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Abstract. The ability of real-time instrument tracking is a stepping
stone to various computer-assisted interventions. In this paper, we intro-
duce a two-stage framework for real-time guidewire endpoint localization
in fluoroscopy images during the percutaneous coronary intervention. In
the first stage, in order to predict all bounding boxes that contain a
guidewire, a YOLOv3 detector is applied, and following the detector,
a post-processing algorithm is proposed to refine the bounding boxes
produced by the detector. In the second stage, an SA-hourglass net-
work modified on stacked hourglass network is proposed, to predict
dense heatmap of the guidewire endpoints that may be contained in
each bounding box. Although our SA-hourglass network is designed for
endpoint localization of guidewire, in fact, we believe the network can
be generalized to the keypoint localization task of other surgical instru-
ments. In order to prove our view, SA-hourglass network is trained not
only on a guidewire dataset but also a retinal microsurgery dataset, and
both achieve the state-of-the-art localization results.
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1 Introduction

The keypoint localization of surgical instruments is one of the key components
of computer-assisted interventions. From the localization results, we can estimate
the pose of the instruments and infer the use status of the instruments. For per-
cutaneous coronary intervention (PCI), the most important surgical instrument
is the guidewire which is navigated under real-time fluoroscopy images during the
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intervention, as shown in Fig. 1. Real-time keypoint (i.e. endpoint) localization of
guidewire in the fluoroscopy images is of great significance. It can be used in techni-
cal skills assessment [1].More importantly, it could be applied in computer-assisted
interventions to help the computer understand the real-time situation.

As far as we know, there is a few research focus on this specific task. Most
of research about interventional guidewires focus on guidewire segmentation [2]
and the fitting curve [3,4] of the guidewire. Although the endpoint’s position of
the guidewire can be easily inferred from the segmentation results or the fitting
curve results, however, these methods pay more attention to the main body of
the guidewire rather than the endpoints. From the results in [2], we can see a
median centerline distance error of 0.2 mm but a median endpoint distance error
of 0.9 mm. Essentially, the guidewire is a kind of surgical instruments. There has
been a lot of research concentrate on the keypoint localization of the surgical
instruments used in laparoscopic surgery and retinal surgery [5–7]. Compared
with these instruments, the guidewire presents more difficulties so that these
methods cannot be applied directly:

1. Small size of visible part: Only a small portion of the guidewire is visible,
while the main body of the guidewire is almost invisible.

2. Simple appearance of the endpoint: Simple appearance seems like an
advantage for localization, but it also means there will be more similar struc-
tures in the fluoroscopy images, which have a low signal-to-noise ratio.

3. Non-rigid body: Not like other surgical instruments, the guidewire is not
a rigid body. Therefore, under the premise of a low frame rate (8FPS), the
shape of guidewire varies significantly from frame to frame.

To address the above difficulties, a detection stage is proposed before the
localization stage inspired by [8]. The overall framework is shown in Fig. 1. In
both stages, a method based on deep convolutional neural network (CNN) is
proposed. CNN is extremely powerful in extracting local features and performing
good predictions utilizing a large receptive field.

Our contributions are as follows. (1) We introduce a cascade framework for
guidewire endpoint localization. (2) A post-processing algorithm is proposed in
the first stage to deal with the false positives and false negatives of the detections.
(3) We also propose a SA-hourglass network in the second stage which can be
applied in keypoint localization of other instruments as well. Besides, our frame-
work can achieve real-time localization at an inference rate of approximately
10FPS (fluoroscopy image is about 8FPS).

2 Method

2.1 Stage 1: Guidewire Detection

Our task is to predict a bounding box for each guidewire in consecutive fluo-
roscopy images. It is different from the detection task which only needs to detect
the objects in a single image, also different from the tracking task which needs
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Fig. 1. The overall framework for guidewire endpoint
localization. In the first stage, detect the location (white
box) of all guidewires. Then crop the corresponding
patch (red box) from the image. In the second stage, the
localization network predicts the heatmaps of two end-
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in green boxes are newly proposed by us. (Color figure
online)
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to track a class agnostic object. Therefore, a detector can be applied to pro-
duce accurate candidates (bounding boxes) of the guidewire, then the constraint
relationships between frames can be used to reselect these candidates.

Choosing a Detector: Currently, there are two popular architectures of object
detection: one-stage architectures represented by YOLO [9], and two-stage archi-
tectures represented by Faster-RCNN [10]. One-stage detectors perform better
on speed, while two-stage detectors perform better on accuracy. In order to select
an appropriate detector, we train YOLOv3 and Faster-RCNN respectively using
our guidewire dataset. Experimental results show that the detection accuracy of
YOLOv3 is slightly lower than that of Faster-RCNN (96.4% vs. 98.4% in mAP),
but YOLOv3 performs much better than Faster-RCNN in time efficiency (0.05 s
vs. 0.12 s). In order to meet the real-time requirement, YOLOv3 is chosen as the
detector of our framework. The outputs of the detector are several candidate
boxes, each with a confidence score. We only select candidates with scores larger
than a given threshold, which is hard to set, as the final outputs.

Post-processing Algorithm: In a continuous sequence of images, there are two
primary constraints between two consecutive frames: (1) The distance between
the same object in two consecutive frames could not be too far. (2) Existing
objects do not suddenly disappear, and objects could not suddenly appear where
there was no object before. These two constraints can be used to judge whether
the candidate is correct, with the objects existing in the previous frame.

Based on these conditions, a post-processing algorithm is proposed to refine
the output candidates of the YOLOv3 detector. Instead of using a single thresh-
old, inspired by the Canny edge detector, all candidates are reselected into two
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Algorithm 1. Post-processing algorithm
Initialize: Ot=∅, Ot

temp=∅
Input: Ct

H={c0,...,cN}, Ct
L={c0,...,cM}, Ot−1, Ot−1

temp

1: if t==1 then Ot=Ct
H

2: else
3: for oi∈{Ot−1, Ot−1

temp} do
4: cbest=cj where max(S-IOU(cj , oi)),cj ∈ {Ct

H , Ct
L}

5: if S-IOU(cbest, oi) ≥ σIOU then
6: add cbest to Ot; delete oi from Ot−1 or Ot−1

temp; delete cj from Ct
H or Ct

L

7: for oi ∈ Ot−1 do
8: add oi to Ot

temp

9: for ci ∈ Ct
H do

10: add ci to Ot
temp

11: return Ot,Ot
temp

candidate lists (CH and CL) using two thresholds (thH and thL, thH > thL). If
the candidate’s confidence score is larger than thH , the candidate is considered
highly likely to contain a guidewire and will be put into the list CH . If the score
is less than thH but larger than thL, the candidate is considered likely to contain
a guidewire and will be put into the list CL. Two output lists Ot, Ot

temp will
be created at each timestep t: Ot is used to store the output candidates which
already confirmed to contain a guidewire at time t; Ot

temp is used to store the
temporary output candidates which need to be confirmed in the next timestep.
The algorithm is actually to select candidates from two candidate lists CH and
CL to two output lists Ot and Ot

temp at each timestep t with the help of Ot−1

and Ot−1
temp. Details can be seen in Algorithm 1. All candidates in Ot and Ot

temp

are the outputs of the algorithm, also the outputs of the first stage.
Since the shape of the guidewire is variable, a new S-IOU (Intersection over

Union) is applied in algorithm: first enlarge each box to a square box by extend-
ing the height or width of the box, and then calculate the IOU of two square
boxes.

2.2 Stage 2: Guidewire Endpoint Localization

The guidewire endpoint localization component in our framework predicts the
heatmaps of two guidewire endpoints, given each bounding box produced by the
first stage, as shown in Fig. 1. Because these two endpoints have a similar appear-
ance, we serve both endpoints as the same type of keypoint and predict them
in one heatmap. The ground truth of the heatmap is still created by applying a
Gaussian kernel to the endpoint’s ground truth position as in [7].

Image Cropping: Directly cropping the image by the bounding box and resiz-
ing it to the input resolution of the localization network will change the aspect
ratio of the guidewire. To keep the aspect ratio of the guidewire, each bounding
box is enlarged to a square box by extending either their height or their width.
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Fig. 3. The proposed SA-hourglass architecture, newly added supervised attention
module is shown in the blue boxes. (Color figure online)

The square box is further enlarged with a factor during training and evaluation.
During training, a random rescaling factor between 1.1 and 1.3 is applied for data
augmentation. During the evaluation, a factor of 1.2 is applied to compensate
for possible offsets in the detection results, as shown in Fig. 1.

SA-Hourglass: Stacked hourglass [11] is one of the most popular architec-
tures in human pose estimation. We modify the stacked hourglass by adding a
Supervised-Attention (SA) module following the output feature maps of each
hourglass and name it as SA-hourglass, as shown in Fig. 3.

Also, some configurations are modified to meet the need of endpoint local-
ization of the guidewire. First, in order to increase the localization accuracy, the
first max pooling layer is removed for enlarging the output heatmap size. Sec-
ond, only three hourglasses are applied in our network. For guidewire and other
medical instruments, there is no complex spatial relationships need to learn, so
only three hourglasses are applied to reduce the inference time.

Supervised-Attention Module: Our attention module is similar to conven-
tional soft attention in [12]. Following the output feature map of each hourglass,
two 3 × 3 and a 1× 1 convolutional layers are applied to generate the attention
map. Then the attention map is applied to the feature map which generates
it, as shown in Fig. 3. In general, attention mechanism in CNN is used to add a
non-linear operation in feature extraction. Since there is no supervision to atten-
tion modules, the attention maps learned by the network may not be the results
we want. Especially in the heatmap regression, the attention map is supposed
to pay more attention around the keypoints, however, because of the pixel-wise
distribution of the heatmap is imbalanced, the gradient is dominated by the
majority background pixels. As a result, the attention around the keypoints is
suppressed, and the focus of attention shifts to the background.

After giving the ground truths to attention maps, SA-hourglass network can
be regarded as a multi-task learning network. We propose two methods to gener-
ate the ground truth of the attention maps: (1) the same as the ground truth of
heatmaps but using a larger Gaussian kernel; (2) additional segmentation labels
after several Gaussian filtering. Demonstrations are shown in Fig. 2. Mean-square
error (MSE) loss is used in both the attention part and the hourglass part:
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loss =
1

wh
(

w∑

x=1

h∑

y=1

(S(x, y) − S∗(x, y))2 + λ

w∑

x=1

h∑

y=1

(A(x, y) − A∗(x, y))2) (1)

In this equation, S ∈ R
w∗h and A ∈ R

w∗h are the predictions of heatmaps and
attention maps respectively. S∗ ∈ R

w∗h and A∗ ∈ R
w∗h are the ground truths

of heatmaps and attention maps respectively. λ is for balancing the influence of
both loss terms

3 Experimental Results

3.1 Datasets

Two datasets are made to validate our post-processing algorithm and SA-
hourglass network respectively. All the images in the two datasets are from
in-vivo PCI. And a public dataset is applied to verify the generalization of our
SA-hourglass.

Dataset1 consists of 1238 fluoroscopy images with a size of 512*512 (each
image contains only one guidewire). All images are randomly divided into the
training set (653 images) and the testing set (585 images). We manually label
each guidewire’s bounding box, segmentation label, and two endpoints’ positions.

Dataset2 consists of 10 in-vivo fluoroscopy sequences, with a total of 367
images with a size of 512*512 (contain 609 guidewires in all). Only the bounding
box of each guidewire is manually labeled. It should be pointed out that there
is no duplicate image between Dataset1 and Dataset2.

The Retinal Microsurgery (RM) dataset [6] contains three video sequences
with 1171 images, each with a resolution of 640*480 pixels. Each image contains
a single instrument with 4 annotated joints (start shaft, end shaft, left tip and
right tip). Analogously to [6], the first 50% of all three sequences is for training
and the rest is for testing.

3.2 Implementation Details

For post-processing algorithm, we set σIOU to 0.3, thH to 0.3, thL to 0.01. These
two thresholds are obtained through experiments, and they are not difficult to
find. We suggest that thH should not exceed 0.5 and thL should not exceed 0.1.
For SA-hourglass, in data augmentation, random flip, random rotation [−20◦,
20◦], random grayscale adjustment [−20, 20] and random contrast ratio [0.8, 1.2]
are adopted for Dataset1, while only random rotation [−10◦, 10◦] is adopted
for RM dataset. The sigma of Gaussian used in the heatmap’s ground truth is
3 for Dataset1 and 7 for RM dataset. λ in loss function is 0.5. The network
is implemented using Tensorflow, and for optimization, rmsprop optimizer is
applied with a learning rate of 2.5e−4 and batch size of 4. Training takes about
13 h on an NVIDIA Titan XP for 500 epochs.
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3.3 Detection Experiments

Evaluation Metric: The evaluation metric used in detection experiments is
simple: to count the number of true positives (correct), false positives and false
negatives (miss) in all frames in test sequences. The correct is defined as the
S-IOU score between the detection result and the ground truth exceeds 0.3.

Results: YOLOv3 detector with and without post-processing algorithm are
compared in the experiments. The detector has been trained by Dataset1, and
Dataset2 is used for evaluation. As shown in Table 1, the results illustrate that
the YOLOv3 detector alone works well, but problems remain. And the introduc-
tion of our algorithm can significantly reduce the number of false positives and
misses in the outputs. From the results, we can also see that it is tough for us
to set a single threshold for the detector.

Table 1. Detection results on Dataset2

Detector Correct Miss False positive

YOLO with post-processing
(thH = 0.3, thL = 0.01)

604 5 1

YOLO without post-processing
(threshold=0.1)

580 29 26

YOLO without post-processing
(threshold=0.3)

522 87 6

YOLO without post-processing
(threshold=0.01)

608 1 246

3.4 Localization Experiments

Evaluation Metric: Percentage of Correct Keypoints (PCK) metric is used
to measure the localization results. PCK reports the percentage of localization
results that fall within a distance of the ground truth.

Results: Two state-of-the-art methods on surgical tool keypoint localization are
applied for comparison: CSL [7] and in SRPEI [5]. In all, five models are evalu-
ated on both Dataset1 and RM dataset: (1) CSL, (2) SRPEI, (3) Stacked hour-
glass (3-stack), (4) SA-hourglass with segmentation attention, (5) SA-hourglass
with keypoint attention. The results are illustrated in Fig. 4.

From the results, we can see that stacked hourglass’s accuracy is significantly
improved after SA modules are added (become SA-hourglass). We attribute this
improvement to the idea of coarse-to-fine implicitly used in SA-hourglass. Our
SA module is designed to generate the coarse attention maps which can eliminate
many useless areas of the input. Therefore, we can get more precise results by
using a small sigma of Gaussian in the ground truth of output heatmaps. SA
module can also be seen as another intermediate supervision with special usage.
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Fig. 4. Average PCK of all keypoints of PCI guidewires (upper left) and RM instru-
ments (upper right). (below) Some localization examples, yellow and green points rep-
resent the ground truth and the localization result respectively (Color figure online)

Two kinds of SA-hourglass both achieve the state-of-the-art localization
results on both datasets. SA-hourglass with keypoint attention performs best on
Dataset1, reaching an accuracy of 96.24% (for threshold = 3), and SA-hourglass
with segmentation attention performs best on RM Dataset, reaching an accu-
racy of 94.82% (for threshold = 10). Besides, the average inference time of our
SA-hourglass is about 0.05 s, which fully meets the real-time requirement of flu-
oroscopy images (8FPS) after adding the detection time.

4 Conclusion

We propose a two-stage framework to localize the guidewire endpoints in real-
time fluoroscopy or a fluoroscopy video. For the detection stage, a YOLOv3
detector is applied as a proposal mechanism, and a post-processing algorithm
is introduced to refine the bounding boxes produced by the detector. For the
localization stage, an SA-hourglass is designed and achieves the state-of-the-
art localization results on two datasets. Our framework could be applied to the
localization task of other small objects in medical images. As for larger objects,
the SA-hourglass network could be directly used without detection stage.
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