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Abstract—The ability to accurately recognize elementary
surgical gestures is a stepping stone to automated surgical as-
sessment and surgical training. In this paper, a long short-term
memory (LSTM) recurrent neural network is applied to the task
of recognizing six typical manipulations in percutaneous coro-
nary intervention (PCI). The manipulation mentioned above is
referring to the atomic surgical operation, also called surgeme
in many research. Instead of using the video data or kinematic
data of surgical instruments, we propose to use the kinematic
data of the operator’s hand acquired by our wearable data
glove to recognize the manipulations. To establish a baseline
for comparison, a method based on Hidden Markov Model
(HMM) is applied because HMM is frequently used in the tasks
of surgical sequence learning. Two cross-validation schemes are
used in our experiments, they both illustrate that our LSTM-
based method far outperforms the HMM-based method. To our
knowledge, this is the first paper to apply the LSTM recurrent
neural network in the field of PCI.

I. INTRODUCTION

Recognition of surgical manipulations is an important
prerequisite for some higher-level surgical tasks, such as
objective assessment of surgical skills and surgical training.
For percutaneous coronary intervention (PCI), in which sur-
geons need to manipulate guidewires in fragile blood vessels,
although the surgeon’s manipulations on the guidewire only
have two degrees of freedom, complex tool-tissue interac-
tions still require the surgeon to undergo more hours of
training to acquire dexterous surgery skills. Because of the
complexity of PCI manipulations, as the prerequisite of some
high-level tasks, recognition of surgeon’s manipulations in
real time is of great significance. It can not only help us
better understand the action intention of the surgeon during
the surgery [12], but also provide targeted feedback to the
novice in time during the training [2]. It can also help design
the transmission structure of the PCI surgical robot [1].

Specifically, there are six types of manipulation applied to
the guidewire: (1) Advancement (AV), (2) Retracement (RT),
(3) Rotation Clockwise (RC), (4) Rotation Counterclockwise
(RCC), (5) Advancement and Rotation Clockwise (ARC),
(6) Advancement and Rotation Counterclockwise (ARCC).
There is no Retracement and Rotation Clockwise or Retrace-
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ment and Rotation Counterclockwise because these two types
of manipulation are unnecessary.

From the perspective of data acquisition, the most straight-
forward way is to place a positioning sensor on each surgical
instrument, then manipulations can be recognized through
the trajectory of the surgical instruments. However, because
of the long and thin structure of the guidewire, it is impossi-
ble to attach any sensor to the guidewire. Hence, hand motion
data is proposed to be used and there are three reasons for
this. First, the type of manipulation can be recognized by
observing the hand and fingers movements. Second, hand
motion data can be easily acquired by the sensors fixed on
the wearable glove. Third, there is almost no interference to
the surgery process.

The recognition task is actually a sequence labeling task,
so the recognition model to be used must have the ability to
learn the time dependence within the time series. Up to now,
the recognition models used in most of the related works
are based on various variants of Hidden Markov Model
(HMM), in which each surgical process is simplified into
a Markov process. However, this simplification is actually
inappropriate, and as a result, the recognition accuracy of
the HMM-based methods will decrease when the sample
diversity increases.

In this paper, a long short-term memory (LSTM)-based
method is proposed to recognize PCI manipulations. This
is the first time to introduce the LSTM-based method into
the field of PCI. We compare our LSTM-based method
with the conventional HMM-based recognition method, and
find that our LSTM-based method outperforms the HMM-
based method when the number of samples is relatively
abundant. This means that the surgery process should not
be simplified as a simple Markov process, and our LSTM
network can better learn the complex time correlation during
the manipulation.

II. RELATED WORK
A. LSTM

LSTM was first introduced in [3] as an improved archi-
tecture of the recurrent neural network (RNN) for sequence
learning. Unlike the traditional RNN, LSTM can address the
vanishing gradient problem so that the LSTM network is easy
to train and suitable to learn long-term time dependencies.
Since the original LSTM was introduced, several variants
called modern LSTM have been proposed, including adding
forget gates [4] and adding peephole connections [5] to the
original LSTM cell. In recent years, methods based on LSTM
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have achieved state-of-the-art results in a wide range of
supervised and unsupervised machine learning tasks [6].

B. Surgical Sequence Learning

There are very few researches aim to recognize surgical
manipulations using the segmented time series. C.E.Reiley et
al. [7] used several statistical models to recognize the gesture
in suturing surgery performed by the da Vinci system in order
to verify the applicability of the statistical models when data
variability increased. L.Zappella et al. [8] also used a variety
of methods to recognize surgical gestures from video data
and kinematic data, which in order to prove the combination
of both kinematic and video data outperformed any other
algorithm based on one type of data alone. Our previous
work [9] used an HMM framework with a Gaussian mix-
ture model (GMM) as continuous observations to recognize
manipulations using the same segmented sequences.

Most researches on surgical sequence learning mainly
focus on two tasks: workflow segmentation and surgical skill
evaluation. Prior work in workflow segmentation based on
variants of HMMs [10] and conditional random field (CRF)
[11]. In recent years, several research studies have used the
LSTM networks [12] achieving the state-of-the-art segmen-
tation results. As for surgical skill evaluation, variants of
HMMs are widely used in most of the researches. N.Ahmidi
et al. [13] used discrete HMM to classify seven surgical tasks
and two levels of the surgical skills in functional endoscopic
sinus surgery. J.Leong et al. [14] used HMM with GMM to
classify skill levels in laparoscopic surgery. The differences
between these surgical skill evaluation researches are mainly
reflected in the types of surgery and the data sources used.

III. DATASET
A. Data Glove

Our modified data glove is used to acquire the hand kine-
matic data, the glove is shown in Fig. 1. This glove contains
seven sensors, including three 6-DOF electromagnetic (EM)
sensors (two of them fixed on the forefinger tip and thumb
tip respectively, one put on the wrist), and four fiber-optic
sensors (FOS) (placed in four knuckles of the thumb and
forefinger). As shown in Fig. 1, the glove only acquires the
kinematic data of thumb and forefinger. This is because the
rest of the fingers are useless during the PCIL.

Fig. 1. (left) The prototype of modified data glove. (right) the position of
fiber-optic sensors and EM sensors.

Each of the 6-DOF EM sensors can record the data of its
three-dimensional position and Euler angles, so from these
EM sensors, the posture of the wrist and two fingertips can be
fully acquired. Each of the fiber-optic sensors can detect the
degree of bend of each knuckle, the more bent the knuckle
is, the larger the output value will be. So from the fiber-
optic sensors, the shape of the fingers can be inferred. Four
fiber-optic sensors output 4-dimensional data, and three EM
sensors output 18-dimensional data, so the dimension of all
the time series samples in the dataset is 22. Besides, the
sampling frequency of our glove is approximately 25 Hz.

B. Acquisition Process

The data acquisition setup is shown in Fig. 2. Eight
operators’ data (2 experts, 6 novices) is collected in our
experiments. Each operator wears our modified data glove on
his right hand and performs all six types of the manipulations
on the platform of our 3D vascular model. In each data acqui-
sition process, the operator can only consistently complete
the corresponding manipulation, cannot pause or mix other
manipulations. Each type of manipulations is repeated 10 to
20 times for each operator. All the manipulations must be
carried out by the thumb and forefinger of the right hand. In
order to increase the diversity of the data, there is no time
limit or action limit in our acquisition process.

Recording software]

3D vascular model |

EM tracking
system

Fig. 2. The experimental setup
C. Data Processing

After acquiring the original sequential data, some process-
ing is needed.

1) Purify the data: Useless actions are inevitably recorded
at the beginning and the end of the original data. All these
useless data need to be deleted to ensure the purity of data.

2) Noise filtering: A median filter is used to eliminate the
noise of the acquired data.

3) Crop data: The duration of data varies between 2 to 9
seconds because there is no time limit. However, the average
duration of each manipulation during the surgery is about
1 second, it is meaningless to recognize the manipulations
with long durations. So the original data is cropped and the
average duration of the cropped results is at about 1 second.
According to the sampling frequency of 25Hz, the average
length of all new samples is about 25 (range from 13 to
40). To verify the robustness of classifier we still keep the
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sequences of different lengths. It’s worth noting that one
extra advantage of cropping samples is that the number of
samples can be greatly increased, which is very suitable for
LSTM training.

Finally, kinematic data of all six manipulations performed
by eight operators has been acquired, and after the data
processing, the dataset contains a total of 2979 available
samples.

IV. METHODS
A. LSTM

LSTM networks have been applied successfully to many
diverse sequence-modeling tasks. Because of its powerful
sequence learning ability, LSTM is suitable for the task of
sequence labeling. Our proposed LSTM network use the
memory cell with forget gates [4] but without peephole con-
nections. A schematic diagram of the LSTM cell architecture
is shown in Fig. 3.
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Fig. 3. Schematic of an LSTM cell.

The following equations give the update for each cell at a
given timestep.

iy = o(Wi Xy + Ushy 1+ b;) (1)
fo=0(WsXy +Ushe 1+ by) 2
0 = o(Wo Xy + Ushy 1+ bo) (3)
gt = tanh(WyX¢ + Ughy 1+ by) 4
st = gtOir + st 10 [ (5)

hy = tanh(s;)®o (6)

In these equations, X, is the input, i;, f;, and o, represent
the value of the input, forget, and output gates respectively.
g: represents the update value to the hidden state, s; is the
current hidden state. h; is the output of the network. ¢ stands
for an element-wise application of the sigmoid function, and
©® is the Hadamard (element-wise) product.

The LSTM network used in our experiments only has one
hidden layer, and the network architecture unrolled over time
is shown in Fig. 4. Although our LSTM network has output
at every timestep, only the output at the final timestep hrp
is used as network output. Following the final output hrp,
a fully connected layer is used and the output of the layer
is a 6-D vector, each dimension represents a category of
manipulations. The category corresponding to the dimension
with the largest value is the recognition result of the input
sequence. Categorical cross entropy loss is used as the loss
function to train the network.

Fig. 4. Schematic of an LSTM network unrolled over time.

B. Cross-Validation

Two cross-validation schemes are used in our experiments.
The first one is the 5-Fold cross-validation scheme. The
dataset is randomly divided into 5 folds. Each fold is used
for testing once, while the remaining 4 folds are used in
training. In order to ensure the dispersity of samples, first,
all samples are divided into 30 small folds (samples of each
manipulation are divided into 5 small folds), then these 30
small folds are combined into five folds. This way ensures
that the number of samples of each manipulation in each fold
is consistent.

Noting that great degree of similarity in a given operator’s
set of samples of a given manipulation, in order to test the
ability of the classifiers to generalize to new operators, a
leave one user out (LOUO) cross-validation scheme is also
applied. Each operator’s samples are used for testing once,
while the remaining samples are used for training. This cross-
validation scheme is more indicative of the generalization
and robustness of the method.

V. EXPERIMENTS
A. Implementation Details

We use a Keras implementation of the LSTM network.
Since we don’t have a very large number of training samples,
as few parameters as possible should be used in case of
overfitting. A one-layer architecture with 64 hidden nodes is
used in our experiments, we use the Adam optimizer with
a batch size of 32, dropout of 0.2. The LSTM network is
trained for 500 epoch with the learning rate of 0.01.

The HMM-based method is followed the HMM framework
described in our previous work [9] with GMM as continu-
ous observations. The hyperparameters of the HMM-based
method are optimized using random search.

B. 5-Fold Cross-validation

The dataset is divided into 5 equal folds as introduced
before. Our LSTM network and the HMM-based method are
validated using the same folds to ensure the experimental
conditions are consistent. All test results are summarized as
a confusion matrix. Confusion matrices of the HMM-based
method and LSTM-based method are shown in Fig. 5 (a),(b).

From the results, the average recognition accuracy of the
HMM-based method is 92.72%. Our LSTM-based method
outperforms the HMM-based method, achieving an average
recognition accuracy of 99.13%. From the confusion matri-
ces, we find that the HMM-based method is occasionally
confused between the RC and RCC, and between the ARC
and ARCC, while our LSTM network almost recognizes all
kinds of manipulations correctly.
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HMM 5-Fold confusion matrix

LSTM 5-Fold confusion matrix
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Fig. 5.

C. LOUO Cross-validation

To verify the generalization performance of two methods,
a leave one user out (LOUO) cross-validation scheme is used.
Confusion matrices of the HMM-based method and LSTM-
based method are shown in Fig. 5 (c),(d).

The average recognition accuracy of the HMM-based
method is 87.06%, and the average recognition accuracy of
our LSTM-based method is 95.97%, still significantly better
than the HMM-based method. The results prove that our
method has better generalization performance.

Clearly the results in LOUO cross-validation scheme are
overall worse than the results in 5-Fold cross-validation
scheme. This phenomenon is reasonable. Because everyone
has his own fixed mode of manipulation, so when an operator
repeats a manipulation several times, the collected data
is very similar. Therefore, the 5-Fold scheme can ensure
the sample distributions of the training set and testing set
are consistent. For each sample in the testing set, we can
find similar samples in the training set. By contrast, the
LOUO scheme cannot guarantee the consistency of sample
distribution, as a result, the recognition accuracy in LOUO
scheme is worse than the accuracy in the 5-Fold scheme.

Even though the results are bound to get worse, we can
observe that, compared with the results in the 5-Fold scheme,
the average accuracy of the HMM-based method decreases
more than our LSTM-based method, which illustrates the
robustness of our LSTM-based method.

VI. CONCLUSIONS

In this paper, an LSTM-based method is proposed for
endovascular manipulations recognition using the kinematic
data of the operator’s hand. In order to verify the superiority
of the method, we compare our method with the conventional
HMM-based method. The experimental results show that our
method far outperforms the HMM-based method in both
recognition accuracy and model robustness. It can also be
explained that simplifying the surgical process into a Markov
process is not an appropriate approach, but a compromise in
the case of insufficient data. If having enough data to train the
model, obviously LSTM network can build a better model
of the surgical process than HMM.
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