IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL., NO., 2022 1

Stacked BNAS: Rethinking Broad Convolutional
Neural Network for Neural Architecture Search

Zixiang Ding, Graduate Student Member, IEEE, Yaran Chen, Member, IEEE, Nannan Li,
Dongbin Zhao, Fellow, IEEE, and C.L.Philip Chen, Fellow, IEEE

Abstract—Different from other deep scalable architecture-
based NAS approaches, Broad Neural Architecture Search
(BNAS) proposes a broad scalable architecture which consists
of convolution and enhancement blocks, dubbed Broad Con-
volutional Neural Network (BCNN), as the search space for
amazing efficiency improvement. BCNN reuses the topologies
of cells in the convolution block so that BNAS can employ
few cells for efficient search. Moreover, multi-scale feature
fusion and knowledge embedding are proposed to improve the
performance of BCNN with shallow topology. However, BNAS
suffers some drawbacks: 1) insufficient representation diversity
for feature fusion and enhancement and 2) time consumption of
knowledge embedding design by human experts. In this paper,
we propose Stacked BNAS, whose search space is a developed
broad scalable architecture named Stacked BCNN, with better
performance than BNAS. On the one hand, Stacked BCNN
treats mini BCNN as a basic block to preserve comprehensive
representation and deliver powerful feature extraction ability.
For multi-scale feature enhancement, each mini BCNN feeds
the outputs of deep and broad cells to the enhancement cell.
For multi-scale feature fusion, each mini BCNN feeds the
outputs of deep, broad and enhancement cells to the output
node. On the other hand, we propose Knowledge Embedding
Search (KES) to learn appropriate knowledge embeddings in a
differentiable way. Moreover, the basic unit of KES is an over-
parameterized knowledge embedding module that consists of all
possible candidate knowledge embeddings. Experimental results
show that 1) Stacked BNAS obtains better performance than
BNAS-v2 on both CIFAR-10 and ImageNet, 2) the proposed KES
algorithm contributes to reducing the parameters of the learned
architecture with satisfactory performance, and 3) Stacked BNAS
delivers a state-of-the-art efficiency of 0.02 GPU days.

Index Terms—broad neural architecture search, stacked broad
convolutional neural network, knowledge embedding search,
image classification.

I. INTRODUCTION

EURAL Architecture Search (NAS) has achieved un-
precedented accomplishments for various structures
(e.g., convolutional neural network [1], tensor ring [2], lan-
guage model [3]) design. However, it needs enormous com-
putational requirements, e.g., more than 22000 GPU days for

This work was supported in part by the National Natural Science Foundation
of China (NSFC) under Grant 62006226 and 62173324.

Z. Ding, Y. Chen, N. Li and D. Zhao are with the State Key Laboratory of
Management and Control for Complex Systems, Institute of Automation, Chi-
nese Academy of Sciences, Beijing 100190, China and also with the School
of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing
100049, China (email : dingzixiang2018@ia.ac.cn, chenyaran2013 @ia.ac.cn,
linannan2017 @ia.ac.cn, dongbin.zhao@ia.ac.cn).

C. L. P. Chen is with the School of Computer Science & Engineering, South
China University of Technology, Guangzhou, Guangdong 510006, China,
and also with the College of Navigation, Dalian Maritime University, Dalian
116026, China (e-mail: philip.chen@ieee.org).

Q Knowledge Embedding for GAP Layer O Knowledge Embedding for Enhancement Block

R

P L !'Lack of broad feature for } O
4 71 representation fusion | T

enhancement cell x1

o ! |
Convolution Block ~~~! Lt e d_eep U el 1 Enhancement Block
! representation enhancement |

Fig. 1: Issues of BCNN. 1) Lack of representation diversity for
feature fusion and enhancement: only deep and broad feature
information is fed into the Global Average Pooling (GAP)
layer for representation fusion and the first enhancement block
for representation enhancement, respectively. 2) It is extremely
time-consuming to design knowledge embeddings by human
experts.

vanilla NAS [1]. A micro search space dubbed cell [4] which
is treated as the basic block of deep scalable architecture,
is proposed to mitigate the above time-consuming issue and
delivers a higher efficiency of 1800 GPU days. However,
the search cost is unbearable yet. Subsequently, many cell-
based NAS approaches were proposed to further improve
the efficiency. Reinforcement Learning (RL) based ENAS [3]
needs only 0.45 GPU days via parameter sharing. Gradient-
based DARTS [5] employs a continuous relaxation strategy
to transfer the search space from discrete to continuous, and
delivers a novel efficiency of 0.45 GPU days. Furthermore,
based on the DARTS framework, PC-DARTS [6] delivers a
state-of-the-art search efficiency of 0.1 GPU days via partial
channel connections.

Different from the above NAS approaches with deep scal-
able architecture, BNAS [7] proposed a broad scalable archi-
tecture named Broad Convolutional Neural Network (BCNN).
Benefiting of BCNN, RL-based BNAS delivers a state-of-
the-art efficiency of 0.2 GPU days, which is 2.2x faster
than ENAS [3] whose efficiency ranks the best in RL-based
NAS approaches. However, the training mechanism of BNAS
following ENAS leads to terrible unfair training issue [8].



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL., NO., 2022 2

BNAS-v2 [9] was proposed to solve the unfair training issue
by a continuous relaxation strategy with a state-of-the-art
efficiency of 0.05 GPU days. Admittedly, BNASs achieve
satisfactory performance, especially in terms of efficiency.
Nevertheless, BCNN suffers two drawbacks as shown in Fig.
1: 1) insufficient representation diversity for feature fusion and
enhancement and 2) time-consuming knowledge embedding
design.

In this paper, we propose Stacked BNAS whose scalable
architecture is named Stacked BCNN, which treats mini
BCNN as its basic block. Moreover, each mini BCNN can feed
sufficient representations to the GAP layer and enhancement
block for feature fusion and enhancement, respectively. As a
new paradigm of neural networks, we prove also the universal
approximation ability of Stacked BCNN in the Appendix.
Furthermore, we transfer the knowledge embedding design
task from discrete to continuous space, and learn appropriate
knowledge embeddings in a differentiable way to solve the
second issue as above mentioned.

Our contributions can be summarized as follows:

o Stacked BNAS: We propose Stacked BNAS that employs
Stacked BCNN as the search space, to further improve
the performance of NAS.

« Stacked BCNN: We not only propose a new broad search
space dubbed Stacked BCNN for NAS, but also mathe-
matically analyze the universal approximation ability of
the proposed Stacked BCNN in the Appendix.

+ Knowledge Embedding Search: We also propose a dif-
ferentiable algorithm for designing knowledge embedding
in an automatic way.

« Efficiency: Contributing to the proposed Stacked BCNN
and optimization algorithm, Stacked BNAS delivers a
state-of-the-art efficiency of 0.02 days on a single
NVIDIA GTX 1080Ti GPU.

II. RELATED WORK
A. Neural Architecture Search

Elsken et al. [10] claimed that NAS consisted of three
components: search space, optimization strategy and estima-
tion strategy. The search space referred to not only primi-
tive operators, but also the combination paradigm of those
candidate operations [11]. As described in [1], there were
mainly five types of search spaces: entire-structured, cell-
based [12, 13, 14], hierarchical [15, 16, 17], morphism-based
[18, 19] and broad [7, 9]. We briefly introduce these search
spaces as below.

1) Entire-structured Search Space: In the entire-structured
search space, each layer with a specified operation (e.g.,
various convolutions and average pooling) was stacked one
after another [1]. Beyond that, the skip connection was used
in the above search space to explore more complex neural
architectures. This search space had two disadvantages: com-
putationally expensive and insufficient transferability [11].

2) Cell-based Search Space: To mitigate the above issues
of the entire-structured search space, Zoph et al. (2018)
proposed a cell-based search space where each cell with a list
of operations was stacked one after another to construct a deep

Global Average Pooling

e N\ e N\ Ve N\
| Conv_1 —> Conv_2 >+ « «—> Conv_u | | En1
\ J \ J N\ J

\,——”,

(a) The structure of BCNN

Global Average Pooling

e N e N e N
| Conv_1 —> Conv_2 [>« + +—»| Conv_u |
A / - / L )
(b) The structure of BCNN-CCLE

Fig. 2: Broad search space [7].

scalable architecture. The cell-based search space consists of
normal and reduction cells that have different architectures
and strides. Moreover, each cell treats the outputs of two
predecessors as its inputs. Due to the effectiveness of cell-
based search space in terms of efficiency and transferability,
many cell-based NAS approaches were proposed, e.g., weight-
sharing ENAS [3], differentiable DARTS [5] and partially
connected PC-DARTS [6].

3) Hierarchical Search Space: Most cell-based NAS ap-
proaches [3, 5] followed a two-level hierarchy: the inner cell
level and the outer network level. On the one hand, the inner
level chose operation and connection of each intermediate
node in the cell. On the other hand, the outer level controlled
the spatial-resolution changes. A general formulation [15] was
proposed to learn the network-level structure. Liu et al. [20]
proposed a hierarchical architecture representation to avoid
manually predefining the network block number.

4) Morphism-based Search Space: The morphism-based
search space directly modified the existing architecture.
Net2Net [18] employed identity morphism (IdMorph) to de-
sign architecture based on the existing model. He et al. [21]
claimed that there were several issues in IdMorph: 1) limited
width and depth changes and 2) identity layer drawback. To
solve the above issue, a developed approach named network
morphism [19] was proposed. Network morphism adopted a
parameter sharing strategy [3] to inherit the knowledge from
the parent network to the child network, which grew into a
more robust model. Furthermore, network morphism was im-
proved to deliver better performance in terms of optimization
algorithm [22] and its level [23]. Furthermore, Chen et al.
[24] used hand-crafted and learned blocks to discover novel
architecture via parameter inheriting.

5) Broad Search Space: To improve the efficiency of NAS,
Ding et al. [7] proposed a broad search space named BCNN,
which employs broad topology to obtain extreme fast search
speed and satisfactory performance. As described in [7],
BCNN belonged to the cell-based network-level search space.
There are three broad search spaces: BCNN (see Fig. 2 (a)),
BCNN-CCLE (see Fig. 2 (b)) and BCNN-CCE (see Fig. 1).
BCNNS consist of convolution and enhancement blocks which
densely connect with the GAP layer for multi-scale feature
fusion. The main difference among BCNNSs is the connection



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL., NO., 2022 3

Input node ~ Feature mapping node ¢ Enhancement node
Additional enhancement node ©  Output node
y=U +U,+---+U,
+),
ul
( — %ﬁ
BLSt
el
e .
BLS 2 |
06 000 o |00
ul
BLS1 | | )

Fig. 3: The structure of Stacked BLS [27] with ¢ BLSs.

between convolution and enhancement blocks. Similarly, Fang
et al. (2020) proposed a network-level deep search space
named dense search space where the MBConv [26] is treated
as its basic block rather than cell. In contrast, each block
of dense search space connects to several subsequent blocks.
Based on the broad search space, BNAS [7] delivered a novel
efficiency of 0.2 GPU days via RL. However, BNAS suffers
from unfair training issue, so its optimization mechanism does
not take full advantage of the BCNN, i.e., the efficiency
improvement is limited. Furthermore, a differentiable over-
parameterized broad search space was proposed to solve the
unfair training issue in BNAS-v2 [9]. Experimental results
show that BCNN can deliver a state-of-the-art search efficiency
of 0.05 GPU days when its all advantages works.

B. Broad Learning System

Inspired by Random Vector Functional Link Neural Net-
work (RVFLNN) [28] and incremental learning strategy [29],
Chen and Liu [30] proposed Broad Learning System (BLS)
and several variants [31]. Subsequently, BLS and its variants
were widely used in various fields, e.g., image classification
[32], industrial control [33] and intelligent transportation sys-
tems [34]. To combine the superiority of deep model and
BLS, Liu et al. [27] proposed Stacked BLS, whose structure
is shown in Fig. 3. BLS was the basic block of Stacked BLS
whose output was the combination of all BLSs’ outputs. Liu
et al. [27] claimed that Stacked BLS only efficiently optimized
trainable weights via an incremental learning algorithm, but
also extracted deep representation using multiple BLSs.

IIT. STACKED BROAD NEURAL ARCHITECTURE SEARCH

In this section, we first propose a developed broad search
space named Stacked BCNN to solve the first issue of

Global Average Pooling

(a) Stacked BCNN

() Knowledge Embedding for Enhancement Block
O Knowledge Embedding for Output of Each Mini BCNN

broad cell <1
(b) Mini BCNN

Fig. 4: Search space of Stacked BNAS.

\__ deep cell xk

enhancement cell <1/

vanilla BCNN, i.e., insufficient presentation diversity for fea-
ture fusion and enhancement. Then, Knowledge Embedding
Search (KES) algorithm is proposed to solve the second issue
of vanilla BCNN, i.e the time consumption of knowledge
embedding design by human experts. Finally, we show the
optimization algorithm of Stacked BNAS.

A. Search Space: Stacked Broad Convolutional Neural Net-
work

To improve the feature diversity, we propose Stacked
BCNN, which treats mini BCNN as its basic block. The
structures of Stacked BCNN and mini BCNN are shown in
Fig. 4.

1) Stacked BCNN: As shown in Fig. 4 (a), the proposed
Stacked BCNN consists of w mini BCNNs, where wu is
determined by the input size of the first mini BCNN (mini
BCNN)). To preserve the multi-scale feature fusion ability of
the vanilla BCNN, we feed the output of each mini BCNN
into GAP layer.

2) Mini BCNN: Fig. 4 (b) shows the structure of mini
BCNN. Mini BCNN consists of k£ + 1 convolution cells (k 1-
stride deep cells, single 2-stride broad cell) and 1 enhancement
cell with stride 1. Deep and broad cells are used for deep and
broad feature extraction, respectively. The enhancement cell
treats both the outputs of deep and broad cells as inputs to
obtain a comprehensive enhancement representation. Further-
more, a family of 1 x 1 convolutions is inserted into fixed
locations as the knowledge embeddings.

There are two main differences between BCNN and Stacked
BCNN: 1) the output of each mini BCNN is the combination
of all outputs of three cells rather than the outputs of deep
and enhancement cells, and 2) the enhancement cell treats
the outputs of convolution cells as inputs. The above two



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL., NO.,

differences provide sufficient feature diversity to the GAP
layer and enhancement block for representation fusion and
enhancement so that better performance can be obtained.

3) Mathematical Information Flow: We employ a 3 x 3
convolution as the stem layer of the Stacked BCNN, and its
output is treated as the two inputs of the first deep cell of mini
BCNN;, denoted as y( ) and y(()l).

For mini BCNN;(i = 1,2,...,u), its output (") can be
obtained by the outputs of three cells:

yt = (b(&((ilo (yk ); 51&2 (yk+1)’5éo)(yk+2)) M

where, ¢ and 5&, are concatenation of the channel dimension
and knowledge embeddings with respect to mini BCNN;’s
output, respectively. Moreover, y,(j) is the output of the last
deep cell with a list of operations ¢, and can be computed by

u = a gy u s W69, 2)
y,(ﬁrl is the output of a broad cell with a list of operations ¢y
that can be obtained by

u = ey Lyl W, 60, 3)
(5)

and y, |, is the output of the enhancement cell with a list of
operations . that can be calculated by

u) s = 0@ (W), 60 () ;WD 09), @

where, 5*2 represents knowledge embeddings with respect to
the enhancement cell of mini BCNN; and WS') and Gf) are
the weight and bias matrices of corresponding cells in mini
BCNN;, respectively.

The output of Stacked BCNN can be computed by

y =o'y, ..y (5)

4) Channel Flow Graph: As shown in Fig. 4 (a), for mini

BCNN;, the channel number of the deep cell’s output c((ie)ep
can be obtained by

(4) Ny, x 2671

Cdeep

i=1,2,...u (6)

where IV, represents the pre-defined intermediate node num-
ber of the cell, and c is the input channel number of mini
BCNN;. Moreover, the channel number of broad and en-
hancement cells’ outputs in mini BCNN; are both 2 x ngep
For those direct-connected cells and output nodes (e.g., broad
and enhancement cells, enhancement cells and output nodes),
corresponding knowledge embedding does not reduce the fea-
ture significance. In contrast, the significance of the indirect-
connected features is reduced by a factor of a quarter, as shown
in Fig. 5 (a).

B. Knowledge Embedding Search

Different from vanilla BNAS, we propose a Knowledge
Embedding Search (KES) algorithm, which treats an over-
parameterized knowledge embedding module as a basic unit,
to learn appropriate knowledge embedding in a differentiable
way rather than designing by human. Moreover, KES plays a
role of parameter redundancy reduction like network pruning
[35].

2022 4

() Fixed Knowledge Embedding D Learnable Knowledge Embedding

(@) (b)

Fig. 5: Embedding between indirectly connected cells and the
output node. (a) Hand-crafted knowledge embedding and (b)
over-parameterized knowledge embedding module.

1) Over-parameterized Knowledge Embedding Module:
For each knowledge embedding on an indirect edge, we con-
struct an over-parameterized knowledge embedding module,
as shown in Fig. 5 (b), to discover appropriate knowledge
embeddings.

We assume that c. channels are fed into the indirect-
connected knowledge embedding. The over-parameterized
knowledge embedding consists of n learnable knowledge
embeddings with 2¢(i = 1,2,...,n) output channels and a
single learnable knowledge embedding with c. output chan-
nels, where n is the largest power of 2 less than c. determined
by

argmax 2" s.t. 2" < c. @)

Subsequently, the output of the over-parameterized knowledge
embedding module y. is obtained by the channel-dimension
concatenation of weighted n + 1 learnable knowledge embed-
ding outputs as

(1)

= (719! @

yV2Ye Ty U L+1y((>n+1))7 (8)

where, yg) andy; (I =1,2,...,n+1) represent the weighted
output and weight of /th learnable knowledge embedding,
respectively.

2) Learning Strategy: After over-parameterized knowledge
embedding module construction, we aim to jointly optimize
the knowledge embedding weights + and network weights w.
The goal of KES is to discover v* that minimizes the valida-
tion loss L,q(w*,~v*), where w* is obtained by minimizing
the training loss Ly;.qin (w,y*). The bilevel optimization prob-
lem with lower-level variable w and upper-level variable «y can
be represented as

H}Yin Eval (’LU* (’V)v 7)7

9
s.t. U}*(’}’) = argmin £train(w77)' ( )

The optimization of (9) exactly is prohibitive because w™* ()
needs to be recomputed by the second term of (9) whenever
v takes place any change [5]. Therefore, we propose an
approximate iterative optimization process as follows. For
each gradient descent step, network weights w and knowledge
embedding weights v are optimized by alternating in the



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL., NO.,

Algorithm 1: Stacked BNAS

1 Define p as the early stopping epoch number, ¢ as the
stable epoch number with zero initialization, kes as
the flags represented using KES or not, archpye, as
previous architecture with None initialization;

2 For each edge (i, j), use (13) and (14) for continuous
relaxation as fgg)(xg)c; M(; jy) parameterized by
a(,g) and B j);

3 Define architecture weight set © = [, [];

4 if kes then

5 Use (7) and (8) to construct over-parameterized

knowledge embedding module parameterized by

s

= [O‘7 B, 7};

end

while not converged do

Optimize w by descending V, Liyqin(w, ©);

10 Optimize © by descending

V@‘C'ual (U} - ng['train (w7 @)7 @),

e e 3

11 Determine current architecture arche,, by taking
argmax;

12 archpres = archeyrr;

13 if archeyrr == archpre, then

14 g=q+1

15 if ¢ > p then

16 | break

17 end

18 else

19 | q=1;

20 end

21 end

22 Output arche,, as the best architecture.

network and knowledge embedding spaces, respectively. At
step t, given the current knowledge embedding ~;_;, we
update w; by descending the training 108 Lpqin(Wi—1, Yt—1)-
Subsequently, we keep w; fixing and optimize the over-
parameterized knowledge embedding module with learning
rate £ by descending

v'yﬁval (wt - €vw£train(wt7 'Yt—1)7 'Yt—l)- (10)

Finally, we replace every over-parameterized knowledge em-
bedding module as the knowledge embedding with the largest
weight by taking argmax.

C. Optimization Algorithm

To discover a high-performance Stacked BCNN, we em-
ploy a gradient-based optimization pipeline: 1) a continuous
relaxation strategy for over-parameterized Stacked BCNN
construction, 2) partial channel connections (PC) for memory
reduction and 3) early stopping for efficiency improvement.
The optimization algorithm of Stacked BNAS is shown in
Algorithm 1.

1) Continuous Relaxation: In mini BCNN, each cell con-
sists of 2 input nodes {x (g, z(1)}, N — 3 intermediate nodes

2022 5

{x(2),...,(n—2)} and a single output node {x(y_1)}. Each
intermediate node ;) can be computed by

2 =065 (@G)),

j<i

Y

where, o(; ;) is the operator between x(;y and x(;) chosen
from candidate operation set . Moreover, the outputs of
all intermediate nodes are combined to deliver z(y_1) by
channel-dimension concatenation.

Subsequently, the over-parameterized Stacked BCNN is
constructed by the strategy of continuous relaxation [5]. Par-
ticularly, we relax edge (i,j) of each cell for mini BCNN
by

Z exp( (u))

(12)
220 Lorco P(0f; )

fap (@) )0(%)%

where operation o(-) is weighted by architecture weight a°.

2) Partial Channel Connections: We employ PC [6] to
improve the memory efficiency of Stacked BNAS. The con-
tinuous relaxation of Stacked BNAS with PC can be obtained
by

exp(af; )
Z (4,9

55 Yoo xp(af; ;)
+ (1= M j) * 25,

C .
F65) @iy M ) o(Mi,j) * z(5))
(13)

where, M(; ;) represents the mask of the channel sample
whose values are chosen from {0,1}.

Moreover, we use edge normalization to mitigate the unde-
sired fluctuation in the search phase via f3; ;) as

x() ZZ

1<t

exp(Bep)
5’ <1exp(ﬂ(z ")

) fan(@gy)- (14)

Finally, each operation of the best architecture is obtained by
taking argmax as

exp(af; j>) exp(B(i )

Yoo xp(af; )) . 2 < @xp(Bign)
15)

0(i,j) = argmax

3) Early Stopping (ES): As described in DARTS+ [36],
there are two indices for ES: 1) the skip connection number
in a single cell and 2) the number of stable epochs. On the
one hand, the search procedure is stopped when there is more
than one skip connection in one cell to avoid the performance
collapse issue. PC contributes to reducing the predominance
of skip connections, so we do not choose the first index in
this paper. On the other hand, the search procedure is stopped
when the ranking of architecture weights is no longer changed
for a determined number of epochs. This index means that
the search procedure stops when arriving at a saturated state.
Above all, the second index is chosen for early stopping of
Stacked BNAS using the following criterion:

Criterion 1: Stop the search procedure when the rank of
architecture weights is no longer changed for three epochs.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL., NO., 2022 6

IV. EXPERIMENTS AND RESULTS

In this section, we perform a set of experiments to examine
several novel properties of Stacked BNAS, including the
Stacked BCNN and the KES. First, the datasets used and
implementation details are given. Next, architecture search
experiments of Stacked BNAS without/with KES are intro-
duced. Moreover, qualitative and quantitative analysis are
given for the experimental results on CIFAR-10. Then, the
best-performing architecture learned by Stacked BNAS on
CIFAR-10 is transferred to solve large-scale image classifi-
cation task on ImageNet, and the experimental results are
analysed. Furthermore, the learned architecture is also trans-
ferred to four image classification datasets (e.g., MNIST, Fash-
ionMNIST, NORB and SVHN) to verify the generalization
ability of the proposed Stacked BNAS. Finally, two groups of
ablation experiments are performed to verify the effectiveness
of Stacked BNAS in terms of efficiency and performance.

A. Datasets and Implementation Details

1) Datasets: We employ CIFAR-10 and ImageNet to verify
the effectiveness of the proposed Stacked BNAS. CIFAR-
10 is a small-scale image classification dataset with 32x32
pixels that contains 50K training images and 10K test images.
ImageNet contains approximately 1.3 M training data and 50K
validation data with various pixels over 1000 object categories.

2) Implementation Details: The data preprocessing tech-
nique follows BNAS-v2 for CIFAR-10 and ImageNet. We
implement architecture search without or with KES. For
architecture search, we repeat the implementation five times.
For architecture evaluation, the mean value of three repetitive
retraining experiments is treated as the index to determine the
best architecture. Furthermore, the best architecture learned
on CIFAR-10 is transferred to ImageNet, MNIST, FashionM-
NIST, NORB and SVHN.

B. Experiments on CIFAR-10

1) Experimental Settings: As mentioned above, we im-
plement two experiments on CIFAR-10: 1) Stacked BNAS
without KES and 2) Stacked BNAS with KES.

The above two experiments use many identical experimental
settings for architecture search, as shown below. The initial
input channel number is set to 16. We train the above over-
parameterized Stacked BCNN for 50 epochs. All training
images are equally divided into two parts. On the one hand,
25K images are treated as the training data to update the
network weights w. On the other hand, another part is used
as the validation data to optimize the architecture/embedding
weights. To optimize the network weights w, we employ
the SGD optimizer with a dynamic learning rate using an
annealed decay manner, momentum of 0.9 and weight decay
of 3x107%4. Beyond that, the Adam optimizer is used to
update the architecture/embedding weights, with momentum
of (0.5, 0.999) and weight decay of 1x10~3. We implement
architecture search on a single NVIDIA GTX 1080Ti GPU.

For architecture search of Stacked BNAS without KES, the
over-parameterized Stacked BCNN consists of 2 mini BCNNSs,

" sep_conv_55

dil_conv_5x5_—"

max_pool_3x3

k2 [—ep conv_5x5 max_pool_3:3 N
e diconv s — — ]
Ty Sep-con 5= {o] _ -
T -

(a) Convolution cell

sep_conv_5x5 _ —
_ SEPComIXS sep_conv_5x5 '. \sep,convﬁ‘

k1 —— —_sep_conv_55 ry — sep_conv_5x5 ‘\—ﬁ
sep_conv_5x5 sep_con@‘“‘\‘ ~ .‘-
— o c{k}

S;IzCO\"VES\/‘/ f 0 ]—"

(b) Enhancement cell

Fig. 6: Architecture learned by Stacked BNAS without KES.

avg_pool_3x3
sep_conv_5x5 :
_—
—__dil_conv_5x5
2
dil_conv_5x5 -

—
= 3
deom s 3]

(S8BT om0
T

—

sep_conv_3x3_—

T sepoonv33

(a) Convolution cell

max_pool_3x3
skip_connect

/sﬁp_conn;cz;\\
skip_connect N R

skip_connect avg_pool 33—
sep_conv_5 ~— ,

—

—

sep_conv_3x3
(b) Enhancement cell

Fig. 7: Architecture learned by Stacked BNAS with KES.

TABLE I: Hand-crafted and learned knowledge embedding
with ¢ = 44 input channels.

Feature Enhancement Output
Design  Search Design Search
Deep; ¢ 2 ¢ 8 ()
Broad; 4c 4c 2c 8c ()
Deep-2 2c 128 (1) 2c 64 (1)
Broad, 8c 8c 4c 4 ()

where each one contains 1 broad cell and 1 enhancement cell.
The batch size and network learning rate are set to 512 and
0.2, respectively. Moreover, we set the architecture learning
rate to 6x 10, For architecture search of Stacked BNAS with
KES, the over-parameterized Stacked BCNN consists of 2 mini
BCNNSs, where each one contains 1 deep cell, 1 broad cell
and 1 enhancement cell. Due to more memory requirements
of KES, we set the batch size and network learning rate
to 128 and 0.05, respectively. Beyond that, we set a larger
learning rate of 2x 1073 for architecture/embedding weights
when knowledge embedding is learned.

For architecture evaluation, we employ identical settings
except the number of deep cell which is 2 and 3 for Stacked
BNAS without/with KES, respectively. The stacked BCNN
consists of two mini BCNNs, where each one contains 1 broad
cell and 1 enhancement cell. Following BNAS-v2, the learned
Stacked BCNN with 44 input channels is trained for 2000
epochs using the SGD optimizer with a batch size of 128,
learning rate of 0.05, momentum of 0.9 and weight decay of
3x10~%. Moreover, we implement architecture evaluation on
a single NVIDIA Tesla P100 GPU.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL., NO., 2022

TABLE II: Comparison of the proposed Stacked BNAS and other state-of-the-art NAS approaches on CIFAR-10.

Architecture E(I;;r Pag\?[l)ns ?é&;‘;h dg;:)t 1:;1 Iggf: Search Method Topology
LEMONADE [37] 3.05 4.7 80 - evolution deep
DARTS (1st order) [5] 3.00 3.3 0.45¢% 20 gradient-based deep
DARTS (2nd order) [5] 2.76 33 1.50% 20 gradient-based deep
DARTS (random) [5] 3.49 3.1 - 20 - deep
SNAS + mild constraint [38] 2.98 2.9 1.50 20 gradient-based deep
SNAS + moderate constraint [38] 2.85 2.8 1.50 20 gradient-based deep
SNAS + aggressive constraint [38]  3.10 2.3 1.50 20 gradient-based deep
P-DARTS [39] 2.50 34 0.30 20 gradient-based deep
GDAS-NSAS [40] 2.73 3.5 0.40 20 gradient-based deep
PC-DARTS [6] 2.57 3.6 0.10 20 gradient-based deep
ENAS [3] 2.89 4.6 0.45 17 RL deep
BNAS [7] 297 4.7 0.20 5 RL broad
BNAS-CCLE [7] 2.95 4.1 0.20 5 RL broad
BNAS-CCE [7] 2.88 4.8 0.19 8 RL broad
BNAS-v2 [9] 2.79 3.7 0.05 8 gradient-based broad
Random 3.12 3.1 - 8 - broad
Stacked BNAS w/o KES (Ours) 2.71 3.7 0.02 8 gradient-based broad
Stacked BNAS w/ KES (Ours) 2.73 3.1 0.15 10 gradient-based broad

T Obtained by DARTS using the code publicly released by the authors at https://github.com/quark0/darts on a single NVIDIA GTX 1080Ti GPU.

2) Results and Analysis: For Stacked BNAS, we visualize
the learned architecture in Fig. 6. For Stacked BNAS with
KES, we show the best architecture and knowledge embedding
in Fig. 7 and TABLE 1, respectively. Furthermore, TABLE II
summarizes the comparison of the proposed Stacked BNAS
with other novel NAS approaches on CIFAR-10.

Contributing to the combination of Stacked BCNN and
optimization strategy, Stacked BNAS delivers a state-of-the-
art efficiency of 0.02 GPU days and competitive test accuracy
of 97.29% with 3.7 M parameters. Beyond that, Stacked BNAS
with KES discovers a Stacked BCNN with 2.73% test error
and just 3.1 M parameters (approximately 16.2% less than
Stacked BNAS). Moreover, the over-parameterized knowledge
embedding module leads to more trainable parameters and
memory requirements than vanilla Stacked BNAS, so larger
costs are needed. As shown in TABLE I, one indirect-
connected knowledge embedding of each mini BCNN has
more output channels than hand-crafted embedding. The above
knowledge embedding changes lead to parameter reduction of
the architecture learned by Stacked BNAS with KES.

Compared with NAS approaches with deep topology,
Stacked BNAS obtains the best efficiency and competitive
accuracy. In terms of random architecture, Stacked BCNN
obtains 0.38% better accuracy than DARTS, which further
examines the effectiveness of the proposed Stacked BCNN.
Furthermore, Stacked BNAS is 5x faster than PC-DARTS
whose efficiency ranks the best among all NAS approaches.
Compared with BNASSs, the proposed Stacked BNAS delivers
better efficiency and accuracy. On the one hand, the efficiency
of Stacked BNAS is approximately 10x and 2.5x faster than
BNAS-v1 and BNAS-v2, respectively. On the other hand, the
accuracy of Stacked BNAS is approximately 0.2% and 0.1%
better than BNAS-vl and BNAS-v2, respectively. Compared

3 113 P Fpg f073) (@s,3) [

~

-
K
.
>
———
e

-
o
-

«

Repetitive times

| ] e
*IVY VEVIVIEVIERY ¥V

,_.
.
—
e
+

o EXpl & Exp2 —+ Exp3 = Exp4 v ExpS

0 T T T r
0 10 20 30 40 50
Epochs

Fig. 8: Early stopping for Stacked BNAS without KES.

with previous BNASs, Stacked BNAS with KES can deliver
better accuracy with approximately 16% and 33% parameter
reduction, respectively.

3) Efficiency Difference between Stacked BNAS without
or with KES: As shown in TABLE II, the efficiencies of
Stacked BNAS without/with KES are 0.02 and 0.15 GPU days,
respectively. For that, there are two main reasons: 1) different
structures of used Stacked BCNNS in the search phase, and 2)
various degrees of difficulty meeting Criterion 1.

On the one hand, in the architecture search phase of Stacked
BNAS with KES, each mini BCNN contains a deep cell for
learning appropriate knowledge embedding. Consequently, the
first advantage of fast single-step training speed does not work.
On the other hand, Stacked BNAS with KES has difficult
satisfying Criterion 1 for early stopping.

« In the architecture search phase of Stacked BNAS, both
the repetitive times of convolution and enhancement cells
should be larger than 2. The architecture repetitive times
of Stacked BNAS are shown in Fig. 8. Each implementa-
tion can stop early before arriving at the maximum epoch



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL., NO., 2022

TABLE III: Comparison of the proposed Stacked BNAS and other state-of-the-art NAS approaches on ImageNet.

Architecture —;r:;flErr;o(I?S) Pa(ll;?ll)ns ?gglcjh dg;:)t FI(JI\(/:)P S Search Method Topology
AmoebaNet-A [16] 25.5 8.0 5.1 3150 555 evolution deep
NASNet-A [4] 26.0 8.4 53 1800 564 RL deep
PNAS [41] 25.8 8.1 5.1 225 588 SMBO deep
GHN [42] 27.0 8.7 6.1 0.84 569 SMBO deep
DARTS (2nd order) [5] 26.7 8.7 4.7 1.50 574 gradient-based deep
SNAS (mild) [38] 27.3 9.2 4.3 1.50 522 gradient-based deep
P-DARTS [39] 24.4 7.4 4.9 0.30 557 gradient-based deep
GDAS-NSAS [40] 24.7 7.5 5.1 0.30 577 gradient-based deep
BayesNAS [43] 26.5 8.9 3.9 0.20 - gradient-based deep
PC-DARTS [6] 25.1 7.8 53 0.10 586 gradient-based deep
PC-DARTS (ImageNet) [6] 24.2 7.3 5.3 3.80 597 gradient-based deep
BNAS-v2 (PC) (2nd order) [9] 27.2 8.8 4.6 0.09 475 gradient-based broad
Stacked BNAS (Ours) 26.4 8.9 4.7 0.02 485 gradient-based broad
3 e EBXPL 4 BXP2  —— DXp3 = Bxpd v BXpS so that Stacked BNAS delivers state-of-the-art efficiency.

~
.
——
.

Repetitive times

.

0

T T T T
0 10 20 30 40 50
Epochs

(a) Repetitive times of both architecture and embedding

o
B

—e— Expl —+— Exp2 —*— Exp3 = Expd v EXp5

Repetitive times
woos ou e o~
a
>

e

—
.
.
- e
L ..
. .
>

N

-

o

10 20 30 40 50
Epochs

B

(b) Repetitive times of architecture

. Expl & Exp2 —+ Exp3 = Exp4

—v— Exp5 I

Repetitive times

Epochs
(c) Repetitive times of embedding

Fig. 9: Early stopping for Stacked BNAS with KES where
both architecture and embedding weight should satisfy the
Criterion 1 simultaneously.

o For Stacked BNAS with KES, we show the architec-
ture and embedding repetitive times in Fig. 9. In this
experiment, the ES strategy is that the convolution cell,
enhancement cell, and knowledge embedding do not
change in three epochs. Each implementation cannot sat-
isfy the aforementioned early stopping criterion. Beyond
that, over-parameterized knowledge embedding without
a partial channel connections strategy leads to more
memory usages than vanilla BNAS. As a result, we set
batch size as 128 instead of 256. Above all, the efficiency
of Stacked BNAS is not satisfactory when using KES.

C. Experiments on ImageNet

1) Experimental Settings: To transfer the architecture
learned by Stacked BNAS on ImageNet, we treat three 3x3
convolutions as stem layers that reduce the input size from
224x224 to 28x28. Subsequently, a Stacked BCNN is con-
structed by 2 mini BCNNs, where each one contains 2 deep
cells, 1 broad cell and 1 enhancement cell.

For architecture evaluation, we choose the SGD optimizer
with a learning rate of 0.1 followed by a linear decay method,
momentum of 0.9 and weight decay of 3x10~°. Moreover,
we train the Stacked BCNN for 250 epochs with a batch size
of 512 on 4 NVIDIA Tesla P100 GPUs. Other experimental
settings follow PC-DARTS, e.g., label smoothing is set to 0.1,
and gradient clip bound is set to 5.0.

2) Results and Analysis: TABLE III summarizes the com-
parison of the proposed Stacked BNAS with other novel NAS
approaches on ImageNet.

Compared with previous impactful NAS approaches (e.g.,
AmoebaNet, NASNet, PNAS), the proposed Stacked BNAS
delivers competitive or better performance with a state-of-
the-art efficiency of 0.02 GPU days which is 5 or 6 mag-
nitudes faster. For efficient NAS approaches (e.g., DARTS,
SNAS, PC-DARTS), Stacked BNAS also obtains competi-
tive or better performance with 1 or 2 magnitudes faster
efficiency. Compared with BNAS-v2, Stacked BNAS obtains
better performance in terms of top-1 and top-5 accuracy. As



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL., NO., 2022 9

TABLE IV: Comparison of Stacked BNAS and other novel classifiers on four image classification datasets

Architecture Params Accuracy (%) Number Search Cost
™) MNIST FashionMNIST NORB SVHN of Cells (GPU Days)
NASNet [4] 1.5/1.371  99.64 (1) 95.47 (1) 93.34 (4) 96.87 (4) 20 1800
AmoebaNet [16] 1.5 99.62 (4) 95.33 (3) 93.73 (1) 96.85 (5) 20 3150
DARTS [5] 1.5 99.58 (6) 95.24 (6) 91.83 (6) 96.76 (6) 20 0.45
PC-DARTS [6] 1.4 99.61 (5) 95.26 (5) 93.00 (5) 96.98 (2) 20 0.1
BNAS-v2 [9] 1.5 99.63 (3) 95.33 (3) 93.37 (3) 96.98 (2) 8 0.09
Stacked BNAS (ours) 1.5 99.64 (1) 95.35 (2) 93.52 (2) 97.12 (1) 10 0.02

T The error of out of memory arises on a NVIDIA Tesla P100 GPU when using 1.5 M parameters for NORB and SVHN classification.

mentioned above, the main difference between BNAS-v2 and
the proposed Stacked BNAS is the broad scalable architecture,
so that the effectiveness of Stacked BCNN can be promised.
Moreover, the search cost of BNAS-v2 is 4.5x higher than
Stacked BNAS. Due to the broad topology of Stacked BCNN,
Stacked BNAS delivers the best performance in terms of
FLOPs, which is an important index to show the hardware
friendliness of deep models.

D. Experiments on Other Datasets

To further verify the effectiveness of Stacked BNAS, we
transfer the architecture learned on CIFAR-10 to other image
classification datasets, e.g., MNIST, FashionMNIST, NORB
and SVHN. For the above four datasets, we employ identical
experimental settings for Stacked BNAS as follows. The
BCNN consists of 2 mini BCNNs where each one has 3 deep
cells, 1 broad cells and 1 enhancement cells. A single NVIDIA
Tesla P100 GPU with 2.20-GHz Intel Xeon E5-2650 CPUs
is used to train the classifier from scratch for 300 epochs.
We choose SGD as the optimizer with a batch size of 128,
an initial learning rate of 0.05 following the cosine decay
method, a momentum of 0.9 and a weight decay of 3x1074.
The drop path probability is set to 0.3. Similar to BNAS-
v2, deep scalable architecture-based NAS approaches (e.g.,
NASNet [4], AmoebaNet [16], DARTS [5] and PC-DARTS
[6]) consist of 20 cells and employ identical settings to Stacked
BNAS except the learning rate of 0.025. Moreover, BNAS-
v2 consists of 8 cells and sets the learning rate to 0.025.
Experimental results are shown in TABLE IV.

Compared with state-of-the-art NAS approaches, the pro-
posed Stacked BNAS delivers the best generalization abil-
ity. For MNIST, FashionMNIST and NORB, the accuracies
of BNAS-v2 are second-ranked. For SVHN, BNAS-v2 and
PC-DARTS are tied for the first place with 96.98% accu-
racy. Furthermore, the architecture learned by BNAS-v2 on
CIFAR-10 shows powerful generalization ability. NASNet and
AmoebaNet deliver satisfactory performance for all datasets.
However, the performance of DARTS and PC-DARTS is
unsatisfactory.

E. Ablation Studies

Here, we implement two groups of experiments: 1) one
is to examine the effectiveness of PC and ES for efficiency
improvement of Stacked BNAS, and 2) the other is to verify
the effectiveness of two scales of information, i.e., the output

TABLE V: Ablation experiments for the efficiency of Stacked
BNAS on CIFAR-10.

Case PC ES Epochs Batch Size ((]ifpﬁél;l;?;)
1 X X 50 128 0.140
2 v X 50 512 0.068
3 X Vv 15 128 0.047
4 v/ 12 512 0.018

of the broad cell to the output node is denoted as b20 and the
output of the deep cell to the enhancement cell is denoted as
d2e.

1) PC and ES for Efficiency Improvement: In this group
of experiments, there are four cases: 1) using neither PC
nor ES, 2) using only PC, 3) using only ES and 4) using
both PC and ES. Each case is repeatedly performed five
times following the experimental setting used for architecture
search of Stacked BNAS without KES. Experimental results
are shown in TABLE V.

In case 1, the search cost of Stacked BNAS without PC and
ES is 0.14 GPU days under a single NVIDIA GTX 1080Ti
GPU. In case 2, Stacked BNAS employs PC to deliver an
efficiency of 0.068 GPU days, which is 2x faster than case 1,
because the strategy of PC contributes to improving a higher
memory efficiency (using a larger batch size, i.e., 512) of
Stacked BNAS than case 1. In the case of using ES, Stacked
BNAS can stop the search phase at the 15th epoch and obtain
an efficiency of 0.047 GPU days. When using both PC and ES,
Stacked BNAS can not only search architecture with efficient
memory of 512 batch size, but also stop early at the 12th
epoch and delivers a state-of-the-art efficiency of 0.018 GPU
days. Above all, both PC and ES play important roles in the
efficiency improvement of Stacked BNAS.

2) Multi-scale Feature Fusion for Performance Improve-
ment: In this group of experiments, there are four cases: 1)
using neither b2o nor d2e, 2) using only b2o, 3) using only
d2e and 4) using both b2o and d2e. Each case is repeatedly
performed three times following the experimental setting used
for architecture evaluation of Stacked BNAS without KES.
Moreover, the mean accuracy of three repetitive experiments
is treated as the final result. Experimental results are shown
in TABLE V.

When using neither b2o nor d2e, Stacked BCNN degrades
into vanilla BCNN, which lacks feature diversity for repre-



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL., NO., 2022 10

TABLE VI: Ablation experiments for multi-scale feature fu-
sion of Stacked BCNN on CIFAR-10.

Case Scale Information Parameters Test Error
b2o d2e ™M) (%)
1 X X 3.56 3.14
2 v X 3.36 3.05
3 X v 3.64 2.88
4 v v 3.70 2.71

sentation fusion and enhancement, so its test error is 3.14%.
For case 2, each mini BCNN employs the scale information
from the broad cell to the output node and delivers 96.95%
accuracy, which is approximately 0.1% higher than case 1.
Compared with the scale information of b20, d2e shows a
greater contribution to performance improvement and obtains
97.12% accuracy, which is approximately 0.3% higher than
case 1. In the last case, the combination of b2o and d2e further
improves the performance of Stacked BCNN, i.e., 2.71% test
error. Above all, multi-scale feature fusion is effective for
performance improvement of Stacked BCNN.

V. CONCLUSIONS

BNASSs deliver state-of-the-art efficiency via a novel broad
scalable architecture named BCNN, which employs multi-
scale feature fusion and hand-crafted knowledge embedding
to yield satisfactory performance with shallow topology. How-
ever, there are two issues in BCNN: 1) feature diversity
loss for representation fusion and enhancement and 2) time
consumption of knowledge embedding design.

To solve the above issues, this paper proposes Stacked
BNAS. On the one hand, Stacked BNAS proposes a new broad
scalable architecture named Stacked BCNN that can provide
more feature diversities for representation fusion and enhance-
ment than vanilla BCNN. On the other hand, a differentiable
algorithm named KES is also proposed to learn appropriate
knowledge embedding for Stacked BCNN in an automatic way
instead of designing by machine learning experts. Benefiting
from the combination of Stacked BCNN and an efficient
optimization algorithm, the proposed Stacked BNAS delivers
a state-of-the-art efficiency of 0.02 GPU days with competitive
performance. Moreover, KES contributes to discovering a
high-performance Stacked BCNN with fewer parameter counts
that plays a similar role as network pruning [44, 45]. Moreover,
the proposed Stacked BNAS shows powerful generalization
ability on four image classification datasets.

REFERENCES

[1] B. Zoph and Q. V. Le, “Neural architecture search with
reinforcement learning,” in International Conference on
Learning Representations (ICLR), 2017.

[2] N. Li, Y. Pan, Y. Chen, Z. Ding, D. Zhao, and Z. Xu,
“Heuristic rank selection with progressively searching
tensor ring network,” Complex & Intelligent Systems, pp.
1-15, 2021.

[3] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean,
“Efficient neural architecture search via parameters shar-
ing,” in International Conference on Machine Learning
(ICLR), 2018, pp. 4095-4104.

[4] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le,
“Learning transferable architectures for scalable image
recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018,
pp. 8697-8710.

[5] H. Liu, K. Simonyan, Y. Yang et al., “DARTS: Differ-
entiable architecture search,” in International Conference
on Learning Representations (ICLR), 2018.

[6] Y. Xu, L. Xie, X. Zhang, X. Chen, G. Qi, Q. Tian, and
H. Xiong, “PC-DARTS: partial channel connections for
memory-efficient architecture search,” in International
Conference on Learning Representations (ICLR), 2020.

[71 Z. Ding, Y. Chen, N. Li, D. Zhao, Z. Sun, and C. P.
Chen, “BNAS: Efficient neural architecture search using
broad scalable architecture,” IEEE Transactions on Neu-
ral Networks and Learning Systems, 2021.

[8] X. Chu, B. Zhang, R. Xu, and J. Li, “FairNAS: Re-
thinking evaluation fairness of weight sharing neural
architecture search,” arXiv preprint arXiv:1907.01845,
2019.

[9] Z. Ding, Y. Chen, N. Li, and D. Zhao, “BNAS-v2:
Memory-efficient and performance-collapse-prevented
broad neural architecture search,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 2022.

[10] T. Elsken, J. H. Metzen, F. Hutter et al., “Neural archi-
tecture search: A survey,” Journal of Machine Learning
Research, vol. 20, pp. 1-21, 2019.

[11] X. He, K. Zhao, and X. Chu, “AutoML: A survey of the
state-of-the-art,” Knowledge-Based Systems, vol. 212, p.
106622, 2021.

[12] Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, “Prac-
tical block-wise neural network architecture generation,”
in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2018, pp. 2423—
2432,

[13] N.Li, Y. Chen, Z. Ding, and D. Zhao, “Light-weight neu-
ral architecture search for resource-constrainted device,”’
in 2019 Chinese Automation Congress (CAC), 2019.

[14] Z. Ding, Y. Chen, N. Li, and D. Zhao, “Simplified
space based neural architecture search,” in 2019 IEEE
Symposium Series on Computational Intelligence (SSCI).
IEEE, 2019, pp. 43-49.

[15] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L.
Yuille, and L. Fei-Fei, “Auto-deeplab: Hierarchical neural
architecture search for semantic image segmentation,” in
Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition (CVPR), 2019, pp. 82-92.

[16] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regular-
ized evolution for image classifier architecture search,”
in Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), vol. 33, 2019, pp. 4780-4789.

[17] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler,
A. Howard, and Q. V. Le, “Mnasnet: Platform-aware
neural architecture search for mobile,” in Proceedings



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL., NO., 2022 11

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 2820-2828.

T. Chen, I. Goodfellow, and J. Shlens, “Net2net: Accel-
erating learning via knowledge transfer,” arXiv preprint
arXiv:1511.05641, 2015.

T. Wei, C. Wang, Y. Rui, and C. W. Chen, “Network
morphism,” in International Conference on Machine
Learning (ICML). PMLR, 2016, pp. 564-572.

H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and
K. Kavukcuoglu, “Hierarchical representations for effi-
cient architecture search,” in International Conference on
Learning Representations (ICLR), 2018.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep resid-
ual learning for image recognition,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770-778.

H. Jin, Q. Song, and X. Hu, “Auto-keras: An efficient
neural architecture search system,” in Proceedings of
the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019, pp. 1946—
1956.

T. Wei, C. Wang, and C. W. Chen, “Modular-
ized morphing of neural networks,” arXiv preprint
arXiv:1701.03281, 2017.

Y. Chen, R. Gao, F. Liu, and D. Zhao, “Modulenet:
Knowledge-inherited neural architecture search,” arXiv
preprint arXiv:2004.05020, 2020.

J. Fang, Y. Sun, Q. Zhang, Y. Li, W. Liu, and X. Wang,
“Densely connected search space for more flexible neural
architecture search,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2020, pp. 10628-10637.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L.-C. Chen, “Mobilenetv2: Inverted residuals and linear
bottlenecks,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018,
pp- 4510-4520.

Z. Liu, C. P. Chen, S. Feng, Q. Feng, and T. Zhang,
“Stacked broad learning system: From incremental flatted
structure to deep model,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 51, no. 1, pp. 209—
222, 2020.

Y. Pao and Y. Takefuji, “Functional-link net computing:
theory, system architecture, and functionalities,” Com-
puter, vol. 25, no. 5, pp. 76-79, 1992.

C. P. Chen and J. Z. Wan, “A rapid learning and dynamic
stepwise updating algorithm for flat neural networks
and the application to time-series prediction,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 29, no. 1, pp. 62-72, 1999.

C. P. Chen and Z. Liu, “Broad learning system: An ef-
fective and efficient incremental learning system without
the need for deep architecture,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 29, no. 1,
pp. 10-24, 2017.

C. P. Chen, Z. Liu, S. Feng et al., “Universal approxima-
tion capability of broad learning system and its structural
variations,” IEEE Transactions on Neural Networks and

[32]

[33]

[36]

[44]

Learning Systems, vol. 30, no. 4, pp. 1191-1204, 2018.
H. Zhao, J. Zheng, W. Deng, and Y. Song, “Semi-
supervised broad learning system based on manifold
regularization and broad network,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 67, no. 3,
pp- 983-994, 2020.

F. Chu, T. Liang, C. P. Chen, X. Wang, and X. Ma,
“Weighted broad learning system and its application in
nonlinear industrial process modeling,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 31,
no. 8, pp. 3017-3031, 2019.

C. P. Chen and B. Wang, “Random-positioned license
plate recognition using hybrid broad learning system and
convolutional networks,” IEEE Transactions on Intelli-
gent Transportation Systems, 2020.

Z. Wang, C. Li, and X. Wang, “Convolutional neural
network pruning with structural redundancy reduction,”
in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2021, pp.
14913-14922.

H. Liang, S. Zhang, J. Sun, X. He, W. Huang, K. Zhuang,
and Z. Li, “DARTS+: Improved differentiable archi-
tecture search with early stopping,” arXiv preprint
arXiv:1909.06035, 2019.

T. Elsken, J. H. Metzen, F. Hutter er al., “Efficient
multi-objective neural architecture search via lamarck-
ian evolution,” in International Conference on Learning
Representations (ICLR), 2018.

S. Xie, H. Zheng, C. Liu, and L. Lin, “SNAS: stochastic
neural architecture search,” in International Conference
on Learning Representations (ICLR), 2018.

X. Chen, L. Xie, J. Wu, and Q. Tian, “Progressive
differentiable architecture search: Bridging the depth
gap between search and evaluation,” in Proceedings of
the IEEE International Conference on Computer Vision
(ECCV), 2019, pp. 1294-1303.

M. Zhang, H. Li, S. Pan, X. Chang, and S. Su, “Overcom-
ing multi-model forgetting in one-shot nas with diversity
maximization,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2020, pp. 7809-7818.

C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L. Li,
L. FeiFei, A. Yuille, J. Huang, and K. Murphy, “Pro-
gressive neural architecture search,” in Proceedings of
the European Conference on Computer Vision (ECCV),
2018, pp. 19-34.

C. Zhang, M. Ren, and R. Urtasun, “Graph hypernet-
works for neural architecture search,” in International
Conference on Learning Representations (ICLR), 2019.

H. Zhou, M. Yang, J. Wang, and W. Pan, “BayesNAS:
A bayesian approach for neural architecture search,” in
International Conference on Machine Learning (ICML).
PMLR, 2019, pp. 7603-7613.

P. Molchanov, A. Mallya, S. Tyree, 1. Frosio, and
J. Kautz, “Importance estimation for neural network
pruning,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 11264-11272.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL., NO., 2022 12

[45] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and
Q. Tian, “Variational convolutional neural network prun-
ing,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp.
2780-2789.

[46] W. Rudin, Real and complex analysis. Tata McGraw-hill

education, 2006.

B. Igelnik and Y. Pao, “Stochastic choice of basis

functions in adaptive function approximation and the

functional-link net,” IEEE Transactions on Neural Net-

works, vol. 6, no. 6, pp. 1320-1329, 1995.

[47]

APPENDIX: UNIVERSAL APPROXIMATION ABILITY OF
STACKED BCNN

As a new paradigm of neural networks, similar to BNAS
[7], we also provide theoretical demonstration for the proposed
Stacked BCNN in terms of universal approximation ability as
follows.

Given the initial input channel number ¢, the output of mini
BCNN; with C; channels, i.e., (1) can be rewritten as

o = o 00, 0, W00 W00, W00,
(16)

where x represents input data. After GAP, each channel of y(*)
is transformed into a single-pixel neuron-like feature map, so
that we can treat it as C; neurons.

Given standard hypercube I¢ = [0;1] € R? and any
continuous function f € C(I?), the proposed Stacked BCNN
can be equivalently represented as

Z
foun = Y _woo(@; {6, 6,0, WD 00 . W g},
z=1
(17)

where Z = > | C; is the neuron number of the GAP
output, w represents the weight of the fully connected layer,
Prw = (k,u,c,wr, ..., wz, W,0) represents the set of overall
parameters for the Stacked BCNN, and o is the activation
function. Given the probability measure (j ., we define ran-
domly generated variables on £, , = (w1, ...,wz, W,8). For
compact set ) of Id, the distance between any continuous
function and Stacked BCNN can be calculated as

xolfs fpr.) = \/]E {/Q(f(m)fpk‘u(x))de - 18

Based on the above hypotheses, a theorem with proof of
Stacked BCNN is given below.

Theorem 1: Given any continuous function f € C(I¢)
and any compact set Q@ € I% Stacked BCNN with non-
constant bounded functions ¢, d, ¢, and absolutely integrable
activation function o whose definition domain is I¢ so that
‘[Rd o?(z)dx < oo, has a sequence of { fp, , } with probability
measures (y ,, satisfied that

ulggo xa(fs for.) =0. (19)

Moreover, the trainable parameters &, ,, are generated by (j, .

Proof: Define input data z, nonconstant bounded functions
¢, 9, p, approximation function fp, , of Stacked BCNN with
«’ mini BCNNs, probability distribution (.- for trainable
parameter generation, the weight matrix of fully,connected
layer w' = [w},...,w}|" where Z' = >Y_  C. and
supplement weight w” = [w?, ... ,wgu,ﬂ]T.

For Stacked BCNN with u/ (any integer) mini BCNNs, we
compute its output by

Z/
fwr =Y wlo(@:{,0,0, WD 00 . W) g0},
z=1

(20)

Subsequently, Stacked BCNN with input data  can approx-
imate continuous function f with bounded and integrable
resident function f,. , € I as

fro(®) = [(®) = fu(2).

As described in previous work [46], for Ve > 0, a function
fo, € C(1%) can always be found to satisfy the following
expression:

2y

e
Xﬂ(fb“/vfru/) < 9

We define an extra mini BCNN (i.e., mini BCNN, ) to
approximate f; , with Cys 1 channels. Mini BCNN,/;; can
be equivalently expressed as

(22)

Curin

for = > W o(z; {6, 8,0, WD 90+ (23)
z=1
9

Similarly, we can conclude that the composition function ¥ in
(23) is absolutely integrable. According to Theorem I in [47],
for Ve > 0, a sequence of f,~ can be found to satisfy the
following expression:

€
xa(fo,o fur) < 5. 24)
Moreover, the output of Stacked BCNN can be rewritten as
fpk,u = f'w/ + fw”~ (25)

Above all, we can obtain the distance between f and fp, ,
by

welF S ) [ @ = o, <z))2d4

[ (@ fwle) - s @) da;}
Q

Tu/af'w”)
fbu/afru/) + XQ(fbu/af’w”)

[
IERIERIEN

IA
O polm e X

—~

Q

—~

Q

VARRRWAN
+
| ™

(26)



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL., NO., 2022

Therefore, we can conclude that

lim xo(f, fpr..) = 0. 27

U,V —00

In other words, the proposed Stacked BCNN can completely
appropriate any continuous function.



