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Quality-related fault diagnosis
based on k-nearest neighbor
rule for non-linear industrial processes
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Abstract
The fault diagnosis approaches based on k-nearest neighbor rule have been widely researched for industrial processes
and achieve excellent performance. However, for quality-related fault diagnosis, the approaches using k-nearest neighbor
rule have been still not sufficiently studied. To tackle this problem, in this article, we propose a novel quality-related fault
diagnosis framework, which is made up of two parts: fault detection and fault isolation. In the fault detection stage, we
innovatively propose a novel non-linear quality-related fault detection method called kernel partial least squares-k-near-
est neighbor rule, which organically incorporates k-nearest neighbor rule with kernel partial least squares. Specifically,
we first employ kernel partial least squares to establish a non-linear regression model between quality variables and pro-
cess variables. After that, the statistics and thresholds corresponding to process space and predicted quality space are
appropriately designed by adopting k-nearest neighbor rule. In the fault isolation stage, in order to match our proposed
non-linear quality-related fault detection method kernel partial least squares-k-nearest neighbor seamlessly, we propose
a modified variable contributions by k-nearest neighbor (VCkNN) fault isolation method called modified variable contri-
butions by k-nearest neighbor (MVCkNN), which elaborately introduces the idea of the accumulative relative contribu-
tion rate into VC k-nearest neighbor, such that the smearing effect caused by the normal distribution hypothesis of VC
k-nearest neighbor can be mitigated effectively. Finally, a widely used numerical example and the Tennessee Eastman pro-
cess are employed to verify the effectiveness of our proposed approach.
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Introduction

With the rapid development of industry, modern indus-
trial systems are expanding toward the direction of
large scale and complexity. To ensure safety and relia-
bility in industrial production, multivariate statistical
process monitoring (MSPM) as a kind of data-driven
approach has been extensively studied and successfully
applied to actual industrial processes.1–3 In MSPM,
process-related fault detection is a popular research
task, of which the mainstream method is principal

component analysis (PCA).4 Many researchers have
improved PCA for better application in fault detection.
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For example, Xiu et al.5 proposed a novel Laplacian
regularized robust PCA method that can effectively
capture the intrinsic non-linear geometric information.
Other process-related fault detection methods have
canonical correlation analysis (CCA),6 non-negative
matrix factorization (NMF),7,8 and so on. Another par-
ticularly important research direction for MSPM is
quality-related fault diagnosis,9–11 in which quality-
related fault detection and fault isolation are two key
tasks. Quality-related fault detection belongs to a
supervised learning task in machine learning area,12

and it aims to detect whether a fault that affects prod-
uct quality occurs in the industrial system. When a
fault detection algorithm indicates some faults exist in
the system, fault isolation attempts to locate the faulty
sensors. By the diagnosis of quality-related faults,
unnecessary downtime and cost brought by the quality-
unrelated faults can be greatly reduced, and the risky
faulty sensors can also be located as quickly as possi-
ble. Therefore, quality-related fault diagnosis has been
a research hotspot recently.13–15

Compared with process samples in real industry,
quality samples usually have a large time lag to collect
and a relatively rare quantity. Hence, the direct use of
quality samples cannot meet the requirement of real-
time online monitoring. To tackle this situation, the
commonly adopted idea is to first establish a regression
model between process variables and quality variables,
and then extract the quality-related features from pro-
cess variables, which will replace quality variables to
realize quality-related online fault detection. Currently,
two mainstream frameworks based on this idea are least
squares (LS)–based and partial least squares (PLS)–
based approaches. Zhou et al.16 comprehensively ana-
lyzed the defect of PLS17 for quality-related fault detec-
tion and proposed a total projection to latent structures
(TPLS) model.18 Yin et al.19,20 performed singular value
decomposition (SVD) method on coefficient matrix of
LS and PLS separately, and presented modified partial
least squares (MPLS) and improved partial least squares
(IPLS). Since all above are linear methods which are
unsuitable for non-linear processes, the kernel trick has
been widely adopted for non-linear fault detection. Its
main idea is to map the original process variables into
Reproducing Kernel Hilbert Space (RKHS) through
some kernel function, thus making the process variables
linearly separable in such kernel space.21 By introducing
the kernel trick, many linear methods can be trans-
formed into non-linear versions.14,22,23 However, all of
the above methods design statistics without considering
the local characteristics among samples.

k-Nearest neighbor (k-NN) rule is a classical machine
learning method, which is usually adopted as a classi-
fier.24,25 Because it is capable of mining local character-
istics between near neighbors,26 k-NN rule has been
modified to propose a fault detection method based on

the k-NN rule, namely, FD-k-NN.27 It provides a pro-
mising direction for the solution of the above problems
to some extent. The statistics of FD-k-NN are designed
by fully considering the Euclidean distance measure-
ment among local neighbor samples. Due to its excellent
performance, k-NN-based fault detection methods have
been studied extensively.28–30 Although these methods
have been employed into various tasks, such as multi-
rate sampling process31 and multimode process,32

quality-related fault detection methods based on k-NN
rule have still not been well-established so far.

Fault isolation is a successor task of fault detection,
which is utilized to locate fault sensor variables. Many
classical fault isolation approaches have been pro-
posed. Contribution plot and reconstruction-based
contribution (RBC) are two most commonly used iso-
lation methods, but they have relatively obvious smear-
ing effect. To deal with this problem, many other fault
isolation techniques have been addressed in previous
works.33–36 Unfortunately, these methods fail to be
used in k-NN-based fault detection. To handle the
problem, Zhou et al.37 proposed a novel fault isolation
method based on k-NN rule, VCk-NN, which makes it
possible to determine the failed sensors after detecting
faults using FD-k-NN. Compared with previous meth-
ods, VCk-NN suffers from less effect of fault smearing.
Nevertheless, VCk-NN assumes that the process sam-
ples follow a multivariate normal distribution, which
greatly restricts its effect of fault isolation.

In this article, we propose a novel quality-related
fault diagnosis framework, which is made up of two
parts: non-linear quality-related fault detection and
fault isolation. For quality-related fault detection task,
the motivation of proposing kernel partial least squares
(KPLS) by combining KPLS with k-NN rule is that (1)
KPLS can effectively utilize process variables to obtain
predictive quality variables, which will replace the
actual quality variables that cannot get in real time,
and (2) k-NN rule can mine information between a test
sample and the nearest template samples for a better
detection effect compared with only using a single test
sample. For fault isolation task, the motivation to
improve VCk-NN to MVCk-NN is that the hypothesis
is sometimes not satisfied, and in this case, VCk-NN
still has a smearing effect, so MVCk-NN is presented
to deal with this problem by mitigating the influence of
faulty variables on faultless variables. The main contri-
butions of this article are summarized as follows:

� We propose a new quality-related non-linear
fault diagnosis framework based on k-NN rule,
including a new quality-related non-linear fault
detection method KPLS-k-NN and a new fault
isolation method modified VCk-NN.

� KPLS-k-NN is proposed by combining KPLS
with k-NN rule. Quality-related statistics of
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KPLS-k-NN take into full consideration the
local neighbor information among predicted
quality samples, which greatly improve the detec-
tion rate (DR) for quality-related faulty samples.

� Modified VCk-NN is established by introducing
the idea of the relative variable contributions of
accumulative relative contribution rate (ARCR)
into VCk-NN, which does not need the assump-
tion that the process samples obey a multivariate
normal distribution and has more precise isola-
tion results in identifying latent fault root cause
than VCk-NN.

The rest of this article is arranged as follows: first,
give some relevant preliminaries. Afterward, the k-NN
scheme for quality-related non-linear fault diagnosis is
proposed in a detailed presentation. Then, the simula-
tion results are provided and discussed. Finally, we con-
clude the article and present our future work.

Preliminaries

Let the non-linear process contain an input data matrix
X which records N samples of m process variables and
an output data matrix Y including N samples of l qual-
ity variables, that is

X= x1, x2, :::, xN½ �T 2 R
N 3 m ð1Þ

Y= y1, y2, :::, yN½ �T 2 R
N 3 l ð2Þ

where xi 2 R
m and yi 2 R

l(i= 1, :::,N ) represent the ith
sample of X and Y, respectively. All samples are sup-
posed to obey normal distribution.

The implementation of KPLS method is divided into
two steps as follows. First, kernel trick21 is introduced
into KPLS model to effectively deal with the non-linear
relationship among variables. Given a kernel function
f, it maps the original samples xi(i= 1, 2, . . . ,N ) into
a high-dimension kernel space F , which is defined as
xi 2 R

m ! f(xi) 2 R
f , where f is the dimension of F .

Thus, the process matrix X is transformed into feature
matrix F as

F= f x1ð Þ,f x2ð Þ, . . . ,f xNð Þ½ �T 2 R
N 3 f ð3Þ

As a necessary step, f(xi) needs to be processed to
zero mean vector f, that

f xið Þ=f xið Þ � f ð4Þ

f=
1

N

XN

i= 1

f xið Þ=
1

N
FT1N ð5Þ

where 1N = ½1, 1, . . . , 1�T 2 R
N . Hence, the zero mean

matrix of F can be obtained by

�F = f x1ð Þ,f x2ð Þ, . . . ,f xNð Þ
� �T

= IN �
1

N
1N1

T
N

� �
F

ð6Þ

where IN is the identity matrix. The concrete form of F
is unknowable, but its kernel matrix K=F
FT 2 R

N 3 N can be artificial setting. In this article, the
radial basis function (RBF) kernel is used to calculate
the elements in K, which is

Ki, j = exp �
xi � xj

�� ��2

2s2

 !
i, j= 1, 2, . . . ,Nð Þ ð7Þ

where s is the kernel parameter that needs to be set
according to experience. The zero mean of K is calcu-
lated as follows

K= �F �FT = IN �
1

N
1N1

T
N

� �
K IN �

1

N
1N1

T
N

� �
ð8Þ

Second, PLS model is established between �F and Y

in space F . Thus, the KPLS model is constructed as

�F=TPT + �Fr

Y=UQT +Yr

�
ð9Þ

where T 2 R
N 3 a and P 2 R

f 3 a are the score matrix
and the loading matrix of �F, respectively, U 2 R

N 3 a

and Q 2 R
l 3 a are the score matrix and the loading

matrix of Y, respectively, �Fr and Yr are the residual
matrices, and a represents the number of latent
variables.

The iterative calculation algorithm of KPLS has
been elaborated in Jiao et al.,14 in which we can get the
score matrix U and R that is R= �FTU(TT �KU)�1. For
the score matrix T and the loading matrix Q, the fol-
lowing equations hold

T= �FR ð10Þ

Q=YTT ð11Þ

Obviously, the score vector tnew of f(xnew) is

tnew =RTf xnewð Þ ð12Þ

Methodology

FD-k-NN as a popular fault detection approach has
ability in determining whether a fault has occurred in
the process, but it cannot estimate whether the fault
occurred will have an impact on the production quality.

Therefore, in this section, we propose k-NN-based
fault diagnosis scheme. Its fault detection scheme
KPLS-k-NN is designed as follows: first, FD-k-NN is
employed to monitor the process space. Then, KPLS is
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adopted to obtain the predicted quality samples Yp of
training process samples X in predicted quality space,
where quality-related fault detection will be carried out.
When KPLS-k-NN indicates that the system has failed,
a new fault isolation method MVCk-NN is given for
better locating the faulty sensor variables.

The proposed KPLS-k-NN for fault detection

Fault detection in process space. FD-k-NN is designed
through following the principle: any normal samples
should be close to other normal samples to some extent,
while for a faulty sample, it should deviate from normal
samples. Usually, the degree of deviation is measured
by k-NN distance, which is defined as the average
square distance between the test sample and its k-NNs
from the training normal samples. When the k-NN dis-
tance of a sample exceeds the threshold, it is considered
as a faulty sample, otherwise, it is judged as a normal
sample. The details of the algorithm are as follows.

Model building. Given the training samples X, the
model is built according to the following procedures:

1. Find the k-NNs for each sample xi in X and
compute all the Euclidean distance, that

dij = xi � xj

�� ��
2
, j 2 k�NNs xið Þ ð13Þ

where k�NNs(xi) represents the set of k-NNs of xi.

2. Calculate the k-NN distance of xi. k-NN dis-
tance is adopted as the statistics D2

x(xi) as

D2
x xið Þ=

1

k

Xk

j= 1

d2
ij ð14Þ

3. Determine the threshold D2
x,a:

D2
x is rearranged in descending order as D2

x arrange, of

which (1� a)�empiricalquartile is chosen as D2
x,a in

Zhou et al.,37 that is, D2
x arrange( N (1� a)b c).

Fault detection. For a new incoming test sample xnew,
the sample categories are inferred as the following steps:

1. Find xnew’s k-NNs from X.
2. Compute xnew’s k-NN distance D2

x(xnew).
3. Compare D2

x(xnew) with the threshold D2
x,a:

If D2
x(xnew) . D2

x,a, then xnew is considered as a faulty
sample. Otherwise, xnew is a normal sample.

Fault detection in predicted quality space. Given the training
process samples X and training quality samples Y. To
obtain the predicted quality samples Yp of training pro-
cess samples X, KPLS41 is adopted to obtain Yp (the
prediction value of Y), since it has the ability to utilize
X to effectively mine the essential information of Y. We
set the coefficient matrix of X and Yp asM, which is

M=UðTT �KUÞ�1
TTY ð15Þ

According to the calculation of equations (10) and
(11), the predictive output Yp is calculated by

Yp =TQT = �F �FTUðTT �KUÞ�1TTY= �KM ð16Þ

Similar to process space, we call the space where
yp(i= 1, . . . ,N) 2 Yp is located predicted quality space.

At this point, FD-k-NN is employed to perform the
detection of quality-related faults in predicted quality
space. We need to find the k-NNs for each sample yp in
Yp, and obtain the yp’s k-NN distance D2

y(yp) according
to equation (14). Notice that since X and Yp generally
do not obey the same distribution, for x and yp in the
same point, their corresponding k-NNs might not be
the samples in the same points. Hence, the k-NNs for x
and yp should be calculated separately. In addition, our
KPLS-k-NN method does not need to carry out any
variable transformation in the original space, and it
directly depends on the Euclidian distance of the vari-
ables in the original space as an index to quantify the
discrepancy between test samples and normal samples.

Different from the threshold in Zhou et al.,37 in this
article, kernel density estimation (KDE)42, as a non-
parameter probability density estimation method of
random variable, is utilized to determine the threshold
for two monitoring spaces, which can be referred in
detail in Parzen.38 Thus, corresponding to D2

x and D2
y,

we will get their thresholds D2
x,a and D2

y,a.
For a new incoming test sample xnew, its predicted

quality yp, new is calculated by equations (12) and (15) as
follows

yp, new =Qtnew =MT �Ff xnewð Þ=MTknew ð17Þ

To determine whether yp, new is a faulty sample, we
find yp, new’s k-NNs from Yp, and compute yp, new’s k-
NN distance D2

y(yp, new).
Finally, detection logic is performed by comparing

D2
y(yp, new) with the threshold D2

y,a: if D2
y(yp, new).D2

y,a,
then xnew is considered as a quality-related faulty sam-
ple. Otherwise, xnew is a normal sample or a quality-
unrelated faulty sample.

The whole scheme of KPLS-k-NN. By combining fault
detection in process space as well as in predicted quality
space, our proposed the whole KPLS-k-NN non-linear
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quality-related fault detection scheme is summarized as
follows:

Offline modeling.
1. Normalize the training process sample X and

training quality samples Y to the zero mean and
unit variance.

2. Obtain the coefficient matrix M of KPLS by
equation (15) and get Yp using equation (16).

3. Calculate x’s k-NN distance D2
x(x) and yp’s k-

NN distance D2
y(yp) to get the thresholds D2

x,a

and D2
y,a.

Online detection. For a new incoming test sample
xnew:

1. Obtain yp, new using equation (17).
2. Compute the statistics D2

x(xnew) and D2
y(yp, new

).

Detection logic.
1. If D2

xnew
ł D2

x,a and D2
ynew

ł D2
y,a, the system is

fault-free.
2. If D2

ynew
.D2

y,a, the system has quality-related
faults.

3. If D2
ynew

ł D2
y,a and D2

xnew
.D2

x,a, the system has
some quality-unrelated faults.

Notice that our KPLS-k-NN is essentially a supervised
quality-related fault detection method, which is
designed by combining KPLS with FD-k-NN. The
above seems to be a simple combination, but FD-k-
NN as an unsupervised method is successfully applied
to complete a supervised fault detection task.

The proposed MVCk-NN for fault isolation

The KPLS-k-NN-based fault detection approach has
been presented in the above section, which can effec-
tively judge whether there are some faults in the process
and whether the faults are related to product quality.
Next, when KPLS-k-NN indicates the system exists
some faults, a fault isolation method matched with
KPLS-k-NN will be needed to locate faulty variables.
Here, we propose a new fault isolation method MVCk-
NN in detail.

In general, the sensor fault as a kind of system faults
is classified as the additive fault. Hence, a process sam-
ple x 2 R

m can be expressed as

x= x�+ f= x�+
Xm

i= 1

jifi ð18Þ

where x� 2 R
m denotes the fault-free component of x

and f 2 R
m denotes the fault component. If f= 0, x is

a normal sample, otherwise a faulty sample.
ji 2 R

m(i= 1, . . . m) is the fault-direction indicator

vector of the ith process variable among m variables, of
which the ith element is 1 and other elements are 0.

To locate which sensors cause the statistics D2
x to

alarm faults, the contributions from all variables of x to
D2

x need to be calculated. We decompose D2
x as follows

D2
x =

1

k

Xk

j= 1

x� xj

�� ��2

2
=
Xm

i= 1

1

k

Xk

j= 1

jT
i x� xj

� 	� �( )
ð19Þ

Then, define the contribution from ith variable of x
to D2

x as

C x, ið Þ= 1

k

Xk

j= 1

jT
i x� xj

� 	� �
ð20Þ

Obviously, by equations (19) and (20), D2
x is the sum

of the contributions of all variables, namely,
D2

x =
Pm

i= 1 C(x, i).
Next, we discuss the influence of the fault magnitude

on variable contributions. Set x include at least one
fault. Without loss of generality, we assume the ith vari-
able be faulty, and others be normal or faulty, that

x= x�+ jifi +
Xm

j= 1, j 6¼i

jj fj fi 6¼ 0ð Þ ð21Þ

By equations (20) and (21), we have

C x, ið Þ= 1

k

Xk

j= 1

jT
i x��xj + jifi +

Xm

j= 1, j6¼i

jjfj

 !" #
ð22Þ

According to neighborhood relationship, a reason-
able hypothesis is given37 as follows.

Hypothesis 1. Any variable’s fault magnitude is much
larger than the Euclidean distance between the variable
and its neighbors on the same dimension, that

fik k2 ø x�½ �i � xj

� �
i

�� ��
2

ð23Þ

where ½��i represents the ith component of vector.
Due to jT

i ji = 1, jT
i jj = 0, 8j 6¼ i, and Hypothesis 1,

it can be obtained that

C x, ið Þ’ 1

k

Xk

j= 1

f 2
i = f 2

i ð24Þ

It indicates that the contribution of each fault vari-
able to the statistics is approximately equal to the
square of the fault magnitude, and this method hardly
suffers from smearing effect when the Hypothesis 1 is
satisfied.

The above are VCk-NN-based variable contribu-
tions, but there exists a drawback that Hypothesis 1
sometimes cannot be enough satisfied, which causes
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that the contribution of fault variables may not be sig-
nificantly different from that of normal variables, so as
to increase the smearing effect.

Therefore, our proposed MVCk-NN introduces the
idea of ARCR35 into VCk-NN to obtain the relative
variable contributions instead of absolute ones, so that
the smearing effect is further eliminated. The detailed
steps are illustrated as follows:

1. For a new sample xnew 2 R
m, when m= 1, it

means process variable is a single source vari-
able. In this case, once a fault occurs, the faulty
variable must be this process variable. However,
when m ø 2, we need to execute the following
Steps 2–5 to isolate faulty process variables.

2. Normalize each C(xnew, i) obtained by equation
(20) to guarantee that all variables contribute
more or less the same to xnew

Ĉ xnew, ið Þ= C xnew, ið Þ
1
N

PN
j= 1

C xj, i
� 	 ð25Þ

3. To eliminate the smearing effect, Ĉ(xnew, i) is
divided by the sum of all the m normalized con-
tributions to obtain relative variable contribu-
tion Cr(xnew, i)

Cr xnew, ið Þ= Ĉ xnew, ið ÞPm
i= 1

Ĉ xnew, ið Þ
ð26Þ

4. The recommended experience threshold is given
in Peng et al.35

u=
Cr xnewð Þk k2 +

1
m

2
ð27Þ

where Cr(xnew)= ½Cr(xnew, 1), . . . ,Cr(xnew,m)�T .

5. If Cr(xnew, i) is more than u, the ith variable of
xnew can be considered as a root cause of faults,
otherwise not.

Through the above derivation, the flow chart of the
proposed k-NN-based quality-related non-linear fault
diagnosis scheme is summarized in Figure 1.

Case study

This section applies a widely typical numerical and a
real industrial Tennessee Eastman (TE) process bench-
mark to validate the effectiveness of our proposed

method. Two fault evaluation indexes are adopted for
performance evaluation. In the fault detection stage,
our method KPLS-k-NN will be compared with the
state-of-the-art approach total kernel projection to
latent structures (TKPLS)22 and the most recent SVD-
based non-linear method modified kernel least squares
(MKLS)23 to show its superiorities. In the fault isola-
tion stage, our MVCk-NN will be compared with VCk-
NN. Besides, in the experiment, the confidence level a

is set to 0.99.

Evaluation index

Two evaluation indexes—that is, the fault DR and the
false alarm rate (FAR)—are used in our experiments,
which are defined as follows

DR=
Number of effective alarms

Total faulty samples
3 100% ð28Þ

FAR=
Number of false alarms

Total faulty samples
3 100% ð29Þ

where an effective alarm represents a quality-related
faulty sample is detected, while a false alarm represents
a quality-unrelated faulty sample is detected. For per-
formance evaluation, when a quality-related fault
occurs, DR is adopted as the key indicator, while when
a quality-unrelated fault happens, then FAR is used as

Figure 1. The quality-related non-linear fault diagnosis
framework of k-NN.
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the key indicator. More details on DR and FAR can
be referred to Wang and Jiao.23

Typical numerical example

The following numerical example introduced in Peng
et al.22 is applied

x1;N 1, 0:012
� 	

, x2;N 1, 0:012
� 	

x3 = sin x1ð Þ+ e1

x4 = x2
1 � 3x1 + 4+ e2

x5 = x2
2 + cos x2

2

� 	
+ 1+ e3

y= x2
3 + x3x4 + x1 + v

8>>>><
>>>>:

ð30Þ

where ei;N(0, 0:0012)(i= 1, 2, 3), v ; N(0, 0:0052), and
ei and v denote the noises. x= ½x1, x2, x3, x4, x5�T is the
process variable, and y is the quality variable.

From the above equation, we can see that y can only
be affected by x1, x3, and x4, but not by x2 and x5.
Hence, when a fault occurs in x1, it will have influence
on quality variable y. While a fault happens in x2, it will
not do anything to y. We generate 400 normal samples
as training samples for offline modeling, 400 normal
samples as validation samples for selecting the hyper-
parameters, and 400 test samples which include 200
normal samples and 200 faulty samples for online
detection. The fault scenarios are as follows:

Fault 1: step bias occurs in x1: x1 = x�1 + f .
Fault 2: ramp change occurs in x1: x1 = x�1 +
(t � 200)f .
Fault 3: step bias occurs in x2: x2 = x�2 + f .
Fault 4: ramp change occurs in x2: x2 = x�2 +
(t � 200)f , where x�1 and x�2 are the normal values of
x1 and x2, respectively, t (201 ł t ł 400) is the
sequence number of the tth sample, and f is the fault
magnitude. It can be seen that Fault 1 and Fault 2
are quality-related faults, while Fault 3 and Fault 4
are quality-unrelated faults.

The model parameters are N = 400, m= 5, and
l = 1. For the choice of hyper-parameters, that is, A, c,

and k, we utilize cross-validation method to determine
them. In detail, in the normal state, several sets of para-
meters with the minimum of sum of FARs of process
variables and quality variables will be selected as the
alternative hyper-parameters. In addition, we also need
to consider the predictive performance of KPLS mean-
while. Therefore, we select one from the alternative
hyper-parameters that has the minimum prediction
error as final hyper-parameters. In this experiment, the
hyper-parameters are set as A= 2, c= 2 3 104, and
k = 5. The significance level a is 0.01. To make the
experiment more comprehensive, the magnitude of
Fault 1 is changed in turn that f = 0:2, 0:4, 0:6, 0:8,
while for Fault 2, f = 0:002, 0:003, 0:004, 0:005.

The results of quality-related faults
Fault detection. The detection results for Fault 1 and

Fault 2 of KPLS-k-NN, MKLS, and TKPLS are dis-
played in Table 1. As shown in Table 1, the DRs of
three methods to detect Fault 1 are all 100%, and the
DRs of three methods for Fault 2 are almost above
90%. So, three methods all give right detection results.

Furthermore, without loss of generally, we set
f = 0:4 in Fault 1 and observe the statistics values of
three methods. From Figure 2, it is obvious that for
these three methods, almost of all statistics of normal
samples are below the threshold, while those faulty
samples are significantly above the threshold.
Therefore, three methods all have a good detection
ability for quality-related faults.

Fault isolation. When f = 0:4, the Fault 1 isolation
results of MVCk-NN and VCk-NN are shown in
Figure 3. According to the setting of Fault 1, variable
x1 is the root cause of Fault 1, while x3 and x4 are also
affected by x1, but they are not root causes. In Figure
3(a), VCk-NN regards x1, x3, and x4 as the root cause
of Fault 1, while from Figure 3(b), MVCk-NN can
only identify x1 as the root cause of Fault 1. By con-
trast with VCk-NN, our proposed MVCk-NN has
higher accuracy in the fault isolation task.

Table 1. Detection results of KPLS-k-NN, MKLS, and TKPLS for quality-related Fault 1 and Fault 2 (%).

Fault 1 Fault 2

f KPLS-k-NN MKLS TKPLS f KPLS-k-NN MKLS TKPLS

D2
y D2

x T2
mkls Qmkls T2

ky&Qkr T2
ko&T2

kr D2
y D2

x T2
mkls Qmkls T2

ky&Qkr T2
ko&T2

kr

0.2 100ð Þa 100ð Þa 100ð Þa 100ð Þa 100ð Þa 100ð Þa 0.002 92ð Þa 93:5ð Þa 95ð Þa 93ð Þa 94:5ð Þa 86:5ð Þa
0.4 100ð Þa 100ð Þa 100ð Þa 100ð Þa 100ð Þa 100ð Þa 0.003 96ð Þa 96:5ð Þa 97ð Þa 96:5ð Þa 96:5ð Þa 93ð Þa
0.6 100ð Þa 100ð Þa 100ð Þa 100ð Þa 100ð Þa 100ð Þa 0.004 97:5ð Þa 97:5ð Þa 98:5ð Þa 98ð Þa 98ð Þa 92:5ð Þa
0.8 100ð Þa 100ð Þa 100ð Þa 100ð Þa 100ð Þa 100ð Þa 0.005 97ð Þa 97:5ð Þa 99ð Þa 97:5ð Þa 98:5ð Þa 95:5ð Þa

KPLS-k-NN: kernel partial least squares-k-nearest neighbor.

where ‘‘a’’ refers to DRs.
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The results of quality-unrelated faults
Fault detection. The results to detect Fault 3 and

Fault 4 using three methods are shown in Table 2.
Because the quality-unrelated statistics of these three

approaches are all over 90%, they can all warn that
some process faults have happened in the system. The
FARs of the statistics using TKPLS are over 90%, so
TKPLS fails to identify the true natures of these faults.

Figure 2. Detection results of quality-related Fault 1 with f = 0:4 by (a) KPLS-k-NN, (b) MKLS, and (c) TKPLS.

Figure 3. Isolation results of quality-related Fault 1 with f = 0:4 by (a) MVCk-NN and (b) VCk-NN.
A blue ‘‘�’’ represents that the variable is the root cause of the fault.
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For MKLS, although its FARs of the statistics T2
mkls

are all less than 1%, they are still not equal to 0.
However, using KPLS-k-NN, the FARs of the statistics
D2

y are all 0, so it achieves the best performance in com-
parison methods.

We set f = 0:003 in Fault 2 to valid the fault detec-
tion and isolation performance for quality-unrelated
faults. The values of three methods’ statistics are shown
in Figure 4. From Figure 4, when Fault 2 occurs,
quality-unrelated statistics of three methods are all over
their own thresholds, so they all indicate some faults
have occurred. Because Q2

kr of TKPLS is almost higher
than its threshold in all faulty samples, it misunder-
stands that the faults are quality-related, so it fails.
Since quality-related statistics of both the KPLS-k-NN
method and MKLS are lower than the thresholds, they
both can give the correct results: the system exists some
quality-unrelated faults. Compared with T 2

mkls of
MKLS, it is very obvious that D2

y of KPLS-k-NN can
achieve a better margin, because it is much lower than
the threshold. Therefore, for quality-unrelated faults,
KPLS-k-NN can make a clearer division between
quality-related and quality-unrelated samples.

Fault isolation. When f = 0:003, the Fault 2 isolation
results of two methods are displayed in Figure 5.
Variable x2 is the root cause of Fault 2. Although x5 is
not root cause, it will be affected by x2. In Figure 3,
VCk-NN considers x2 and x5 both as root cause vari-
ables, while our MVCk-NN only determines that x2 is
the root cause of Fault 2, which is consistent with the
fact.

Through the above analysis of the experimental
results, our method KPLS-k-NN does a much excellent
job for quality-related fault detection task than other
comparison methods. Besides, when KPLS-k-NN indi-
cates some faults happen, our proposed MVCk-NN
has high accuracy in fault root cause diagnosis and has
prominent advantages over VCk-NN.

TE benchmark

TE process is a real simulation benchmark of industrial
process, which has been widely utilized for the simula-
tion and verification of various control and MSPM
approaches,39 and its structure flowchart is shown in
Figure 6. The variables in this process contain two
blocks of variables: the XMV block of 11 manipulated
variables and the XMEAS block of 41 measured vari-
ables which include 22 process and 19 analysis vari-
ables. In this simulation, 22 process variables (XMEAS
(1–22)) and 11 manipulated variables (XMV (1–11))
are chosen to be process input X, and select purge gas
analysis component G (XMEAS (35)) as the quality
output Y.

The training data set and validation data set contain
500 and 960 fault-free data samples, respectively. For
the test data set, it is composed of 21 different fault
sets, each of which includes 960 data samples and they
are displayed in Table 3. The fault categories can be
roughly divided into the following ones: step faults,
random variation faults, slow drift faults, sticking
faults, constant position faults, and some unknown
faults. The detailed fault information is described in
Downs and Vogel40 and the website (http://depts.wa-
shington.edu/control/LARRY/TE/download.html).

To classify the process faults into the category of
affecting Y and that of not affecting, the criterion of
Zhou et al.16 is adopted, that is, if ny=nt.10%, then the
faults are considered to be quality-related, otherwise
quality-unrelated, where ny=nt denotes the affected rate
of Y. According to the validation data set, the model
parameters are N = 500, m= 33, and l= 1 and the
hyper-parameters are set as A= 10, c= 2 3 104, and
k = 10.

The results of fault detection. For the quality-related
faults, detection results of KPLS-k-NN, MKLS and
TKPLS are presented in Table 4. We can see that
TKPLS performs better than KPLS-k-NN and MKLS
since all its FDRs are higher than the corresponding
ones of the other methods. However, KPLS-k-NN and
MKLS still provide satisfactory results, with most of
their statistics above being 10%. The DRs of KPLS-k-
NN are significantly superior to MKLS in IDV(6) and
IDV(18).

For the quality-unrelated faults, Table 5 gives the
detection results. We can see the corresponding statis-
tics D2

x, Qmkls, and T 2
ko&T2

kr of all comparative methods
have very close values, indicating that the three statis-
tics are equally effective to detect system faults. TKPLS
fails to judge the correlation between faults and quality,
because its statistics for these faults are all above 10%.
For difficult-to-detect faults IDV(9), IDV(15)–IDV(17),
both KPLS-k-NN and MKLS fail, but they enable to
give correct results for the other faults. Compared with
MKLS, KPLS-k-NN performs much better, because
the FARs of KPLS-k-NN is much less than MKLS.
Because KPLS-k-NN has good detection ability for dif-
ferent 21 kinds of faults, it indicates that the model
trained by KPLS-k-NN has perfect generalization
ability.

The results of fault isolation. We select IDV(1) to verify the
fault isolation effect of MVCk-NN by compared with
VCk-NN. IDV(1) is a step fault which represents the
change of A/C feed ration. The root cause of IDV(1) is
the variable of x25. When IDV(1) happens, variables x1,
x26, x4, and x18 will deviate from the normal operation
state in turn because of the influence of x25. Figure 7
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displays the relative variable contributions of all process
variables from 161th sample point to 960th sample
point. From Figure 7(a), we can see that for the most
part, VCk-NN identifies x25, x1, x4, and x18 as the root
cause of IDV(1). Whereas in Figure 7(b), MVCk-NN
only needs to consider variables x25 and x1 as the root
cause. Therefore, our proposed MVCk-NN has a

relatively better ability to locate the variables causing
faults than VCk-NN.

According to the above results, we can conclude that
the proposed method is effective in quality-related non-
linear fault diagnosis and has prominent advantages
over traditional methods. Compared with the SVD-
based methods, KPLS-k-NN directly utilizes the

Table 2. Detection results of KPLS-k-NN, MKLS, and TKPLS for quality-unrelated Fault 3 and Fault 4 (%).

Fault 1 Fault 2

f KPLS-k-NN MKLS TKPLS f KPLS-k-NN MKLS TKPLS

D2
y D2

x T2
mkls Qmkls T2

ky&Qkr T2
ko&T2

kr D2
y D2

x T2
mkls Qmkls T2

ky&Qkr T2
ko&T2

kr

0.2 0ð Þb 100ð Þa 0ð Þb 100ð Þa 100ð Þb 100ð Þa 0.002 0ð Þb 92ð Þa 1ð Þb 92ð Þa 91:5ð Þb 92ð Þa
0.4 0ð Þb 100ð Þa 0:5ð Þb 100ð Þa 100ð Þb 100ð Þa 0.003 0ð Þb 96ð Þa 0:5ð Þb 96:5ð Þa 96ð Þb 96ð Þa
0.6 0ð Þb 100ð Þa 0:5ð Þb 100ð Þa 100ð Þb 100ð Þa 0.004 0ð Þb 95:5ð Þa 0:5ð Þb 95:5ð Þa 95:5ð Þb 96ð Þa
0.8 0ð Þb 100ð Þa 0ð Þb 100ð Þa 100ð Þb 100ð Þa 0.005 0ð Þb 97ð Þa 0:5ð Þb 97ð Þa 96:5ð Þb 97:5ð Þa

KPLS-k-NN: kernel partial least squares-k-nearest neighbor.

where ‘‘a’’ refers to DRs and ‘‘b’’ refers to FARs.

Figure 4. Detection results of quality-unrelated Fault 2 with f = 0:003 by (a) KPLS-k-NN, (b) MKLS, and (c) TKPLS.
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relationship among the predicted quality samples to
design the statistics, which considers the information of
the nearest neighbor structure. Besides, KPLS-k-NN
directly detects the process space, avoiding the problem
that the residual statistics may have a large component
of variance, such as MKLS. Moreover, compared with
VCk-NN, the proposed MVCk-NN has advantages in
both variable contribution and threshold setting.

Conclusion

In this article, we present a novel quality-related non-
linear fault diagnosis method based on k-NN, which is
especially suitable for non-linear industrial processes

with relatively small training samples. It consists of a
new quality-related fault detection method KPLS-k-
NN and a new fault isolation method MVCk-NN.
First, KPLS is applied to establish a regression model
between process variables and quality variables in order
to obtain predictive quality samples. Then, FD-k-NN
method is used to design two corresponding statistics,
that is, D2

x and D2
y for the process space and the pre-

dicted quality space, respectively. They will make a
judgment on whether there is a fault happening in the
system, and whether the fault is related to quality when
a fault occurs. When KPLS-k-NN detects faults, in
order to locate root cause variables of faults, MVCk-
NN is proposed by introducing the idea of ARCR into

Figure 5. Isolation results of quality-related Fault 2 with f = 0:003 by (a) MVCk-NN and (b) VCk-NN.
A blue ‘‘�’’ represents that the variable is the root cause of the fault.

Figure 6. The structure flowchart of the TE process.
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Table 4. Detection results of KPLS-k-NN, MKLS, and TKPLS for quality-related faults in the TE process (%).

Fault number ny=nt KPLS-k-NN MKLS TKPLS

D2
y D2

x T2
mkls Qmkls T2

ky&Qkr T2
ko&T2

kr

IDV(1) 22.72 82:25ð Þa 99:75ð Þa 34:88ð Þa 99:88ð Þa 99:75ð Þa 99:75ð Þa
IDV(2) 72.16 85:75ð Þa 98:63ð Þa 86:88ð Þa 98:50ð Þa 98:50ð Þa 98:75ð Þa
IDV(5) 14.98 13:88ð Þa 36:63ð Þa 23:50ð Þa 33:38ð Þa 33:38ð Þa 33:25ð Þa
IDV(6) 95.63 94:13ð Þa 100ð Þa 17:75ð Þa 100ð Þa 100ð Þa 99:25ð Þa
IDV(7) 18.23 29:88ð Þa 100ð Þa 32:63ð Þa 100ð Þa 100ð Þa 100ð Þa
IDV(8) 58.93 62:25ð Þa 98:63ð Þa 79:00ð Þa 97:75ð Þa 98:50ð Þa 97:75ð Þa
IDV(10) 11.99 60:12ð Þa 63:88ð Þa 26:75ð Þa 59:38ð Þa 73:25ð Þa 87:25ð Þa
IDV(12) 61.67 67:38ð Þa 99:63ð Þa 76:63ð Þa 99:25ð Þa 99:50ð Þa 99:13ð Þa
IDV(13) 66.67 83:00ð Þa 95:38ð Þa 79:13ð Þa 95:25ð Þa 95:50ð Þa 94:75ð Þa
IDV(18) 85.39 86:00ð Þa 90:88ð Þa 24:38ð Þa 90:50ð Þa 91:13ð Þa 89:88ð Þa
IDV(20) 12.48 10:00ð Þa 65:25ð Þa 28:38ð Þa 63:50ð Þa 59:75ð Þa 50:25ð Þa
IDV(21) 24.97 46:88ð Þa 50:75ð Þa 30:50ð Þa 48:63ð Þa 64:00ð Þa 42:88ð Þa

KPLS-k-NN: kernel partial least squares-k-nearest neighbor.

where ‘‘a’’ refers to DRs.

Table 3. Fault types in the TE process.

Fault Description Type

IDV(1) A/C Feed ratio, B composition constant (Stream 4) Step
IDV(2) B composition, A/C ratio constant (Stream 4) Step
IDV(3) D feed temperature (Stream 2) Step
IDV(4) Reactor cooling water inlet temperature Step
IDV(5) Condenser cooling water inlet temperature Step
IDV(6) A feed loss (Stream 1) Step
IDV(7) C header pressure loss (Stream 4) Step
IDV(8) A, B, C feed composition (Stream 4) Random variation
IDV(9) D feed temperature (Stream 2) Random variation
IDV(10) C feed temperature (Stream 4) Random variation
IDV(11) Reactor cooling water inlet temperature Random variation
IDV(12) Condenser cooling water inlet temperature Random variation
IDV(13) Reactor kinetics Slow drift
IDV(14) Reactor cooling water valve Sticking
IDV(15) Condenser cooling water valve Sticking
IDV(16) Unknown Unknown
IDV(17) Unknown Unknown
IDV(18) Unknown Unknown
IDV(19) Unknown Unknown
IDV(20) Unknown Unknown
IDV(21) Valve (Stream 4) Constant position

TE: Tennessee Eastman.

Table 5. Detection results of KPLS-k-NN, MKLS, and TKPLS for quality-unrelated faults in the TE process (%).

Fault number ny=nt KPLS-k-NN MKLS TKPLS

D2
y D2

x T2
mkls Qmkls T2

ky&Qkr T2
ko&T2

kr

IDV(3) 7.74 1:13ð Þb 14:37ð Þa 7:25ð Þb 14:00ð Þa 15:38ð Þb 6:88ð Þa
IDV(4) 6.74 1:88ð Þb 99:75ð Þa 5:63ð Þb 98:50ð Þa 87:50ð Þb 99:50ð Þa
IDV(9) 4.99 0:75ð Þb 11:13ð Þa 5:63ð Þb 10:88ð Þa 12:13ð Þb 7:12ð Þa
IDV(11) 9.99 3:13ð Þb 78:00ð Þa 9:50ð Þb 74:00ð Þa 70:13ð Þb 75:63ð Þa
IDV(14) 6.24 7:63ð Þb 100ð Þa 3:38ð Þb 100ð Þa 100ð Þb 100ð Þa
IDV(15) 6.24 3:13ð Þb 19:25ð Þa 10:50ð Þb 14:63ð Þa 18:38ð Þb 12:63ð Þa
IDV(16) 3.75 39:25ð Þb 59:88ð Þa 20:00ð Þb 52:50ð Þa 63:13ð Þb 74:38ð Þa
IDV(17) 9.49 32:75ð Þb 95:50ð Þa 13:25ð Þb 93:50ð Þa 95:25ð Þb 90:38ð Þa
IDV(19) 8.36 0:50ð Þb 26:13ð Þa 1:00ð Þb 19:88ð Þa 43:13ð Þb 13:63ð Þa

KPLS-k-NN: kernel partial least squares-k-nearest neighbor.

where ‘‘a’’ refers to DRs and ‘‘b’’ refers to FARs.
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VCk-NN. Finally, the proposed method is applied to
detect the faults in case study and the effectiveness is
validated. Due to the superior fitting ability of the deep
neural networks in comparison to KPLS, further work
will focus on how to combine deep neural networks
with k-NN rule to detect quality-related faults.
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