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Abstract— Investigating the link between mitochondrial func-
tion and its physical structure is a hot topic in neurobiology
research. With the rapid development of Scanning Electron Mi-
croscope (SEM), we can look closely into the fine mitochondrial
structure with high resolution. Consequently, many meaningful
researches have focused on how to detect and segment the mi-
tochondria from EM images. Due to the complex background,
hand-crafted features designed by traditional algorithms cannot
provide satisfying results. In this paper, we propose an effective
deep neural network improved from Mask R-CNN to produce
the detection and segmentation results. On this base, we use the
morphological processing and mitochondrial context informa-
tion to rectify the local misleading results. The valuation was
performed on two widely used datasets (FIB-SEM and ATUM-
SEM), and the results demonstrate that the proposed method
has comparable performance than state-of-the-art methods.

Index Terms— Mask R-CNN; Deep learning; Mitochondria;
Electron Microscopy

I. INTRODUCTION

It is generally known that mitochondria are the most
essential and versatile organelles in eukaryotic cells that pro-
duce the overwhelming majority of adenosine triphosphate
(ATP), and take substantial responsibility in the regulation
of cellular life and death. Increasing evidence suggests that
the regulation of mitochondrial shape are crucial for cellular
physiology, as changes in mitochondrial shape have been
linked to neurodegeneration, calcium signalling, lifespan
and cell death [1]. Besides, the dysfunctional mitochondria
which are the putative mediators of cell death are tightly
related to cancers and several diseases, including Alzheimer’s
disease, Parkinson’s disease, and Huntington’s disease [2].
For example, previous researches [3], [4] indicated that the
mitochondria in cancer cell can alter the function of resisting
apoptosis, which naturally leads the research [5] for cancer
therapy to target on mitochondria by stimulating mitochon-
drial membrane permeabilization or changing mitochondrial
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metabolism. Hence, automatic detection and segmentation of
mitochondria from Electron Microscope (EM) images with
high resolution are of great significance to the research on
cellular physiology and cancer.

Owing to the existence of various subcellular structures,
noises and imaging artifacts, the detection and segmentation
of mitochondria remains a challenging problem. In recent
years, many researchers have developed specialized algo-
rithms for automatic detection and segmentation of mito-
chondria. Typically, Vitaladevuni et al. [6] used a Gentle-
Boost classifier to detect mitochondria based on textural fea-
tures. In [7], Narasimha et al. performed various classifiers
for automatic texton-based mitochondria classification and
segmentation in melanoma cells. Considering the important
shape cues, Lucchi et al. [8] proposed an automated graph
partitioning scheme incorporated with shape features, which
operates on supervoxels instead of voxels to reduce the com-
putational complexity. And they made further improvement
by explicitly modeling membranes and introducing context-
based features [9]. Note the fact that mitochondria have
thick dark membranes, Jorstad et al. proposed an explicit
active surface scheme for refining the boundary surfaces of
mitochondrial segmentation [10]. Besides, some researchers
achieved reasonable results by focusing on the graphical
models commonly used in image segmentation, such as
MRFs and CRFs [11], [12], [13]. However, all the works
mentioned above need to design hand-crafted features of mi-
tochondria. Recent years have witnessed the great success of
CNNs in the field of computer vision since the representation
capability of learned CNN features is more powerful than
the traditional hand-crafted features. Based on this fact, we
propose to design an improved Mask R-CNN for mitochon-
drial detection and segmentation, which can be trained end to
end producing detection and segmentation results in parallel
[14]. On this base, we use the morphological processing
and mitochondrial context information to rectify the local
misleading results.

The remainder of this study is outlined as follows: Section
II presents a specific method for mitochondrial detection and
segmentation. Then, the experimental results are shown to
verify the effectiveness of proposed method in Section III.
Finally, in Section IV, this study’s conclusions are made, and
some future research issues are discussed.

II. METHODS

In this section, we present our proposed algorithm that
comprises image preprocessing, mitochondrial detection and
segmentation, and post processing.
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Fig. 1. The architecture of proposed network. The black block, blue blocks,
orange blocks, green blocks, red block, and yellows blocks represent the
input gray image, convolution layers, classifier layers, regression layers,
mask output of original image, and fixed size feature maps obtained from
RoIAlign, respectively. In addition, the purple dotted box contains the layers
of resnet50, the black dotted box includes the two output layers of RPN, and
the red dotted box denotes the top-down pathway of FPN. The green dotted
box shows the multiple mask outputs, which is also the main difference
between Mask R-CNN and our method.

A. Image Preprocessing

Deep learning needs a great deal of training data to
improve the robustness of neural network. So we enlarge the
training dataset by means of data augmentation, including
rotation, flipping, adding random noise.

B. Mitochondrial Detection and Segmentation

In this subsection, we present an improved Mask R-
CNN for mitochondrial detection and segmentation. The
architecture of proposed network is illustrated in Fig. 1. Since
the characteristics of mitochondria are relatively simple, the
very deep network may cause over-fitting. In this paper,
resnet50 [15] is adopted as the backbone network, and
Feature Pyramid Network (FPN) [16] is used for detecting
objects at different scales. The main task of Region Proposal
Network (RPN) is producing the candidate object regions.
Then the R-CNN makes further classification and regression
based on the results from RPN. To get segmentation results,
a mask branch is added to predict the object mask. Predicting
pixel-accurate masks needs more detailed information, so
only finest layer of FPN is connected to the mask branch. It is
worth noting that the mask output is limited by the bounding
box of detection output in original Mask R-CNN. That is
to say, if the detection results cannot provide the complete
location information of mitochondria, then the segmentation
results will be incomplete. Inspired by previous researches,
we move the FoV (Field of View) of the mask branch to
get multiple mask outputs at a fixed step in four directions
(up, down, left and right). The moving will be terminated if
the percentage of background in the bounding box reaches
a given threshold. The final segmentation is obtained by
combining the multiple masks. Under this strategy, the error
caused by detection branch can be weakened relatively.
In addition, RoIPool is replaced by RoIAlign in order to
overcome the misalignment problem.

C. Post Processing

In this subsection, we focus on optimizing the segmenta-
tion results obtained by proposed network. Since we fuse
many masks to obtain relatively complete results, many
trivial false segmentations will appear. Therefore, suitable
post processing procedures will greatly improve the seg-
mentation performance. The post processing procedures are
mainly divided into three parts. First, we use morphological
opening operation by a disk with radius 10 to eliminate
the small regions and smooth the big regions. Second, note
the fact that the mitochondrial sizes are far more than the
resolution in z−direction. We use the multi-layer information
fusion algorithm in [20] to obtain the mitochondria in 3D
and eliminate these mitochondria with the “length” (times
arising in z−direction) less than L (such as 15). Third,
note that the segmentation results should keep consistent in
adjacent layers, especially in FIB-SEM dataset. We compute
the IoUs of segmentation results in adjacent layers, where
a larger IoU means a better segmentation. Based on this
assumption, we find the indexes of IoUs less than a given
threshold T1 (such as 0.7), where the segmentation results
are considered as suspectable. Then the following criteria
are formulated. If the ratio of suspectable number is greater
than a given threshold T2 (such as 0.3), this mitochondrion
will be considered as false. In addition, if a small number
of suspectable segmentations arise in both end-points, we
replace them by the nearest segmentation by morphological
erosion operation with radius 2.

III. EXPERIMENTAL AND RESULTS

In this section, we first provide some details related
to the experimental dataset and experimental setup. Then,
the results of proposed method including the mitochondrial
detection results, segmentation results, and 3D visualization
results are presented.

A. Datasets

In this subsection, the experiments are performed on two
datasets (FIB-SEM dataset and ATUM-SEM dataset) that are
widely used in this topic. Fig. 2 shows specific examples in
each dataset and the related details are depicted as follows.

FIB-SEM dataset: the FIB-SEM dataset is publicly avail-
able1 from mouse hippocampus and composed by a training
volume and a testing volume. Here, each volume with a
resolution of 5×5×5 nm3/voxel consists of 165 slices and
the size of each slice is 1024×768.

ATUM-SEM dataset: the ATUM-SEM dataset is acquired
by the Institute of Automation, Chinese Academy of Sci-
ences from mouse cortex [20]. The ground truth of mito-
chondria are annotated by experienced students using the
software TrakEm2. The dataset with a resolution of 2×2×50
nm3/voxel consists of 31 slices, each of which has a size of
4096×4096.

1http://cvlab.epfl.ch/data/em
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TABLE I
AVERAGE precision AND recall GRAPH VERSUS φ

Dataset φ 0.5 0.6 0.7 0.8 0.9

FIB-SEM precision 0.872 0.882 0.901 0.911 0.930
recall 0.894 0.886 0.878 0.865 0.842

ATUM-SEM precision 0.812 0.842 0.863 0.891 0.922
recall 0.952 0.948 0.945 0.942 0.925

B. Experimental Setup

We implement the proposed network using the Keras open-
source deep learning library [17]. During the experiments,
the original images are directly used as input for FIB-
SEM dataset while the original images are cropped into
small images (1024×1024 used in the experiments) as input
for ATUM-SEM dataset. The network is trained using the
stochastic gradient descent. The related parameters are as
follows: momentum is 0.9, weight decay is 0.0001, and
learning rate is initially set as 0.001 and decreases by a factor
10 when learning stagnates. The training and testing tasks are
conducted on a server equipped with an Intel i7 CPU of 512
GB main memory and a Tesla K40 GPU.

C. Experimental Results

In this subsection, we present some detection and seg-
mentation results in Fig. 2. It is clearly that the proposed
method can detect and segment the mitochondria at different
scales and sizes. And we evaluate the detection results in
terms of two fundamental performance indicators, precision
and recall. Specifically, precision is the ratio of detection
outcome being correct, and recall is the ratio of the true
elements being successfully detected, i.e.

precision = TP/(TP+FP), (1)
recall = TP/(TP+FN). (2)

Here a detection result is considered as positive if the overlap
between the detection region and corresponding ground truth
occupies at least 70% of the area of the ground truth. Tab.
I shows the precision and recall at different confidence
threshold φ for the two datasets, respectively. We can see
that the recall decreases and the precision increases with
the increase of confidence threshold φ . Different from the
detection, the segmentation accuracy is measured by the
Jaccard index, which is a common criteria operated on pixels
in image segmentation. It is computed as

Jaccard index =
TP

(TP+FP+FN)
. (3)

We present quantitative comparison with state-of-the-art
methods in Tab. II (for FIB-SEM dataset) and Tab. III (for
ATUM-SEM dataset) in terms of Jaccard index, where the
highest values are marked in bold for distinction. It can be
seen that the proposed method have obviously better segmen-
tation performance than previous methods. To clearly see the
mitochondrial structure in 3D, we import our segmentation
results into software AMIRA for 3D visualization. Fig. 3
displays a specific example.

TABLE II
SEGMENTATION RESULTS ON FIB-SEM DATASET

Methods Jaccard index
Non-parametric Higher-order Random Fields [13] 0.762

Improved KernelBoost[19] 0.776
Kernelized SSVM/CRF [11] 0.840

Our method 0.849

TABLE III
SEGMENTATION RESULTS ON ATUM-SEM DATASET

Methods Jaccard index
Proposed method in [20] 0.747

U-Net[18] 0.837
Our method 0.864

IV. CONCLUSIONS

In this paper, we have presented an improved Mask R-
CNN to obtain the mitochondrial locations and morphology.
The application of FPN achieves more accurate detection,
especially for the smaller and larger mitochondria, and the
mask branch can get segmentation results directly based on
the detection results. This mechanism can avoid the interrupt
of noise and artifacts comparing with semantic segmentation
network. And the application of moving FoV can refine the
boundary of mitochondria which reduces the influence of
detection results. Lastly, some post processing methods are
used to improve the segmentation accuracy. Along the line
of present research, we plan to expand this network to 3D in
the future to explore more effective architecture. In addition,
the mask output can be directly used as another input of
mask branch, thereby forming a recurrent network which is
more elegant.

Fig. 3. Computerized reconstruction results on FIB-SEM.
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