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ABSTRACT
While siamese networks have demonstrated the significant
improvement on object tracking performances, how to uti-
lize the temporal information in siamese trackers has not
been widely studied yet. In this paper, we introduce a novel
siamese tracking architecture equipped with a temporal ag-
gregation module, which improves the per-frame features
by aggregating temporal information from adjacent frames.
This temporal fusion strategy enables the siamese trackers to
handle poor object appearance like motion blur, occlusion,
etc. Furthermore, we incorporate the adversarial dropout
module in the siamese network for computing discrimina-
tive target features in an end-to-end-fashion. Comprehensive
experiments demonstrate that the proposed tracker performs
favorably against state-of-the-art trackers.

Index Terms— Visual object tracking, siamese network,
feature aggregation, adversarial training

1. INTRODUCTION

Visual object tracking is the task of estimating the state of
an arbitrary target in each frame of a video sequence. Re-
cently, siamese networks have demonstrated the significant
improvement on object tracking performances. However, the
learned generic representation may be less discriminative be-
cause of the deteriorated object appearances in videos (Fig.
1), such as motion blur, occlusion, etc. Researchers try differ-
ent ways to improve the feature representation. For example,
SA-Siam [1] separately trains two branches to keep the het-
erogeneity of semantic/appearance features. In DaSiamRPN
[2], a novel distractor-aware incremental learning module is
designed, which can effectively transfer the general embed-
ding to the current video domain and incrementally catch the
target appearance variations during inference. SiamRPN++
[3] introduces a simple yet effective sampling strategy to drive
the siamese tracker with more powerful deep architectures.
These efforts have produced some impact and improved state-
of-the-art accuracy. However, all above siamese algorithms
perform tracking based on features cropped from only the cur-
rent frame, which limits the power of siamese trackers.

*Corresponding author.

Fig. 1. A comparison of our method with SiamMask and
SiamFCv2. The example frames are from the GOT-10k test-
ing set. Our approach effectively handles poor object appear-
ance compared to existing approaches.

Actually, the video has rich information about the target
and such temporal information is an important basis for video
understanding and tracking. For example, in video object de-
tection, FGFA [4] leverages temporal coherence on feature
level. It improves the per-frame features by aggregation of
nearby features along the motion paths, and thus improves
the video recognition accuracy. In video object segmenta-
tion, STCNN [5] introduces a temporal coherence module,
which focuses on capturing the dynamic appearance and mo-
tion cues to provide the guidance of object segmentation. In
discriminative correlation filter-based object tracking, Flow-
Track [6] focuses on making use of the rich flow informa-
tion in consecutive frames to improve the feature representa-
tion and the tracking accuracy. However, how to utilize the
temporal information in siamese trackers has not been widely
studied yet.

In this paper, we aim to take full advantage of temporal in-
formation in siamese trackers. We introduce a novel siamese
tracking architecture equipped with a temporal aggregation
module, which improves the per-frame features by aggregat-
ing features from adjacent frames. This temporal fusion strat-
egy enables the siamese tracker to handle poor object appear-
ance like motion blur, occlusion, etc. To achieve this, we shift
the channels along the temporal dimension [7] in the back-
bone of the siamese network. Note that features of the same
object are usually not spatially aligned across frames due to
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Fig. 2. Overview of our two-stage SiamTFA. The proposal generation stage aims to generate proposals that are visually similar
to the given template target. The refine stage aims to select the target from candidate proposals.

video motion [4], so the temporal shift is only performed on
the residual layers [7] to preserve the spatial feature learning
capability of the siamese tracker. Different from other tempo-
ral fusion methods [8, 9], the proposed method is able to be
trained end-to-end on larger-scale datasets. Additionally, our
temporal fusion method is easy to implement, without chang-
ing the siamese tracking architecture or using optical flow [6].

To improve the robustness of target features, we further
incorporate an adversarial dropout [10] module in the siamese
tracking network. Specifically, we first predict adversarial
dropout masks based on divergence maximum. Then, we aim
to minimize the divergence between the randomly dropped
features and the adversarially dropped features. This module
has both the advantages of dropout and adversarial training:
the dropout makes our siamese network randomly discon-
nects neural units during training to prevent the co-adaptation
of target features and the adversarial training enforces our
tracker to learn difficult cases.

2. THE PROPOSED METHOD

In this section, we will introduce the proposed siamese
architecture-based tracking method, namely SiamTFA (Fig.
2), which is inspired by the great success of siamese trackers
[3, 11]. Specifically, SiamTFA takes an image pair as input,
comprising a template image and a search image. The tem-
plate image is the image patch cropped from the initial frame
according to ground truth bounding box. The search image is
one whole frame in the remaining of the video. Both inputs
share the same feature extractor and parameters. Inspired
by the success of the two stage detection paradigm [12], our
siamese tracker is also a two stage method. The first stage
aims to generate proposals that are visually similar to the
given template target. In this stage, we introduce a tempo-
ral aggregation module to enhance the temporal information
(Sec. 2.1). The second stage aims to identify the target from

candidate proposals. In this stage, we insert an adversarial
dropout module to learn more robust features (Sec. 2.2).

2.1. Temporal aggregation module

The proposal generation stage consists of 3 components: (1)
feature extractor, (2) temporal aggregation module, and (3)
feature modulation module. The feature extractor generates
the search features and the template feature for the search
image and the template image, respectively. The temporal
aggregation module is integrated into the feature extractor
to utilize the temporal information. The feature modulation
module merge the search features and the template feature to
recognize the candidate targets.

Feature extractor To deal with the scale change of
the target, we use Res50-FPN [13] as our feature extractor.
Feature Pyramid Network (FPN) exploits the inherent multi-
scale, pyramidal hierarchy of deep convolutional networks
to construct feature pyramids with marginal extra cost. Our
siamese FPN takes a template image and a search image as
input. For the search image, the FPN outputs proportionally
sized feature maps at multiple levels, in a fully convolu-
tional fashion. We denote the output for the search image as
Fx = {f i

x}i=1:5, and note that they have strides of {4, 8, 16,
32, 64} pixels with respect to the input search image. For the
template image, we use the last stage of the FPN output as
the template feature with a spatial size of 7× 7.

Temporal aggregation module Most popular siamese
trackers [3, 11] use the still image to make prediction. This
limits the ability of these siamese trackers. On one hand,
tracking on single frame generates unstable results and fails
when appearance is poor (Fig. 1); on the other hand, tem-
poral adjacent frames can provide more information about
the target. So we aim to improve the per-frame features by
aggregating features of adjacent frames. Specifically, we
insert a temporal aggregation module into the last stage of
the feature extractor. To model temporal information, the
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images in one batch are several adjacent frames in the same
video and are sorted by time, so we can regard the batch
dimension as the time dimension. Assume the feature map
at the last stage of the feature extractor is f ∈ R

T×C×H×W .
For each time t ≤ T , we first split feature f t ∈ R

C×H×W

into 3 parts along the channel dimension: f t
1:K ∈ R

K×H×W ,
f t
(K+1):2K ∈ R

K×H×W , and f t
(2K+1):C ∈ R

(C−2K)×H×W .
Then we shifts the channels along the temporal dimension
following [7]:

f t
agg = C(f t−1

1:K , f t+1
(K+1):2K , f t

(2K+1):C), (1)

where C(·) is the concatenation operation. According to [7],
the shift operation is only performed at the residual layer to
preserve the spatial feature learning capability of the siamese
tracker. Note that the aggregated feature f t

agg has the same
shape with f t, so we can insert this module into the backbone
directly, without the need to change other part of the network.
What’s more, this operation only needs to do data movement,
so it is computationally free and can be trained end-to-end.

Feature modulation module After getting the template
feature fz and the search feature pyramid Fx = {f i

x}i=1:5,
they are modulated to generate target-specific features. Specif-
ically, The modulation vector favg is generated from fz us-
ing global average pooling, which carries the target-specific
appearance information. The modulated feature pyramid
Fmod = {f i

mod}i=1:5 is generated as follows:

f i
mod = M(favg, f

i
x), (2)

where M(·) is the depth-wise correlation [3]. Each mod-
ulated feature map is fed into two sibling fully-connected
layers—a box-regression layer with channel dimension 4k,
and a box classification layer with channel dimension 2k,
where k is the number of maximum possible proposals for
each location. The object/background criterion and bounding
box regression are defined with respect to a set of anchors.
Following [13], we assign anchors with the same scale to
each of the different pyramid levels. For detail information
of the anchor setting, please refer to [13]. We use the top-N
ranked proposal regions for the refine stage.

2.2. Adversarial dropout module

The refine stage aims to select the target from candidate pro-
posals. Features of these candidate proposals are cropped
from the search feature pyramid Fx using RoIAlign [14], and
then fused with the target feature fz:

X = R(b, Fx)� fz, (3)

where R represents the RoIAlign, � represents the element-
wise multiplication, b represents an RoI in candidate propos-
als and X represents the fused feature of b.

Adversarial dropout After the feature fusion, we use ad-
versarial dropout [10, 15] to increase the discriminative abil-
ity of X . We first predict the adversarial dropout mask based

on divergence maximum. The mask is applied to X to get the
adversarially dropped features. Then, we aim to minimize the
divergence between the randomly dropped features and the
adversarially dropped features. Specifically, let hcls and hreg

denote the classification layer and the regression layer in stage
2, respectively. The adversarial dropout mask is calculated as
follows according to [15]:

madv = argmax
m

D[hcls(X �ms), hcls(X �m)]

where ||ms −m|| ≤ δeL,
(4)

where L represents the dimension of m ∈ R
L, ms represents

the random mask and madv represents the adversarial mask.
δe is a hyper parameter to control the perturbation magnitude
with respect to ms [15]. D[p, p′] ≥ 0 measures the diver-
gence between two distributions p and p′.

To calculate madv , [10] optimizes a 0/1 knapsack prob-
lem with appropriate relaxations in the process. Please refer
to [10] for detail information. After generating madv , we then
aim to minimize the divergence between two predicted distri-
bution regarding to X : one with a random dropout mask ms

and another with an adversarial dropout mask madv [15].

Ladv = E[DKL[h
cls(X �ms)||hcls(X �madv))]], (5)

where DKL is the Kullback-Leibler divergence.
Finally, for each RoI, the classification layer produces

softmax probability estimates over two classes (foreground
or background) and the regression layer outputs four real-
valued numbers for the foreground class. These four values
encode the refined bounding-box position for the RoI. The
loss of SiamTFA is:

L = Lstage1
cls + Lstage2

cls + Lstage1
reg + Lstage2

reg + λLadv, (6)

where λ is a hyper-parameter to balance the adversarial loss
and the classification/regression loss. L·

cls is the cross entropy
loss and L·

reg is the standard smooth L1 loss for regression.
During testing, the RoI with the top classification score is se-
lected as the predicted target.

3. EXPERIMENTS

In this section, we first present the implementation details.
Then we evaluate out method on GOT-10K [16] testing set
and the UAV20L [17] dataset.

3.1. Implementation details

The proposed network is trained on the training set of GOT-
10k [16] and the backbone is pretrained on ImageNet. We
apply stochastic gradient descent with momentum of 0.9 and
set the weight decay to 0.0005. The learning rate is decreased
from 10−2 to 10−4. The batch size is set to 2 and the network
is trained for 90000 iterations. Our tracker is implemented in
Python, using PyTorch.
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Table 1. Performance of our algorithm with different compo-
nents on GOT-10k test set.

Temporal
aggregation

Adversarial
dropout AO SR0.50 SR0.75

0.542 0.607 0.456
� 0.561 0.645 0.480
� � 0.577 0.662 0.509

Table 2. Comparing the results of our approach against other
approaches over the GOT-10k test set.

Method AO SR0.50 SR0.75

Ours 0.5771 0.6621 0.5091

SiamMask 0.459 0.560 0.205
SiamFCv2 0.374 0.404 0.144
SiamFC 0.348 0.353 0.098
GOTURN 0.347 0.375 0.124
CCOT 0.325 0.328 0.107
ECO 0.316 0.309 0.111
CF2 0.315 0.297 0.088
MDNet 0.299 0.303 0.099

3.2. Evaluation on GOT-10k dataset

In this subsection, we evaluate our method on GOT-10k [16]
dataset. GOT-10k is a recent large-scale high-diversity dataset
consisting of over 10,000 video sequences with targets anno-
tated by axis-aligned bounding boxes. The GOT-10k testing
set includes 180 sequences with 84 different object classes
and 32 motion patterns. As performance measure, we use
the average overlap (AO) scores and success rate (SR) as
proposed in [16]. The AO denotes the average of over-
laps between all groundtruth and estimated bounding boxes,
while the SR measures the percentage of successfully tracked
frames where the overlaps exceed 0.5/0.75.

Ablation Studies From Table 1 (the 1st and 2nd row), we
see that the AO performance increases by 3.1% by adding the
temporal aggregation module. This is because the temporal
aggregation module improves the per-frame features by ag-
gregating temporal information from adjacent frames. From
Table 1 (the 2nd and 3rd row), we see that with the adversarial
dropout module, the AO increases by 2.9%. This is because
the adversarial dropout module improves the discrimination
power of our siamese tracking network.

Overall Performance We compare our proposed method
with 8 trackers, including state-of-the-arts. The performances
of the evaluated trackers is shown in Table 2. Compared
to other listed approaches, our approach achieves a superior
AO of 0.577. Compared with SiamMask, our tracker aims
to make full use of the temporal information. As a result,
our tracker outperforms SiamMask by 11.8% in terms of AO,
which highlights the importance of the proposed temporal ag-
gregation module.

Fig. 3. Success and precision plots on UAV20L dataset.

3.3. Evaluation on UAV20L dataset

In this subsection, we evaluate our tracker on the UAV20L
[17] long term tracking dataset. It contains 20 HD video se-
quences captured from a low-altitude aerial perspective with
average sequence length of 2934 frames. In this experiment,
all trackers are compared using two measures: precision and
success. Precision is measured as the distance between the
centers of the predicted bounding box and the corresponding
ground truth bounding box. Success is measured as the in-
tersection over union of pixels in predicted bounding box and
those in ground truth bounding box. In Fig. 3, we can find that
the proposed algorithm achieves better tracking performance
compared with some representative trackers. In the success
plot, our tracker obtains an AUC score of 0.606. In the pre-
cision plot, the proposed algorithm obtains a score of 0.804.
It shows that our tracker surpass other state-of-the-art algo-
rithms, such as SiamRPN [18] and PTAV [19]. This demon-
strates the effectiveness of our tracker in long-term tracking
scenario.

4. CONCLUSION

In this paper, we introduce a novel siamese architecture for
visual object tracking. Specifically, our proposed algorithm
contains two main modules, i.e. temporal aggregation mod-
ule and adversarial dropout module. The temporal aggrega-
tion module improves the per-frame features by aggregating
features of adjacent frames. The adversarial dropout mod-
ule improves the discrimination power of the siamese track-
ing network. Extensive experimental results show that the
proposed algorithm performs favorably against the state-of-
the-art algorithms.
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