k−t r(ok , ak).

5: Compute advantage A(ot , at ) = G(ot , at ) − V (ot ) based on the
value V (ot ).

6: Update the policy parameter θ by minimizing (32)
7: Fit value function by minimizing (26)
8: until end

Simulation and results

In this section, we describe the simulation scenarios and
training results. In the following experiments, we choose
proportional navigation guidance (PNG) law [21] and impact
angle constraint method [32] as our benchmark. We discuss
the contribution of various parts of ARL, including AL and
GSIL, and show the robustness of ARL in different measure-
ment noise and delays.

Proportional navigation guidance law

Proportional navigation guidance lawdictates that themissile
velocity vector should rotate at a rate proportional to the
rotation rate of the line of sight, and in the same direction:

[Ny, Nz] = N |−→vr | vM

|vM | × −→
Ω (33)

−→
Ω =

−→
dr × −→

vr

−→
dr

−→
dr

, (34)

where N is optimally set to 3 for proportional navigation
guidance law after manual tuning and testing. We use PNG
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Table 2 Typical measurements’ noise standard deviations

Measurements Correlation variance Independent variance

D 5% ×D 1 m

Ḋ 5% ×Ḋ 1 m/s

to represent this guidance method. Without considering the
intercept angle and velocity, PNG can be applied in many
situations.

Guidance law for impact angle constraints

The guidance law for impact angle constraints [32] generated
the acceleration command that couldmeet the intercept angle
and position constraints according to the accurate relative
position and velocity between the missile and target, which
can be described as follows:

[Ny, Nz] = −4θ̇LOS − 2
θLOS + θ f

tgo
(35)

θ̇LOS = vr sin (θLOS − θ)

D
(36)

tgo =
−→
dr

vc
(37)

vc =
−→
dr · −→

vr

||−→dr ||
, (38)

where θ f is the desired impact angle, and θ is the velocity
angle of the missile. We use IGL to represent this guidance
method.

Simulation scenarios

Table 2 summarizes the Gaussian noise standard deviation in
the scenario. Correlation variance is consistent with the per-
centage ofmeasurements. Independent variance is not related
to measurement. Figure 4 shows the measurement error dur-
ing the episode.

Parameters for scenarios are shown in Table 3. The
unif(a, b) means the value sampled from uniform distribu-
tion between a and b. The guidance integration step size
is 10ms. The missile maneuverability is set to 40g. The
measurement includes the noise described in Table 2. The
response delay is set to 10 steps and the maneuverability of
the target is set to 9g. Any singular value caused by noise will
be set to 0. To maintain head-on acute angle interception, we
require that the range of the boundary of the interception
angle should be less than 90. If the terminal intercept angle
θ3 > 135 and d3 < 5m, the hit is considered as a true hit.

Fig. 6 The prediction error of target acceleration. The ordinate is a
logarithmic scale. The gray line is the prediction error of the ARL
when the weight of the auxiliary loss is set to 0. The blue line is the
prediction error of the ARL. With auxiliary learning, ARL can predict
the acceleration of the target, which improves the performance of the
algorithm

Table 3 Parameters for experimental and learning scenarios

Parameters Value Unit

Db 10,000 m

Dm unif(4000, 6000) m

Dc 5 m

ϕb 105 Degrees

ϕc 135 Degrees

ψM (0) unif(0, 360) Degrees

θM (0) unif(0, 80) Degrees

ψTG(0) −ψM + unif(−45, 45) Degrees

θTG(0) unif(−25, 25) Degrees

vTG 300 m/s

vM 1000 m/s

ascaled [−40g, 40g] m/s2

Δt 0.01 s

γ 0.99

α 0.00025

Batch size 40,000

w0 0.1

w1 0.0001

w2 0.1

w3 1

Maximum step 1000
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Fig. 7 Sampled simulation
trajectories generated by IGL
and ARL

Fig. 8 The lines represent the acceleration generated by the agent in the process of intercepting the target. Each sampled result is marked with a
different color for distinction. The specific colors only represent different rounds

Simulation results: ablation study

Figure 5 shows the training results in the scenario, including
hit rate, true hit rate. Figure 5a shows the hit rate during the
training process and Fig. 5b shows the results of the true hit
rate. Due to the interference of noise and delay, the improve-
ment of PPO is very slow at the beginning of training. Both
AL and SIL can improve training efficiency of PPO. The red
line shows that under the assistance ofAL, the agent improves
information extraction ability and stabilizes the training pro-
cess.AL improves the extracting ability andSIL improves the
learning efficiency. However, the performance of SIL is very
poor because the gradient on the variance of the Gaussian
distribution limits the exploration of the agent. GSIL avoids
the exploration problems by changing the loss function. The
gray curve indicates that GSIL improves the performance
of the agent in the whole process of training. By combining
the advantages of GSIL and AL, ARL obtains more stable
and higher performance and achieves 99% hit rate after 2500

steps. Compared with IGL and PNG, ARL also has signif-
icant advantages. PNG does not consider delay, noise and
intercept angle. Therefore, although PNG has a high hit rate,
its true hit rate is relatively low. IGL can satisfy the objec-
tive of intercept angle. But IGL cannot distinguish between
head-on interception and head-pursuit interception. When
the maneuvering of the target causes the problems to change
from head-on interception to head-pursuit interception, IGL
may fail. The average true hit rate of ARL reaches 17.5%,
which is much better than the IGL and PNG.

Figure 6 shows the results of prediction error. The gray line
shows the prediction error when the ARL does not minimize
the auxiliary loss. The blue line shows the prediction error
of ARL. The error of blue line indicates that the ARL can
predict the acceleration of the target. The prediction training
can be divided into several stages according to the number
of iterations. At the early iterations, the agent policy is ran-
domly initialized around 0 and is not good enough to guide
the missile within the target range. The target maneuverabil-
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ity is rarely triggered and the target acceleration of collected
data remains mostly zero. With large training batch size, the
prediction error of samples with large error are diluted. After
about 100 iterations, because the policy improves, the num-
ber of samples with maneuvering targets increases, so the
error increases in the middle of the training. Around 400 iter-
ations, the agent explores more new trajectories to achieve
higher interception angle, so the prediction error increases
again. After that, as the auxiliary training continues, the pre-
diction error drops again. The results illustrate the ability of
the agent to extract information is improved by AL, which
naturally improves the performance of the algorithm.

To illustrate the obtained policy,we evaluateARLand IGL
in scenarios with maneuverability target, noise, randomly
maneuver directions, and delay. The target’s position is ini-
tialized to [x, y, z] = [4500, 2500, 4500], and it flies at the
same altitude toward the origin direction. Figure 7a shows the
100 interception trajectories generated by IGL. The results
show that the IGL method fails in many interception direc-
tions. On the one hand, IGL does not consider the limitation
of the velocity, so someflight is terminated early.On the other
hand, if the target escapes from head-on to head-pursuit, IGL
will be invalid. Figure 7b shows the 100 interception trajec-
tories generated by ARL. When the required angle could not
be obtained, ARL does not follow the optimal trajectory to
intercept the target but chooses to hit directly.

In engineering, we hope that the acceleration curve will
be smooth to reduce sudden acceleration and deceleration.
To illustrate the effect of the observation mask, we compare
the acceleration of the agent with and without the observa-
tion mask. The acceleration of the agent is shown in Fig. 8.
Figure 8a shows that with the observation mask, the agent
will use the available information as much as possible to
get a more robust strategy. When the agent can access the
relative distance, the agent can reduce the miss distance by
a large acceleration at a close relative distance. However, if
there is no distance information, the agent cannot distinguish
the relative distance, and naturally it cannot choose a large
acceleration at a close relative distance. Without distance
information, the agent has to minimize the miss distance at
each step, which means the agent needs to maintain correct
acceleration. Since the observation changes continuously, the
reasonable output acceleration should also change smoothly.
Therefore, the agent chooses gradually accelerating instead
of abruptly accelerating to intercept the target. Figure 8b
shows thatwithmore information, the agentwill exploitmore
acceleration ability to intercept the target. This sudden accel-
eration is impractical in engineering.

Table 4 Comparisonof hit rate in differentmaneuverability of the target

Maneuverability PNG IGL PPO ARL (ours)

1 1.0 1.0 0.952 1.0

2 1.0 1.0 0.853 1.0

3 1.0 0.902 0.828 1.0

4 1.0 0.712 0.702 1.0

5 1.0 0.547 0.651 1.0

6 0.999 0.385 0.623 1.0

7 0.998 0.225 0.611 0.999

8 0.997 0.107 0.591 0.998

9 0.997 0.071 0.586 0.997

Table 5 Comparison of true hit rate in different maneuverability of the
target

Maneuverability PNG IGL PPO ARL (ours)

1 0.782 1.0 0.401 1.0

2 0.731 0.998 0.332 1.0

3 0.426 0.902 0.301 1.0

4 0.323 0.712 0.264 0.772

5 0.283 0.535 0.245 0.562

6 0.184 0.385 0.151 0.407

7 0.103 0.225 0.120 0.275

8 0.072 0.107 0.029 0.212

9 0.052 0.068 0.025 0.175

Table 6 Comparison of hit rate in different measurement delay

Delay PNG IGL PPO ARL (ours)

0 1.0 0.213 0.616 1.0

5 1.0 0.192 0.592 1.0

10 0.997 0.071 0.586 0.997

15 0.997 0.044 0.462 0.997

20 0.975 0.006 0.351 0.996

25 0.960 0.000 0.262 0.990

Performance evaluation on delay and
maneuverability

Tables 4 and 5 show the hit rate and true hit rate of inter-
cepting different maneuverability targets in the scenario with
ten steps delay and noise.We compare the learning algorithm
and optimal control methods, including PPO, PNG, and IGL.
PNG method only considers the miss distance, so its hit rate
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Table 7 Comparison of true hit rate in different measurement delay

Delay PNG IGL PPO ARL (ours)

0 0.084 0.134 0.030 0.232

5 0.066 0.148 0.028 0.189

10 0.052 0.068 0.025 0.175

15 0.038 0.043 0.012 0.112

20 0.036 0.004 0.010 0.086

25 0.027 0.000 0.005 0.047

is very high but the true hit rate is very low. On the contrary,
IGL has a high true hit rate when the maneuverability of the
target is small. As themaneuverability of the target increases,
the target can shift from head-on interception to head-pursuit
interception faster. The head-pursuit interception is out of the
domain of IGL method, so the method fails in intercepting
the target.

Tables 6 and 7 show details about the test results of the
methods under different delays in the scenarios with 9g-
maneuverability targets, 5% correlation variance noise, and
independent noise. The results show that although themaneu-
vering method of the target is simple, the performance of the
traditional approach is not ideal under noise interference.
Compared with the PNG and IGL, ARL shows robust to the
scenarios with different delays. The IGL algorithm using tgo
is more time-sensitive, and high latency will cause the algo-
rithm to completely fail. It is concluded from the results that
the proposed method is well adapted to noisy and delayed
scenarios.

Conclusion

This paper focuses on designing guidance law based on
DRL in the noisy and delayed environment to intercept the
maneuvering target. We propose ARL with additional meth-
ods to improve the performance of PPO, including auxiliary
learning and self-imitation learning. Auxiliary learning pro-
vides accurate auxiliary supervised gradients. Self-imitation
learning reproduces the good experience without limiting
its exploration. ARL can achieve 99.6% in intercepting the
maneuvering target, which is better than PNGmethod. At the
same time, ARL can intercept targets up to 17.5% within the
intercept angle requirement, which is over twice than that
of the guidance method considering angle constraints. We
discuss the contribution of each part of ARL and analyze
the training result in detail. Empirical simulations show that
when intercepting different maneuvering targets in noisy-
delayed environments, ARL can obtain a larger terminal
intercept angle than PPO, PNG, and IGL.
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Appendix

See Table 8.

Table 8 Aerodynamic coefficient Ca

Altitude (m) 0 15,000 30,000
Velocity (Ma)

0.1 0.403 0.444 0.563

0.3 0.407 0.444 0.555

0.6 0.412 0.456 0.545

0.8 0.421 0.478 0.568

0.9 0.445 0.503 0.568

1.0 0.473 0.522 0.591

1.1 0.478 0.523 0.587

1.2 0.481 0.433 0.509

1.5 0.399 0.350 0.408

2.0 0.311 0.266 0.311

3.0 0.228 0.214 0.254
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