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Abstract

Skeleton-based gesture recognition is very challenging,
as the high-level information in gesture is expressed by a se-
quence of complexly composite motions. Previous works of-
ten learn all the motions with a single model. In this paper,
we propose to decouple the gesture into hand posture vari-
ations and hand movements, which are then modeled sep-
arately. For the former, the skeleton sequence is embedded
into a 3D hand posture evolution volume (HPEV) to repre-
sent fine-grained posture variations. For the latter, the shifts
of hand center and fingertips are arranged as a 2D hand
movement map (HMM) to capture holistic movements. To
learn from the two inhomogeneous representations for ges-
ture recognition, we propose an end-to-end two-stream net-
work. The HPEV stream integrates both spatial layout and
temporal evolution information of hand postures by a dedi-
cated 3D CNN, while the HMM stream develops an efficient
2D CNN to extract hand movement features. Eventually, the
predictions of the two streams are aggregated with high effi-
ciency. Extensive experiments on SHREC’17 Track, DHG-
14/28 and FPHA datasets demonstrate that our method is
competitive with the state-of-the-art.

1. Introduction
Gesture recognition is an attractive research topic due to

its wide range of applications in many fields, e.g. assisted

living, virtual game control and sign language interpreta-

tion. Early works for this task are mainly based on RGB

videos or depth sequences. However, both modalities have

the drawback of plausible background changes, which is of-

ten harmful to gesture recognition. More recently, hand

skeleton has become a popular modality. Skeleton inher-

ently highlights the key information of hand gestures, whilst

being robust to various illuminations and complex back-
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Figure 1. The motivation of this paper. Dynamic hand gesture can

be decomposed into hand posture variations and hand movements.

grounds. Accordingly, skeleton-based gesture recognition

has drawn much attention in recent years.

Motivated by the remarkable success of deep learn-

ing in vision tasks, much effort has focused on applying

CNN [9, 19, 23, 25], RNN [10, 34] and LSTM [22, 25, 30]

to skeleton-based gesture recognition. In these methods,

hand skeletons are usually constructed as a sequence of

joint-coordinate vectors or a pseudo image. More recently,

some authors apply graph convolutional network (GCN) to

analyze hand skeletons [4]. They often embed skeleton se-

quences into a predefined spatio-temporal graph structure.

These deep learning-based methods represent skeleton se-

quences in a predefined and fixed structure. Hand gestures

always contain the interactions of different joints. Aggre-

gating the local features of these joints is crucial for hand

gesture recognition. However, the fixed structure for skele-

tons could be under-effective to capture local features for all

interactive joints, since these joints may be nonadjacent in

the predefined structure. Moreover, most of these methods

work with a single deep model, which may have difficulty

in analyzing the complexly composite hand gestures.

As is shown in Figure 1, a dynamic hand gesture can be

decomposed into hand posture variations and hand move-

ments. Previous deep learning based works aim to learn the
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two features in a single stream. However, using a single

network to learn these two features may yield sub-optimal

performance. Motivated by this observation, we propose

to decouple the dynamic gesture into hand posture varia-
tions and hand movements. The former captures the spa-

tial layout changes of hand joints, while the latter reflects

global motion trajectories. Intuitively, the great difference

between the two representations motivates us to develop a

two-stream framework for gesture recognition, which is il-

lustrated in Figure 2.

Specifically, two representations for hand posture vari-

ations and hand movements are first decoupled from raw

skeleton sequence and then learned by two networks sepa-

rately. For posture variations, skeleton sequence is embed-

ded into a Hand Posture Evolution Volume (HPEV) with a

gap between adjacent skeletons, ignoring hand relative po-

sitions. In this way, the spatial and temporal information

of posture evolution can be encoded effectively. Then a 3D

CNN based network (named, HPEV-Net) is designed to ag-

gregate both the spatial layout and temporal evolution infor-

mation. By volume representation and using 3D CNN based

network, we can alleviate the limitations imposed by the

above mentioned predefined-structure methods. Since the

interactive joints tend to be adjacent to each other in volume

space, the 3D convolution kernel can aggregate the local

features of these joints naturally. Nevertheless, the volume

representation may lose details of subtle hand motion due

to the resolution restriction. As a remedy, we introduce Fin-

gertip Relative Position Vector (FRPV) as a compensatory

cue for subtle gesture recognition. For hand movements,

the shifts of both fingertips and hand center are arranged

as Hand Movement Map (HMM). Then, a 2D CNN based

network (named, HMM-Net) is applied to learn the hand

movement features. Eventually, recognition results can be

obtained by fusing the predictions of the two networks.

In summary, the main contributions of this paper can be

summarized as follows:

• We propose a novel method for gesture modeling: we

represent the gesture as hand posture variations and

hand movements and model them separately by Hand

Posture Evolution Volume (HPEV) and Hand Move-

ment Map (HMM). The method can simultaneously

enhance the expressive power of the posture and mo-

tion information.

• We introduce a unified and efficient two-stream frame-

work to effectively learn the decoupled representa-

tions. Extensive experiments on benchmarks demon-

strate its superior performance in gesture recognition.

2. Related work
With the success of deep learning, many works ap-

plied deep learning to gesture and action recognition in an

end-to-end manner. By transforming the raw skeleton se-

quence to a pseudo image, CNN is used to extract ges-

ture and action features [9, 19, 23, 25]. RNN [10, 34]

and LSTM [22, 25, 30] are wildly used to capture spatial

and temporal relationships among joints. Moreover, at-

tention mechanism based approaches are applied in [35].

Recently, deep learning on manifolds and graphs has in-

creasingly attracted attention. The goal is to improve ges-

ture and action recognition using manifold learning [24]

and GCN [36]. Most of these methods model skeleton se-

quences in a predefined and fixed structure. Therefore, they

cannot capture the local features of interactive joints effi-

ciently. This drawback is alleviated by spatial and temporal

volume modeling for skeletons [32]. However, skeletons

are embedded in the volume corresponding to the whole

motion region. Gestures with significant movements may

suffer from low-resolution representation for hand skeletons

leading to inferior performance. In this paper, we ignore

hand relative positions when building Hand Posture Evo-

lution Volume (HPEV). Hence, the skeletons can be repre-

sented with high resolution.

Liu et al. [21] first proposed a two-stream network for

action recognition. They introduce shape and motion evo-

lution maps to represent action and use the two-stream net-

work to learn these features. Compared with this method,

our approach models hand posture variations and hand

movements using two different modalities, which is more

effective. Moreover, due to the different skeletal topolo-

gies, actions and gestures have different motion character-

istics. The representation dedicated to action recognition

may not be optimal for gesture recognition. Compared to

actions, gestures can be clearly decomposed into two parts:

the hand posture changes and the hand movements. Pre-

cisely inspired by this observation, we design a specialized

decoupled representation to improve gesture recognition.

3. Proposed method

The overall architecture of the proposed method is

shown in Figure 2. Given a skeleton sequence, a hand pos-

ture evolution volume (HPEV) and a hand movement map

(HMM) are generated to represent hand posture variations

and hand movements respectively. We design a 3D CNN

based HPEV-Net for learning a discriminative feature vec-

tor of hand posture variations from HPEV. As a supple-

mentary clue, a fingertip relative position vector (FRPV)

is concatenated to this feature vector. Simultaneously, the

HMM is fed into a CNN based HMM-Net to capture hand

movement information. Each sub-network is terminated by

a fully connected layer. Finally, the classification scores of

two subnets are fused to produce the final prediction.
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Figure 2. The framework architecture of our two-stream network. The gesture is decoupled into the hand posture evolution volume (HPEV)

and the hand movement map (HMM) to represent hand posture variations and hand movements. The HPEV-Net and HMM-Net extract

two feature vectors for these characteristics respectively. The feature of the fingertip relative position vector (FRPV) is concatenated to

the hand posture variations feature vector as a compensate cue for subtle gestures. The scores obtained by the two subnets are averaged to

produce the final prediction for inference.

3.1. Hand Posture Volume

In the skeleton-based hand gesture recognition field,

hand gesture is described as a hand skeleton sequence. For

the n-th hand gesture sample Gn, it can be represented as

Gn = {Sn
t |t = 1, 2, . . . , Tn}, where Sn

t is the hand skele-

ton of t-th frame, and Tn is the length of the skeleton se-

quence. Hand skeleton is a collection of 3D positions of

hand joints, i.e. Sn
t = {pn

i,t|pn
i,t = (xn

i,t, y
n
i,t, z

n
i,t), i =

1, 2, . . . , J}, where pn
i,t is the 3D coordinates of hand joint

i at frame t, and J is the number of hand joints.

Since each skeleton sequence sample has a different

length, Tn varies in a large range. In order to fix the in-

put size, it is necessary to process the original skeleton se-

quences to obtain a constant length T . Specifically, when

Tn > T , the skeleton sequence is sampled uniformly. For

Tn < T , some frames are repeated until the skeleton se-

quence reaches T frames. The sampling processing from

Gn to GT
n with T frames can be formulated as:

GT
n =

{
Sn
τ

∣∣∣∣τ =

⌈
Tn

T
× t

⌉
, t = 1, 2, . . . , T

}
. (1)

Before diving into hand posture evolution volume, we

first focus on how to construct hand posture volume for en-

coding the spatial configurations of the hand skeleton. To

model the skeleton into a cube volume, the raw coordinates

of skeletons should be transformed into the volume coordi-

nates. To this end, the raw coordinates are normalized to

[−1, 1], then the normalized coordinates are scaled to the

volume coordinates. During hand posture evolution volume

modeling, we only focus on the hand posture and its vari-

ation, ignoring the hand movements. Thus, when building

hand posture volume, each skeleton in the sequence is sup-

posed to be put in the center of volume without considering

the hand position. In addition, the skeleton should occupy

the volume as much as possible in order to take full advan-

tage of the volume space to model the skeleton with a high

resolution. Therefore, we propose to normalize raw coordi-

nates of each skeleton to [−1, 1] with the origin at the center

of the volume using the maximum bounding box of skele-

tons in all training data. More specifically, for the n-th hand

gesture Gn, the hand skeleton at frame t is Sn
t . The side

lengths of bounding box for the skeleton Sn
t are defined as

Δxn
t , Δynt and Δznt , and they can be formulated as follows:

⎧⎨
⎩

Δxn
t = max(xn

i,t)−min(xn
i,t)

Δynt = max(yni,t)−min(yni,t) i = 1, 2, . . . , J.
Δznt = max(zni,t)−min(zni,t)

(2)

Subsequently, the maximum side lengths of bounding box

for all skeletons are defined as Δxmax, Δymax and Δzmax,

Δxmax can be formulated as:

Δxmax = max(Δxn
t ), (3)

where t = 1, 2, . . . , T , n = 1, 2, . . . , N and N is the num-

ber of skeleton sequence samples in training data. Δymax

and Δzmax are obtained in the same way as Δxmax. Fi-

nally, the raw coordinates of each skeleton are normalized

to [−1, 1] using Δxmax, Δymax and Δzmax as the scale

factor for each dimension. Hence, the x-coordinate of each

joint for skeleton is normalized as:

xnorm =
x− xmin+xmax

2

Δxmax
× 2, (4)

where xmin and xmax are the minimum and maximum

x-coordinate values of this skeleton, x is the original x-

coordinate, and xnorm is the normalized x-coordinate. The
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normalization processes of y-coordinate and z-coordinate

are implemented in the same way as x-coordinate. By nor-

malization, the center of skeleton is aligned to (0, 0, 0).
Next, the normalized coordinates are scaled and discretized

to the volume coordinates. If the skeleton is embedded into

a cube volume with R × R × R resolution, the normal-

ized x-coordinates can be transformed to the volume coor-

dinates according to Eq. (5), where xnorm is the normalized

x-coordinate and xv is the x-coordinate under the volume

coordinate system, xv ∈ {1, 2, . . . , R}.

xv = round

(
(xnorm + 1)× R

2

)
, (5)

During hand posture volume modeling, the skeleton is

put into a volume space. The values of the occupied vo-

xels equal to 1 and the values of the rest of the voxels equal

to 0. In this way, all joints of the skeleton are embedded in

the volume, the spatial configurations of joints are encoded

naturally. For hand gesture Gv = {Sv,t|t = 1, 2, . . . , T},
Gv and Sv,t indicate that the coordinates of skeletons are

transformed into volume coordinates, the hand posture vol-

ume for skeleton Sv,t can be represented as a tensor V of

(R,R,R) dimension, the entry with index (i, j, k) of tensor

V can be written as Eq. (6), where i, j, k = 1, 2, . . . , R.

V (i, j, k) =

{
1, if (i, j, k) ∈ Sv,t

0, otherwise.
(6)

3.2. Hand Posture Evolution Volume (HPEV)

The Hand Posture Evolution Volume (HPEV) accounts

for the temporal variations of skeletons. We concatenate all

skeletons of a sequence into a volume with a gap between

adjacent skeletons, therefore turning the skeleton sequence

into a set of point clouds in the volume space. More specif-

ically, with respect to hand gesture Gv , the hand posture

volume Vt for Sv,t is constructed according to Eq. (6). The

final hand posture evolution volume VHPEV for Gv with

(R+ θ(T − 1), R,R) dimension can be derived as:

VHPEV (i+ θ(t− 1), j, k) =

{
1, if (i, j, k) ∈ Sv,t,
0, otherwise,

(7)

where t = 1, 2, . . . , T , and θ is the gap between adjacent

skeletons. The HPEV encodes the spatial configurations of

each skeleton and the posture variations of the gesture.

3.3. Hand Movement Map (HMM)

Hand movements always include the motion of the

whole hand and the shift of each joint. For the motion of

the whole hand, we use the central point of all hand joints

to represent its position. For the shift of joints, five fin-

gertips instead of all joints are used to stand for joint mo-

tion. The reason is that when performing hand gestures,

the motion of the fingertip is similar to the motion of the

other three joints in one finger. Besides, compared with

these three joints, the fingertip is always visible and the

motion of fingertip is notable. Concretely, for hand ges-

ture G = {St|t = 1, 2, . . . , T}, the centroid of skeleton

St = {pi,t|pi,t = (xi,t, yi,t, zi,t), i = 1, 2, . . . , J} is:

Ct =
1

J

J∑
i=1

pi,t. (8)

Hence, the movements of hand can be formulated as:

MH = {Ct − C1|t = 1, 2, . . . , T}. (9)

Correspondingly, the movements of fingertips are:

MF,j = {pj,t − pj,1|t = 1, 2, . . . , T}, (10)

where j is the index of the five fingertips.

Finally, we arrange the hand movements and fingertip

motion as a Hand Movement Map (HMM), where the frame

is treated as the column of the map, five fingertips and cen-

tral point are treated as the row, the coordinates are treated

as the three channels of the map.

3.4. Fingertip Relative Position Vector (FRPV)

Using volume to model the hand skeleton, the spatial

configurations of joints are displayed naturally. However,

due to the restriction of the resolution, the volume repre-

sentation is difficult to express subtle finger motion. This

is why we introduce the fingertip relative position vector

(FRPV), describing finger motion precisely. The shifting

of the fingertip is correlated with the other three joints in

one finger. Besides, hand gestures always contain the inter-

actions of thumb with four fingers. Therefore, the relative

positions of four fingers and thumb of each frame are used

to construct the FRPV. In particular, for frame t, the four

relative positions are concatenated as a vector vt as follows:

vt =(pI,t,pM,t,pR,t,pL,t)

− (p0,t,p0,t,p0,t,p0,t),
(11)

where p0,t is the coordinate of thumb of the t-th frame, and

pI,t,pM,t,pR,t and pL,t are the coordinates of index fin-

gertip, middle fingertip, ring fingertip and little fingertip at

frame t respectively. Finally, vt of each frame is concate-

nated as the FRPV:

VFRPV = (v1,v2, . . . ,vt, . . . ,vT ). (12)

3.5. HPEV-Net and HMM-Net

We learn the discriminative hand posture variations from

HPEV using the 3D CNN based HPEV-Net. As shown in

Figure 3, we first use a 3D convolution layer to extract the
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Figure 3. The network details of HPEV-Net and HMM-Net. The

left is the HPEV-Net, and the right is the HMM-Net.

low-level features. Since there is a gap θ between adjacent

skeletons in HPEV, the kernel size is set to 7 × 3 × 3 to

capture both the local spatial configurations and temporal

information. Then, we stack four bottleneck modules [14]

to learn high-level hand posture variation features gradually

from the HPEV. Within the bottleneck module, the input

features are turned into 64 channels using a 1× 1× 1 con-

volution layer. In order to shrink the model, we use a depth-

wise separable convolution [5] with 3 × 3 × 3 kernel size

instead of common convolution in the bottleneck. The out-

put of the depthwise separable convolution is followed by

a 1 × 1 × 1 convolution to match the output channels. For

residual connection, the input features go through a 1×1×1
convolution and the output is added to the output of the bot-

tleneck. The output channels of the four bottleneck modules

are 128, 128, 256 and 512. Three 4×2×2 max pooling lay-

ers are used to reduce the size of output features in the first

convolution layer and two bottleneck modules. Batch Nor-

malization and ReLU are used after 3D convolution at each

layer. The output features of the last bottleneck module are

turned into a feature vector using global average pooling.

As shown in Figure 2, in order to remedy the resolution

restriction of volume representation, the FRPV feature is

concatenated to the hand posture variation feature vector as

a supplementary cue for hand gesture recognition. We apply

a fully connected layer with Batch Normalization and ReLU

to the FRPV before concatenation, so as to guaranty that

the two feature vectors are on the same order of magnitude.

Finally, we append HPEV-Net with a fully connected layer

to classify the hand gesture sequences.

We extract hand movement features from HMM using

the CNN based HMM-Net. Our architecture is based on

the co-occurrence module from Hierarchical Co-occurrence

Network (HCN) [20]. We first use an HCN module to ex-

tract features. Similarly, four stacked bottleneck modules

are used to learn high-level hand movement features and

the output is turned into a feature vector using the global

average pooling. Once again, we append the network with

a fully connected layer. In the end, the scores provided by

the HPEV-Net and HMM-Net are averaged to produce the

final prediction.

4. Experiments and analysis
4.1. Datasets

We carry out experiments and perform comparison with

related approaches on three public benchmarks: SHREC’17

Track, DHG-14/28 and FPHA dataset.

SHREC’17 Track. The SHREC’17 Track dataset [31]

is a challenging hand gesture dataset, it contains 14 ges-

tures performed by 28 individuals in two ways: using one

finger and the whole hand. It comprises 2800 sequences,

which are divided into 1960 sequences for training and 840

sequences for testing. Coordinates of 22 hand joints are

provided for each skeleton.

DHG-14/28. The DHG-14/28 dataset [7] includes 14

gestures with 2800 sequences provided by 20 individuals.

The DHG-14/28 dataset has the same hand joints and data

collection method as the SHREC’17 Track dataset. We use

the leave-one-subject-out experimental protocol for training

and testing [7, 24, 4].

FPHA. The FPHA dataset [13] provides first-person dy-

namic hand action sequences performed by 6 actors. It com-

prises 1175 action samples, including 45 categories manip-

ulating 26 different objects in 3 scenarios. 3D coordinates

of 21 hand joints as the SHREC’17 Track dataset except for

the palm joint are provided. We use a 1:1 setting with 600

action sequences for training and 575 for testing [13, 24].

4.2. Training details

All experiments are conducted using PyTorch on

NVIDIA TITAN Xp. Adam is applied as the optimiza-

tion strategy. Cross-entropy is selected as the loss func-

tion. As shown in Figure 2, the scores of two subnets are

fused to produce the final prediction. This final prediction is

used to compute the cross-entropy loss and the loss is back-

propagated jointly for the two sub-networks. The batch size

for training is 40. The initial learning rate is 3e-4 and the

learning rate is reduced by a factor of 10 once learning stag-

nates. The training process is stopped when the learning
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Table 1. Recognition accuracy (%) of our method for different in-

put combinations on SHREC’17 Track dataset and FPHA dataset.

14G and 28G represent 14 and 28 gesture settings.

Method SHREC FPHA14G 28G

HPEV 73.45 71.43 77.04

HMM 92.74 86.67 66.78

FRPV 62.86 58.81 66.43

HPEV+HMM 94.40 90.24 82.96

HPEV+HMM+FRPV 94.88 92.26 90.96

Table 2. Performance on fine and coarse category of SHREC’17

Track dataset with 14 gestures protocol.

Method Fine Coarse

HPEV 84.84 67.85

HMM 92.54 93.14

FRPV 83.75 52.58

HPEV+HMM 94.95 94.14

HPEV+HMM+FRPV 95.31 94.67

rate reaches 3e-8. The default settings of other parameters

are T = 60, θ = 3 and R = 32 as described in Section 4.3.

The parameters and FLOPs of the overall framework

with default settings are 2.05M and 1.46G respectively. It

achieves about 70 gestures per second for testing. This

demonstrates that our method is efficient due to the special-

ized design of the framework. Hence, our method has great

potential for real-world applications.

4.3. Ablation study

In this section, we explore the influence of different com-

ponents and settings of our method. The default settings of

parameters are T = 60, θ = 3 and R = 32.

Different input combinations. To examine the influ-

ence of different input descriptor combinations (HPEV,

HMM, FRPV), we conduct ablation experiments on both

SHREC’17 Track and FPHA dataset. Results shown in

Table 1 confirm that these three descriptors are critical

for gesture recognition indeed. Combining all three de-

scriptors achieves the best performance consistently. Note

that HMM contributes more than HPEV on the SHREC’17

Track dataset, while the results are reversed on the FPHA

dataset. The reason is that half of the gestures in the

SHREC’17 Track dataset are about swiping, which have

high correlations with hand movements. Moreover, using

FRPV obtains about a 8% increase for accuracy on the

FPHA dataset, since most gestures in the FPHA dataset in-

volve subtle motion, e.g. writing, reading letters, cleaning

glasses, and so on.

There are two groups in the SHREC’17 Track dataset,

Figure 4. Comparison of recognition accuracy using different input

combinations for some gestures on FPHA dataset.

Table 3. Recognition accuracy (%) of our method for different

HPEV structures on SHREC’17 Track dataset and FPHA dataset.

14G and 28G represent 14 and 28 gesture settings.

Method SHREC FPHA14G 28G

HPEM+HMM+FRPV 92.85 90.35 85.74

HPEV+HMM+FRPV 94.88 92.26 90.96

fine and coarse gestures. In order to explore the per-

formance of different input combinations on the fine and

coarse gestures, the recognition accuracies of these two cat-

egories on the SHREC’17 Track dataset with 14 gestures

protocol are listed in Table 2. Fine gestures always involve

hand posture changes, while coarse gestures involve hand

movements. Therefore, it is reasonable that both HPEV and

FRPV perform much better on fine gestures, while HMM

performs better on coarse gestures.

The recognition accuracy of some gesture classes on the

FPHA dataset is provided in Figure 4. The HPEV+HMM

input combination usually outperforms both the HPEV and

the HMM, showing the complementary property of HPEV

and HMM. The FRPV is beneficial to subtle gestures. Es-

pecially for the gesture “write”, the FRPV achieves a per-

formance boost over 20%. The results demonstrate the ef-

fectiveness of our approach for hand gesture modeling.

Influence of HPEV structure. To investigate the influ-

ence of the HPEV structure, we use HMM like structure to

model the hand posture variations as Hand Posture Evolu-

tion Map (HPEM). The performance of HPEV and HPEM

is given in Table 3. The results for HPEM on SHREC’17

Track and FPHA dataset are about 2%, 2% and 5% decrease

compared with HPEV. This shows the effectiveness of the

HPEV structure for modeling hand posture variations, espe-

cially for the FPHA dataset which contains numerous ges-

tures involving hand posture changes.
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Table 4. Recognition accuracy (%) of our method for different

gaps θ on SHREC’17 Track dataset with 14 gestures protocol.

Gap (θ) HPEV HPEV+HMM+FRPV

0 62.26 93.10

1 70.90 93.93

2 72.74 93.93

3 73.45 94.88
5 72.86 94.76

Figure 5. Recognition accuracy of our method for different resolu-

tion R on SHREC’17 Track dataset with 14 gestures protocol.

Different gaps. To explore the influence of different gaps,

we conduct the ablation study on the SHREC’17 Track

dataset with 14 gestures protocol. In this experiment, the

gap θ between adjacent skeletons varies from 0 to 5, other

settings are kept unchanged. Table 4 shows the performance

of our method with different gap settings. Note that the ac-

curacy decreases rapidly for θ = 0 when using only the

HPEV feature. This shows the gap is important for hand

posture evolution volume modeling. Results suggest that

using gap θ = 3 is sufficient to obtain good performance.

Different resolution. To investigate the influence of dif-

ferent resolution when building HPEV, we conducted ab-

lation experiments on the SHREC’17 Track dataset with

14 gestures protocol. Results with R = 16, 24, 32, 40
are shown in Figure 5. Performance gets worse with

lower resolution. Results suggest that using resolution

R = 32 is sufficient to achieve good performance. Com-

paring the two curves corresponding to HPEV+HMM and

HPEV+HMM+FRPV, it is obvious that when the resolution

is increased, the FRPV helps gain less recognition accuracy.

4.4. Comparison with the state-of-the-art

We perform the experimental comparison with several

state-of-the-art approaches on the DHG-14/28, SHREC’17

Track and FPHA dataset respectively. The results are shown

and discussed as follows.

SHREC’17 Track dataset. The state-of-the-art meth-

Table 5. Recognition accuracy and comparison with the state-of-

the-art approaches on SHREC’17 Track dataset with 1960 se-

quences for training and 840 sequences for testing. 14G and 28G

represent 14 and 28 gesture settings.

Method Accuracy (%)
14G 28G

HON4D [28] 78.50 74.00

Devanne et al. [8] 79.40 62.00

Ohn-Bar et al. [26] 83.90 76.50

SoCJ+Direction+Rotation [6] 86.90 84.20

SoCJ+HoHD+HoWR [7] 88.20 81.90

Caputo et al. [2] 89.50 -

Boulahia et al. [1] 90.50 80.50

Two-stream 3D CNN [32] 83.45 77.43

SEM-MEM+WAL [21] 90.83 85.95

Res-TCN [15] 91.10 87.30

STA-Res-TCN [15] 93.60 90.70

ST-GCN [36] 92.70 87.70

ST-TS-HGR-NET [24] 94.29 89.40

DG-STA [4] 94.40 90.70

Ours 94.88 92.26

ods we used for comparison on SHREC’17 Track dataset

are divided into five categories: 1) Hand-crafted meth-
ods: HON4D [28], Devanne et al. [8], Ohn-Bar et al. [26],

SoCJ+Direction+Rotation [6], SoCJ+HoHD+HoWR [7],

Caputo et al. [2] and Boulahia et al. [1]; 2) CNN-based
methods: SEM-MEM+WAL [21], Res-TCN [15] and STA-

Res-TCN [15]; 3) 3D-CNN-based method: Two-stream

3D CNN [32]; 4) Graph-based methods: ST-GCN [36]

and DG-STA [4]; 5) Manifold-learning-based method:

ST-TS-HGR-NET [24].

Table 5 lists the recognition accuracy of all methods.

Two-stream 3D CNN [32] and SEM-MEM+WAL [21] are

closely related to our method. We implemented these

two approaches and applied them on SHREC’17 Track

dataset. The results of other methods are collected from

papers [4, 24]. Our approach achieves state-of-the-art per-

formance under both the 14-gesture and 28-gesture settings.

In particular, our method obtains 94.88% on the 14-gesture

protocol and 92.26% on the 28-gesture protocol. It out-

performs the most recent work DG-STA [4] by 0.48% and

1.5% for experiments with 14 and 28 gestures respectively.

DHG-14/28 dataset. In addition to the methods listed in

Table 5, we also compare with: a RNN-based method [3], a

CNN-based method [35] and a LSTM-based method [25]

on DHG-14/28 dataset. Table 6 shows that our method

achieves state-of-the-art performance under both the 14-

gesture and 28-gesture settings on the DHG-14/28 dataset.

We collect the results of other baseline methods from pa-

pers [4, 24]. Although the DHG-14/28 dataset has the same

hand gestures with the SHREC’17 Track dataset, it is more
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Table 6. Recognition accuracy and comparison with the state-

of-the-art methods on DHG-14/28 dataset using the leave-one-

subject-out experimental protocol. 14G and 28G represent 14 and

28 gesture settings.

Method Accuracy (%)
14G 28G

SoCJ+HoHD+HoWR [7] 83.10 80.00

Chen et al. [3] 84.70 80.30

CNN+LSTM [25] 85.60 81.10

Weng et al. [35] 85.80 80.40

Res-TCN [15] 86.90 83.60

STA-Res-TCN [15] 89.20 85.00

ST-GCN [36] 91.20 87.10

ST-TS-HGR-NET [24] 87.30 83.40

DG-STA [4] 91.90 88.00

Ours 92.54 88.86

challenging due to the leave-one-subject-out experimental

protocol. As shown in Table 6, our method obtains 92.54%

on 14-gesture protocol and 88.86% on 28-gesture protocol.

It outperforms the most recent work DG-STA [4] by 0.64

and 0.86 percent point for experiments with 14 and 28 ges-

tures respectively. Note that the good performance is more

notable with 28 gestures setting than that with 14 gestures

setting. We argue that our HPEV for hand skeleton encodes

the spatial configurations of the hand effectively. Thus, the

network can distinguish the gestures performed using one

finger and the whole hand efficiently.

FPHA dataset. FPHA dataset is a new and challenging

dataset for studying first-person dynamic hand actions in-

teracting with 3D objects. Compared with the SHREC’17

Track dataset and the DHG-14/28 dataset, it includes more

gesture categories, i.e. 45 daily hand action classes. Due

to the obvious inter-subject and intra-subject variations on

style, speed, scale, and viewpoint, to recognize the hand ac-

tion sequences is a challenge.

Table 7 shows the recognition accuracy of our approach

and recent methods on FPHA dataset. We quote the re-

sults of compared methods from paper [24]. Our method

achieves competitive performance. Note that ST-TS-HGR-

NET [24] outperforms our method. However, on the other

hand, our approach is superior to ST-TS-HGR-NET both

on the SHREC’17 Track dataset and DHG-14/28 dataset.

Particularly for the DHG-14/28 dataset, our method outper-

forms ST-TS-HGR-NET by 5.24 and 5.46 percent points

for 14 gestures and 28 gestures protocol. ST-TS-HGR-

NET is based on manifold learning with SVM classifier. It

has better generalization ability on the FPHA dataset which

is a small dataset with 600 samples for training. For the

DHG-14/28 dataset with about 2660 samples for training,

it lacks learning capacity for the larger dataset. However,

Table 7. Performance comparison with the state-of-the-art meth-

ods on FPHA dataset. C, D, P represent color, depth and pose.

Method C D P Acc. (%)

Two stream-color [11] � � � 61.56

Two stream-flow [11] � � � 69.91

Two stream-all [11] � � � 75.30

HOG2-depth [27] � � � 59.83

HOG2-depth+pose [27] � � � 66.78

HON4D [28] � � � 70.61

Novel View [29] � � � 69.21

JOULE-color [16] � � � 66.78

JOULE-depth [16] � � � 60.17

JOULE-pose [16] � � � 74.60

JOULE-all [16] � � � 78.78

1-layer LSTM [39] � � � 78.73

2-layer LSTM [39] � � � 80.14

Moving Pose [37] � � � 56.34

Lie Group [33] � � � 82.69

HBRNN [10] � � � 77.40

Gram Matrix [38] � � � 85.39

TF [12] � � � 80.69

Huang et al. [17] � � � 84.35

Huang et al. [18] � � � 77.57

ST-TS-HGR-NET [24] � � � 93.22

Ours � � � 90.96

our method is based on deep networks showing powerful

learning ability for large datasets.

5. Conclusion

We propose a new method for hand gesture modeling.

The gesture is decomposed into hand posture variations and

hand movements, which are encoded into the HPEV and the

HMM respectively. We introduce a framework including

the HPEV-Net and HMM-Net to learn these two features

for gesture recognition. Due to the specialized design of the

framework, our method has great potential for real-world

applications. Extensive experiments demonstrate that our

method is competitive or superior to related work.
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