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Abstract Dialogue state tracking (DST) leverages dialogue information to predict dialogues states which are generally

represented as slot-value pairs. However, previous work usually has limitations to efficiently predict values due to the

lack of a powerful strategy for generating values from both the dialogue history and the predefined values. By predicting

values from the predefined value set, previous discriminative DST methods are difficult to handle unknown values. Previous

generative DST methods determine values based on mentions in the dialogue history, which makes it difficult for them

to handle uncovered and non-pointable mentions. Besides, existing generative DST methods usually ignore the unlabeled

instances and suffer from the label noise problem, which limits the generation of mentions and eventually hurts performance.

In this paper, we propose a unified shared-private network (USPN) to generate values from both the dialogue history and

the predefined values through a unified strategy. Specifically, USPN uses an encoder to construct a complete generative

space for each slot and to discern shared information between slots through a shared-private architecture. Then, our model

predicts values from the generative space through a shared-private decoder. We further utilize reinforcement learning to

alleviate the label noise problem by learning indirect supervision from semantic relations between conversational words and

predefined slot-value pairs. Experimental results on three public datasets show the effectiveness of USPN by outperforming

state-of-the-art baselines in both supervised and unsupervised DST tasks.
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1 Introduction

Recently, task-oriented dialogue systems [1, 2] have

attracted increasing attention due to their application

for assisting users to accomplish tasks through conver-

sational interactions. Dialogue state tracking (DST)

is an essential component in task-oriented dialogue sys-

tems, which provides dialogue states for dialogue policy

decision and knowledge retrieval. Given dialogue histo-

ries, DST aims to predict dialogue states informed by

a user, which are represented as slot-value pairs [3, 4].

As shown in Fig.1, for each slot, previous work [3, 4]

usually predicts values from the dialogue history or

the predefined values. By predicting values from

the predefined value set, previous discriminative DST

methods [4, 5] are difficult to handle unknown values that

are not defined in the set. This results in a loss of scala-

bility because 1) such a predefined set is not scalable

when the value set is dynamic (e.g., new restaurant

opened) and unbounded (e.g., date, time), and 2) the

entire predefined set is usually not exposed to us and

only the values in the training set are available. Previ-
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(a) (b) 

Slot Value Set

price moderate, cheap, expensive, none, don’t care

food seafood, barbecue, Chinese, German, …

area north, west, east, south, center, …

request phone number, address, name, price, …

User: What is the phone number and area?

State: price range = expensive; food = Chinese;

request = phone number; request = area

System: It is in the south area and the phone number is 012.

User: I am looking for an upscale Chinese restaurant.

State: price range = expensive; food = Chinese

System: The good luck Chinese food takeaway is an expensive

Chinese restaurant.

Fig.1. Example of dialogue state tracking. (a) Dialogue. (b) Predefined value set. For each slot, previous generative work predicts
values by extracting mentions from (a) the dialogue. The mentions are underlined. Previous discriminative work determines values
based on (b) the predefined value set.

ous generative DST methods [3, 6] extract mentions from

the dialogue history as values, which makes it difficult

for them to handle uncovered and non-pointable men-

tions. Uncovered mentions are mentions that are not

found due to the lexical diversity. For example, the

value “expensive” in Fig.1 has many uncovered men-

tions, such as “upscale” and “pricey”. Non-pointable

mentions usually are implied in the dialogue. For exam-

ple, the “cheap” value is implied in the utterance “I am

broke”. Therefore, previous generative DST methods

are also deficient in predicting dialogue states.

Furthermore, current generative DST methods of-

ten use predefined values to match mentions in the dia-

logue as labels. However, uncovered mentions, such as

“upscale” and “pricey”, usually result in unlabeled in-

stances because they are not in the predefined value set.

We refer to this problem as “label noise”, which limits

the learning of uncovered mentions. Existing methods

usually ignore this problem, which hurts performance.

In this paper, we propose a unified shared-private

network (USPN) that adopts a unified strategy to gene-

rate values from both the dialogue history and the pre-

defined values to solve the aforementioned problems. In

our work, we use the available values in the training set

as the predefined values. Specifically, USPN uses an

encoder to transform the dialogue history and the pre-

defined values into a complete generative space for each

slot and to discern the shared information between slots

through a shared-private architecture. Then, our model

predicts values from the generative space through a

shared-private decoder. For the label noise problem, we

utilize reinforcement learning to learn indirect super-

vision from semantic relations between conversational

words and predefined slot-value pairs, which encourages

USPN to generate mentions even without labels.

Experiments on three public datasets confirm the ef-

fectiveness of our method. In addition, we demonstrate

that USPN achieves excellent performance on zero-shot

DST and unsupervised DST tasks.

In summary, our contributions are three folds.

• We propose a unified shared-private network,

which uses a unified strategy and a shared-private ar-

chitecture to track dialogue states.

• We use reinforcement learning to address the la-

bel noise problem by utilizing semantic relations. To

the best of our knowledge, our method is the first to

address the label noise problem in DST.

• Experimental results on three public datasets

show that our method achieves state-of-the-art perfor-

mance.

2 Related Work

Our work is related to two lines: dialogue state

tracking and reinforcement learning.

2.1 Dialogue State Tracking

We classify DST methods into three categories:

discriminative methods, generative methods, and oth-

ers.

2.1.1 Discriminative DST Methods

Discriminative DST methods simplify the DST task

to a classification problem that uses the predefined val-

ues as categories for each slot. Separate discriminative

DST work [7, 8] updates the joint dialogue state based on

the turn-level state, which is generated by a spoken lan-

guage understanding module. Joint DST methods [9, 10]

use hand-crafted dictionaries to replace conversational

mentions with generic labels, allowing them to extract

effective n-gram features for classification. End-to-end
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DST methods [4, 5, 11] use neural networks to learn fea-

tures from the word embedding to avoid using the hand-

craft dictionary. NBT [5] is the first end-to-end discrimi-

native DST model that uses recurrent and convolution

neural networks. GLAD [4] extracts local and global

features to address rare slot-value pairs. StateNet [11]

shares parameters across all slots to increase the uni-

versality of their model. EBT [12] uses an energy-based

model to learn multiple relations between slots.

Different from these methods that only predict val-

ues from the predefined value set, our method uses a

unified strategy to predict from a complete generative

space, which can handle unknown values.

2.1.2 Generative DST Methods

Generative DST methods extract mentions from the

dialogue history as values, which enables them with the

capacity to handle unknown values. Scalable-DST [13]

derives candidate values from the dialogue, and scores

them with binary classifications. PtrNet [3] uses the

pointer network to select continuous text spans from the

dialogue as values. BERT-DST [14] uses the pre-trained

model to represent the dialogue, which can provide ef-

fective contextualized information for DST. COMER [6]

proposes hierarchical sequence generation to separately

generate slots and values, which can reduce computa-

tional complexity.

Unlike these methods, which only extract mentions

from the dialogues, our method proposes a unified strat-

egy to handle uncovered and non-pointable mentions.

Besides, these methods suffer from the label noise prob-

lem. To the best of our knowledge, our method is the

first to address this problem in DST.

2.1.3 Others

Other DST methods mainly focus on transfer learn-

ing and unsupervised learning in DST. Previous work

in [15–18] transfers state trackers from related domains

to new domains. XL-NBT [19] handles cross-lingual

DST. Previous work in [20] handles zero-shot DST with

unseen values through capturing relevant information

from the dialogue and other slots. MF-SLU [21] utilizes

extra knowledge to handle an unsupervised slot-filling

task. SEDST [22] enables the unsupervised DST task

with a two-stage copy mechanism, which extracts key-

words as dialogue states.

Different from previous work [15–22], we use semantic

relations between conversational words and predefined

slot-value pairs to target the unsupervised DST task.

2.2 Reinforcement Learning

In our work, we use a policy gradient reinforcement

learning algorithm [23] to integrate semantic relations

into a neural model. Closely related work is reinforce-

ment learning [23, 24], which attempts to optimize the

agent by interacting with an environment. The work

in [23] explores reinforcement learning in dialog sys-

tems with latent variables. The work in [24] proposes a

graph neural network to model the dialogue state and

uses deep Q-networks in dialogue policy learning.

3 Our Method

In this section, we firstly describe the definition of

the DST task. Then, we describe the architecture of our

unified shared-private network. Finally, we describe the

calculation of semantic relations and our reinforcement

learning algorithm.

3.1 Definition

3.1.1 Dialogue and Value

Given a dialogue between a user (u) and a

system (s), we represent the k-turned dialogue as

{(u1, s1), (u2, s2), ..., (uk, sk)}. At the t-th turn of the

dialogue, we use the last system response st−1 and the

current user utterance ut as the dialogue history of this

turn. Following the previous work [3, 4], the system re-

sponse is replaced with system actions. In addition, we

represent the predefined values as v, where vij refers to

the j-th value in the i-th slot.

3.1.2 Dialogue State Tracking

We define the DST task as predicting the most

likely dialogue state yt according to the dialogue his-

tory (st−1, ut) and predefined values (v). Formally, the

task is formulated as: yt = argmax p(yt|ut, st−1, v).

3.2 Unified Shared-Private Network

The architecture of USPN is shown in Fig.2. The

shared-private architecture fuses the shared features be-

tween slots into the private features. Specifically, the

shared-private encoders transform the current user ut-

terance, the last system response, and the predefined

values into slot-specific hidden states. These hidden

states constitute a generative space (M) for each slot,

which bridges the representation gap between conversa-

tional words and predefined values consisting of multi-

ple words. For each slot, the shared-private decoder se-

lectively generates predefined values or conversational
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Fig.2. Architecture of USPN. The shared-private encoders transform input sequences into a generative space for each slot. The shared-
private decoder generates values from these spaces. Furthermore, USPN uses reinforcement learning to integrate indirect supervision
based on semantic relations.

words step by step with the copy mechanism [25]. In

Fig.2, Lrl represents the loss of reinforcement learning.

3.2.1 Shared-Private Encoder

The encoder is in a shared-private architecture that

follows previous work [4, 26]. However, their encoders

extract features for discriminators. Our shared-private

encoder transforms the input sequence into word-level

hidden states and an overall state, which constitutes

the complete generative space.

Firstly, a shared BiLSTM [27] and a private BiL-

STM encode the input sequence to capture temporal

relations within the sequence. The shared BiLSTM ex-

tracts shared features between slots, and the private

BiLSTM extracts private features of slots. Specifically,

the shared BiLSTM uses an embedding function femb to

map tokens to vectors and reads the vectors forwardly

and backwardly by applying the recurrent unit to pro-

duce shared context-sensitive hidden states hs:

hs
i = BiLSTM(femb(xi),h

s
i−1),

where hs
i ∈ Rdrnn is the hidden state of the i-th word in

sequence x. drnn is the hidden dimension. In addition,

the private BiLSTM gets the private hidden states hp

through another recurrent unit.

Then, we fuse the shared hidden states and the pri-

vate hidden states via a gate α.

h = αhs + (1− α)hp,

where h ∈ Rl×drnn is the fused hidden states and l is the

length of the sequence. α ∈ R is a learnable parameter

for each slot.

Finally, the encoder produces an overall hidden

state c through shared-private self-attention [4, 28]. The

shared self-attention is calculated as below:

a = softmax(Wh + b),

cs =
∑l

i=1
aihi,

where cs ∈ Rdrnn is the shared overall hidden state.

W ∈ R1×drnn and b ∈ R are trainable parameters. The

private overall hidden state cp is calculated as the same

as cs with other trainable matrices. We fuse the two

hidden states (cs, cp) via gate α: c = αcs + (1− α)cp.

Briefly, the encode extracts shared-private features to

encode each sequence into slot-specific states (h, c).
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As shown in Fig.2, we use three shared-private en-

coders to encode the current user utterance, the last

system actions, and the predefined values. The hid-

den states of the user utterance are represented as

(huser, cuser). For the last system actions, following

the previous work [3, 4], we represent each system ac-

tion as a sequence through connecting its words. Then,

we encode each system action separately. The over-

all hidden states of these system actions are repre-

sented as csys ∈ Rlsys×drnn , where lsys is the number

of system actions. Besides, we represent every prede-

fined value as a sequence and obtain the overall hid-

den states cv ∈ Rlv×drnn of all predefined values, where

lv is the number of predefined values. For the special

values “don’t care” and “none”, the previous genera-

tive models [3, 14] usually design a separate classifier for

them, which may propagate errors to subsequent mod-

ules. To avoid this issue, our model encodes special

values to hidden states as the same with other values.

After encoding, the generative space (M) is com-

posed of the word-level hidden states (huser) of the user

utterance, the overall hidden states (csys) of system ac-

tions, and the overall hidden states (cv) of the pre-

defined values. That is, we combine the single-word

conversational words and the multi-word values in the

generative space, which allows our model to predict val-

ues from the two texts through a unified strategy.

In addition, we use an interaction between the sys-

tem actions csys and the user utterance cuser to model

the cross-turn dialogue information:

a = softmax(csys(cuser)T),

csu =
∑lsys

i=1
aic

sys
i ,

where csu ∈ Rdrnn is a representation of the cross-turn

dialogue information.

3.2.2 Shared-Private Decoder

We use a shared-private architecture to enhance the

decoder. For each slot, we concatenate the two hidden

states (cuser, csu) as the initial hidden state of the de-

coder. The shared LSTM decoder recursively generates

the shared hidden state ns
i through the last output to-

ken yi−1 and the last hidden state ns
i−1 as below:

ns
i = LSTM(ns

i−1, [femb(yi−1); zi]),

where zi is calculated by the attention mechanism [29]

on the user utterance and the system actions. We use

a private LSTM decoder for each slot to generate the

private hidden state np
i . The fused hidden state ni

is calculated as: ni = βns
i + (1 − β)np

i , where β is a

trainable parameter.

Single-Value Slot. For the slot that has a target

value in an instance, our decoder predicts the value of

this slot with the following distribution:

P (yi|ni,M) = softmax(M(ni)
T),

where M is the generative space of the slot.

P (yi|ni,M) is the probability on the generative space.

In the first step of decoding each value, if the decoder

generates a predefined value, it stops the decoding pro-

cess and outputs this value. If it copies a word from the

dialogue in the first step, it continues decoding until it

generates the entire mention. That is, the first decod-

ing step determines the prediction mode: copying from

the dialogue or predicting from the predefined values.

Multi-Value Slot. For the slot that has multi-

ple target values in an instance, due to the coverage

problem [30] in sequence generation [31], it is difficult to

generate all values sequentially. Therefore, we predict

multiple words or values in the first step to alleviate

this problem.

P (y0|n0,M) = sigmoid(M(n0)T).

In the first step, we take the words and values with a

high probability (e.g., > 0.5) as values for the slot. The

copy mechanism copies possible words in the first step.

For conversational mentions, we use their indexes in

the dialogue as labels. For values that cannot be copied

from the dialogue, their labels are indexes in the prede-

fined values. We utilize a cross-entropy loss Lce to op-

timize probability (P (yi|ni,M)). After decoding the

turn-level dialogue state, USPN uses a rule to obtain

the joint dialogue state; if the model does not output

a new value in the current turn, the joint state inherits

the value of the previous dialogue state; otherwise, it

replaces the old value with the new one.

3.3 Reinforcement Learning

Previous generative DST methods often use the pre-

defined values to match mentions in the dialogue as

labels, which causes unlabeled training instances due

to uncovered mentions. In our work, we use seman-

tic relations between conversational words and prede-

fined slot-value pairs as indirect supervision to solve the

problem. In order to learn these non-differentiable se-

mantic relations, we regard the generation of mentions
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as sequential decision-making process. For each men-

tion, this algorithm treats every conversational word as

an action step and its policy gradient is:

∇θJ(θ) = E
(∑T

i=0
Ri∇θ logP (yi|ni,M)

)
,

where T is the number of steps and θ is the trainable

parameters of USPN. Ri is the expected discounted re-

turn as Ri =
∑T−k
k=0 γ

kri+k, where γk ∈ [0, 1] is the

discounting factor. r is the reward for each step.

Sampling Strategy. In general reinforcement learn-

ing, the inefficient sampling strategy usually hinders

the learning of good policies [32]. We utilize the nature

that the mentions should be continuous text spans in

the user utterance to alleviate this problem. For each

slot, we first sample a starting word according to the

probability on the user utterance. Next, we use the

subsequent words in the user utterance to construct

multiple mentions that start with the first word and

do not exceed the maximum length. In other words,

we recursively add the next word in the user utterance

to the starting word to obtain multiple text spans as

sampled candidate mentions.

Evaluation Setup. We propose two types of semantic

relations: the slot relation and the value relation. The

slot relation is the relation between the sampled text

span and the slot. The value relation is the relation be-

tween the sampled text span and predefined values in

the slot. As shown in Fig.2, when predicting a mention

for the slot “price”, the relations between the sampled

span “upscale” to the slot “price” and its predefined

values are calculated as the semantic relations. Since

the semantic relation of the span “upscale” is higher

than that of other text spans in the utterance, it is ef-

fective to encourage the generation of relevant mentions

through the semantic relations. The relation is mea-

sured by the cosine similarity of word embedding. For

multi-word values and multi-word text spans, we use

the average word embedding as their representation.

For stable evaluation, we average the top-10 scores

of semantic relations to set the reward as below:

r =

 e, target value,
sr × e, if sr > δ,
0, otherwise,

where sr is the average score. e is a hyper-parameter

to scale the reward. δ is a threshold. When the sam-

pled text span is exactly the target value, its reward

is e. When the average score of the span exceeds the

threshold, the reward is sr × e. The reward of other

cases and stop words is 0. For every step in the sam-

pled text span, we give an immediate reward τ . For

training the model, we propagate the gradient of the

span that achieves the highest reward.

4 Experiments

We list the research questions (RQ) that guide the

remainder of the paper.

• RQ1. What is the overall performance of our

method in dialogue state tracking?

• RQ2. What is the performance of our method in

datasets with many unknown values?

• RQ3. Can our method handle the zero-shot DST

task with unseen values?

• RQ4. Can our method handle the unsupervised

DST task through the indirect supervision of semantic

relations?

• RQ5. How much do the shared-private architec-

ture, the unified strategy, and the reinforcement learn-

ing help dialogue state tracking?

• RQ6. Does our model have better generation ca-

pabilities?

In the remainder of the section, we introduce the

datasets and baselines in Subsection 4.1 and Subsec-

tion 4.2. We describe evaluation metrics and imple-

mentation details in Subsection 4.3 and Subsection 4.4

respectively. The results and analysis are shown in Sub-

sections 4.5–4.10.

4.1 Datasets

We work with three public datasets: WoZ2 [10, 11],

DSTC2 [33] and bAbI [34]. Table 1 shows the statistics

of the three datasets. In this table, we list the num-

ber of the slot-value pairs and the size of the training,

validation, and test sets. The WoZ2 dataset is used for

finding restaurants. Customers use three single-value

slots and a multi-value slot to search for a restaurant

and request information about the restaurant. The slot

“request” is the multi-value slot. The DSTC2 dataset is

in the same domain as the WoZ2 dataset. The user ut-

terance in the DSTC2 dataset is from the output of an

automatic speech recognizer (ASR). Therefore, there

are many ASR errors in the user utterance. Follow-

ing the previous work [3, 14], on the DSTC2 dataset, our

model only uses the 1-best ASR hypothesis, which can

simplify the uncertainty of the DST task.

Since the WoZ2 and DSTC2 datasets do not define

unknown values, we regard API calls in task 5 of the
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Table 1. Dataset Statistics

Dataset Number of Slot-Value Pairs Size of Training Set Size of Validation Set Size of Test Set OOV Test

WoZ2 96 2 536 830 1 646 –

DSTC2 97 15 611 – 9 890 –

bAbI 14 2 789 2 756 2 808 2 779

bAbI dataset as the dialogue state with unknown val-

ues. The out-of-vocabulary (OOV) test set of the bAbI

dataset has many unknown values. As shown in Ta-

ble 1, there are 10 unknown values in the OOV test set.

However, for highly regular behaviors, the dialogues of

the bAbI dataset are very simple. To investigate the

effectiveness of models on complex dialogues with un-

known values, we simulate the unknown values based

on the WoZ2 dataset. We randomly select the values of

every slot in this dataset according to different propor-

tions and discard the training instances that contain

the selected unknown values. Note that the previous

work [3] only simulates unknown values from one slot,

while we select them equally from all slots. In the fol-

lowing DST tasks, we only use the available values in

the train set as the predefined values.

4.2 Baselines

The following studies are discriminative DST base-

lines. Delex [9] is a delexicalisation-based model. Delex-

SD [10] is the delexicalisation-based model with hand-

craft dictionaries. NBT-DNN [5] and NBT-CNN [5] are

two neural belief trackers that learn features from

the word embedding. GLAD [4] adopts the global-

locally self-attention encoder in the discriminator.

StateNet [11] is a shared match network.

The following work is the generative DST baseline.

Scalable-DST [13] is the model that drives candidate val-

ues to handle unknown values. PtrNet [3] utilizes the

pointer network in DST. BERT-DST [14] fine-tunes the

pointer network on BERT. COMER [6] is a model that

uses hierarchical sequence generation. SEDST [22] uses

a two-stage copy mechanism to extract keywords.

4.3 Evaluation Metrics

Joint goal accuracy [5] evaluates the accuracy of all

single-value slots. Request accuracy [5] evaluates the ac-

curacy of the slot “request”. On the bAbI dataset, the

accuracy of each slot is evaluated separately. Following

the previous generative work [3], we need an additional

dictionary to normalize mentions for fair evaluation.

4.4 Implementation Details

GloVe [35] and character n-gram embedding [36] are

the fixed word embedding. GloVe is also used to calcu-

late semantic relations. The loss is optimized by an

Adam [37] optimizer. The scaling ratio e is set to 5

without any adjustment. Other hyper-parameters are

obtained through a search on the validation set.

4.5 Supervised DST

We address RQ1 in this subsection. Table 2 shows

the results on the WoZ2 dataset. In this table, “Acc.”

represents the “accuracy”. The bold numbers are the

best performance. USPN achieves the state-of-the-art

joint goal accuracy of 90.3%, which improves upon the

previous performance by 1.4%. Even though there are

no unknown values in the dataset, USPN outperforms

all baselines. This is mainly due to the fact that our

model can effectively predict values from the complete

space through our shared-private model. Besides, we

find some unlabeled training instances in the WoZ2

dataset. Our reinforcement learning can handle unla-

beled instances through semantic relations to enhance

the generation ability of USPN. Even though BERT-

DST uses the pre-trained model, it simply relies on the

dialogue to generate values, which hinders the perfor-

mance due to non-pointable and uncovered mentions.

StateNet is a discriminative model that suffers the un-

labeled training instances. Note that the request ac-

curacy only evaluates the slot “request” that is simply

expressed, our model also achieves the state-of-the-art

performance, and pushes the accuracy to 97.5%.

Table 3 shows the results on the DSTC2 dataset. In

this table, the bold numbers are the best performance

compared with the generative DST baselines. Com-

pared with PtrNet, USPN improves the joint goal accu-

racy by 0.4%. USPN significantly outperforms BERT-

DST by 2.8%, even if BERT-DST adopts the pre-

defined model. The ASR errors in the DSTC2 dataset

add a lot of noise to the conversational mentions, which

hurts the performance of all generative DST methods.

It is important to emphasize that USPN is a gener-

ative model that usually generates values by copying
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mentions from the dialogue. In this way, USPN has

the generation ability to handle unknown values. Al-

though discriminative DST models sometimes achieve

a better accuracy, they cannot handle unknown values

widely existing in real-world dialogues. Besides, the

discriminative DST methods utilize n-best ASR hy-

potheses, while all generative DST methods only use

the 1-best ASR hypothesis without any confidence mea-

sure. USPN achieves a good request accuracy with

96.4%, which is the first generative model that can han-

dle this multi-value slot.

Table 2. Test Accuracies (%) on the WoZ2 Dataset

Model Joint Goal Accuracy Request Accuracy

Delex 70.8 87.1

Delex-SD 83.7 87.6

NBT-DNN 84.4 91.2

NBT-CNN 84.2 91.6

GLAD 88.5 97.3

StateNet 88.9 –

PtrNet 87.5 –

COMER 88.6 –

BERT-DST 88.8 –

USPN (ours) 90.3 97.5

Table 3. Test Accuracies (%) on the DSTC2 Dataset

Model Joint Goal Accuracy Request Accuracy

Delex 69.1 95.7

Delex-SD 72.9 95.7

NBT-DNN 72.6 96.4

NBT-CNN 73.4 96.5

GLAD 74.7 97.6

StateNet 75.5 –

Scalable-DST 70.3 –

PtrNet 72.1 –

BERT-DST 69.7 –

USPN (ours) 72.5 96.4

Table 4 shows the per-slot accuracies on the bAbI

dataset. In this table, the bold numbers are the best

performance in the OOV test set. USPN outperforms

PtrNet by 13.8% and 25.3% on the OOV test set with

unknown values respectively. The unified strategy and

the shared-private architecture significantly improve

the generation ability of the model, thus promoting the

generation of unknown values. Our model performs well

on the bAbI dataset because the dialogue of this dataset

has regular behaviors.

Table 4. Test Accuracies (%) on the bAbI Dataset

Model Slot Test OOV Test

PtrNet Food 100 86.2

Location 100 74.7

USPN (ours) Food 100 100.0

Location 100 100.0

4.6 Comparison on Simulated Datasets with

Unknown Values

In this subsection, we answer RQ2. Table 5 shows

the results on the simulated datasets with different pro-

portions of unknown values. The ratios of unknown

values are 5%, 25%, 45%, and 65% respectively. For

PtrNet+D, we use a dictionary to filter irrelevant words

generated by PtrNet. In this table, the bold numbers

are the best performance. USPN significantly outper-

forms other models by 2.8%, 10.0%, 17.5%, and 26.8%

on the joint goal accuracy respectively. These improve-

ments are mainly due to the proposed unified shared-

private network and the reinforcement learning. 1)

USPN generates values from the complete generative

space through the shared-private model, which extracts

the shared and private features for generating. 2) The

reinforcement learning gives high reward to relevant

mentions, thus encouraging the model to generate more

correct mentions. Even the proportion of unknown val-

ues is 25%, our model can still achieve a high joint goal

accuracy of 69.4%. All of these prove that USPN has an

excellent generation ability to handle unknown values.

Table 5. Test Accuracies (%) on the Simulated Datasets with Different Proportions of Unknown Values

Model Unknown Values (5%) Unknown Values (25%) Unknown Values (45%) Unknown Values (65%)

Joint Request Joint Request Joint Request Joint Request

NBT-DNN 81.1 94.7 55.1 94.4 32.6 76.3 18.9 69.9

NBT-CNN 81.8 96.5 56.6 94.7 35.1 76.5 18.0 69.7

GLAD 84.3 96.2 59.4 94.5 34.0 76.5 18.1 70.0

PtrNet 82.1 – 55.0 – 36.9 – 19.9 –

PtrNet+D 82.4 – 55.5 – 37.0 – 20.0 –

USPN (ours) 87.1 96.9 69.4 95.3 54.5 78.6 46.8 70.8
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Discriminative DST methods cannot handle un-

known values, which results in poor performance. Ptr-

Net uses a pointer network to model the dialogue con-

text and generate unknown values. However, in the

complex dialogue, PtrNet cannot capture appropriate

information for generating unknown values. It makes

the performance of PtrNet on these datasets sometimes

lower than that of discriminative DST models. With

the increase of unknown values, the improvement of

the joint goal accuracy of USPN becomes more. USPN

can extract robust information from both the dialogue

and the predefined values, which promotes the improve-

ment. Moreover, our method is suitable for all slots of

the joint goal.

On the request accuracy, USPN improves 0.4%,

0.6%, 2.1%, and 0.8% respectively. The improvement is

mainly due to the proposed shared-private architecture.

The improvement is not so high as that of the joint goal

accuracy, because the semantic relation of values in the

slot “request” is low. For example, the values (“signa-

ture”, “price”, and “postcode”) of this slot have low

semantic relations, which limit the effectiveness of re-

inforcement learning. However, according to the design

of the DST task and the content provided by the know-

ledge base, the slot “request” contains very few values.

And, there are almost no unknown values in this slot.

For other baselines, the performance decreases

significantly with the increase of unknown values. The

reason is that an unknown value usually affects multi-

ple dialogues. Therefore, handling unknown values is

an important capability of DST models.

4.7 Zero-Shot DST

Next, we turn to RQ3. We evaluate models on the

zero-shot DST with unseen values. In this task, the

unseen values are predefined in the value set, but the

train set discards the instances that contain the un-

seen values. Discriminative DST methods can model

the categories of unseen values. Generative DST meth-

ods, such as PtrNet, do not utilize the information from

predefined values. Therefore, their performance is the

same with that of unknown values in Table 5.

Table 6 shows the results of this zero-shot DST task

with different proportions of unseen values. The ratios

of unseen values are 5%, 25%, 45%, and 65% respec-

tively. In this table, the bold numbers are the best per-

formance. USPN significantly outperforms other mod-

els by 2.9%, 17.4%, 20.2%, and 35.4% on the joint goal

accuracy. On the request accuracy, our model improves

performance by 0.4%, 0.4%, 2.0%, and 3.0% respec-

tively. USPN can improve the performance of this task

through the proposed reinforcement learning, which

learns the semantic relations between predefined unseen

values and conversational mentions. With 25% unseen

values, USPN achieves a remarkable performance by

74.9% on the joint goal accuracy. Discriminative DST

methods fail to generate unseen values due to the ab-

sence of training instances in these categories. Genera-

tive DST methods are difficult to extract unseen values

because they only rely on modeling the dialogue.

With the same proportion of unseen and unknown

values, USPN tends to obtain higher performance in the

zero-shot DST task with unseen values. It is because

our model learns the semantic relations between prede-

fined unseen values and conversational mentions, which

is complementary to supervised learning. Accurate se-

mantic relations increase the generation ability of our

model and promote the generation of unseen values.

4.8 Unsupervised DST

In this experiment, we research RQ4. In the unsu-

pervised DST task, following the previous work [22], we

use the predefined slot-value pairs as well as supervised

validation and test sets. The rule model uses the pre-

defined slot-value pairs to extract mentions from the

dialogue as values through hand-crafted rules. Rule+D

uses an additional dictionary to extract mentions.

Table 7 shows the results of the unsupervised DST

task. In this table, the bold numbers are the best per-

formance. On the WoZ2 dataset, our model achieves

66.7% on the joint goal accuracy and 87.5% on the re-

Table 6. Test Accuracies (%) on the Simulated Datasets with Unseen Values

Model
Unseen Values (5%) Unseen Values (25%) Unseen Values (45%) Unseen Values (65%)

Joint Request Joint Request Joint Request Joint Request

NBT-DNN 80.5 96.4 54.5 94.0 33.7 76.7 18.3 70.0

NBT-CNN 84.3 96.7 56.8 95.3 33.7 76.4 18.5 69.6

GLAD 84.5 96.6 57.5 94.5 34.3 76.2 17.6 69.7

USPN (ours) 87.4 97.1 74.9 95.7 57.2 78.7 55.4 73.0
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quest accuracy, which outperforms SEDST by 37.7%

on the joint goal. On the DSTC2 dataset, our model

achieves 37.2% accuracy on the joint goal and outper-

forms SEDST by 17.0%. Our model uses the semantic

relations between the unlabeled mentions and the pre-

defined slot-value pairs to provide indirect supervision

for the neural model. The semantic relation encourages

our model to generate mentions related to the prede-

fined slot-value pairs. SEDST adopts a two-stage copy

mechanism to generate keywords as values. However,

these keywords are usually irrelevant words, which de-

grade the performance. By using the predefined slot-

value pairs and the dictionary, the rule-based model

achieves high performance on the joint goal. This is

because most of the values for slots in the joint goal are

specific and just represent the specific dialogue state.

The values in the slot “request” usually are unspe-

cific, leading to the poor performance of the rule-based

model.

Table 7. Test Accuracies (%) of Unsupervised DST on the
WoZ2 and DSTC2 Datasets

Model WoZ2 DSTC2

Joint Request Joint Request

Rule 65.7 69.0 42.2 77.3

Rule+D 67.7 69.0 42.3 77.3

SEDST 29.0 – 20.2 –

USPN (ours) 66.7 87.5 37.2 83.8

We also evaluate USPN that does not use the pre-

defined values. Without the predefined values, USPN

only learns the semantic relations between the slots and

conversational mentions. The week semantic relations

hurt the performance. On the WoZ2 dataset, USPN

without the predefined values achieves 18.6% on the

joint goal accuracy and 75.5% on the request accuracy.

In the future, it will be useful to automatically reason

the predefined values in the unsupervised DST task.

4.9 Ablation Study

In this subsection, we assess RQ5. For a comprehen-

sive evaluation, the experiments are constructed on the

standard WoZ2 dataset and the dataset with 45% un-

known values. Table 8 shows the results of the ablation

experiments. In this table, the bold numbers are the

best performance. For “- SPE”, we replace the shared-

private BiLSTM in the encoder module with a single

BiLSTM. For “- SPD”, we use a single LSTM instead

of the shared-private LSTM in the decoder module. For

“- SA”, self-attention in the encoder module is replaced

by the last hidden state of the encoded sequence. For “-

C”, we remove the copy mechanism on the dialogue and

the reinforcement learning. For “- G”, we remove the

generation from the predefined slot-value pairs. For “-

RL”, we remove our reinforcement learning algorithm.

Table 8. Test Accuracies (%) on the WoZ2 Dataset

Model WoZ2 Unknown Values (45%)

Joint Request Joint Request

USPN (ours) 90.3 97.5 54.5 78.6

- SPE 88.8 96.9 49.4 78.0

- SPD 87.0 96.1 49.8 78.4

- SA 88.3 96.1 43.4 78.4

- C 86.5 96.3 35.8 77.5

- G 66.9 95.5 43.6 77.3

- RL 89.6 97.0 40.7 77.8

4.9.1 Analysis on Shared-Private Architecture

We experiment with a variant of USPN, which uses

a single BiLSTM to replace the shared-private BiLSTM

in the encoder. The weaker performance suggests that

the private features of the input sequence are helpful

for DST tasks. There is a significant drop in the per-

formance for the model that uses the last hidden state of

the encoded sequence as opposed to self-attention. Self-

attention allows USPN to extract relevant information

as the overall hidden state, which improves the perfor-

mance. We study a model that uses a single LSTM in-

stead of the shared-private LSTM in the decoder. This

model achieves weaker performance both on the joint

goal accuracy and the request accuracy. The absence

of private features hurts the generation ability.

4.9.2 Analysis on Unified Strategy

When we remove the copy mechanism and only de-

termine values from the predefined value set, the perfor-

mance on both datasets is degraded, especially on the

dataset with 45% unknown values. In USPN, the copy

mechanism is dedicated to handling unknown mentions.

We also observe a performance drop for the model that

only copies mentions from the dialogue as values, es-

pecially on the dataset without unknown values. The

model disables the selection of values from the prede-

fined value set, which cannot handle non-pointable and

uncovered mentions.

4.9.3 Effectiveness of Reinforcement Learning

As shown in Table 8, when we remove the reinforce-

ment learning and the semantic relations, the model
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achieves low performance. The results show that the

proposed reinforcement learning can utilize semantic

relations to handle the label noise problem, thus im-

proving the performance of DST tasks.

4.10 Statistics of Generated Unknown Values

Finally, we answer RQ6. In order to clearly analyze

the improvement of USPN on the dataset with 45% un-

known values, we count generated and correct unknown

values as shown in Fig.3. Due to the strong generation

ability of USPN, our model generates more unknown

values than the baselines. PtrNet cannot effectively and

steadily generate unknown values on the dataset with

complex dialogue context. On USPN, PtrNet+D, and

PtrNet, the correct rates of generated unknown values

are 93.5%, 77.7%, and 36.2%, respectively. For Ptr-

Net+D, we use a dictionary and predefined slot-value

pairs to filter irrelevant words. We can see that many of

the unknown values generated in PtrNet are irrelevant

words.

All UNK

614
574

80 80

221

103

600

500

400

300

200

100

0
Correct UNK

USPN
PtrNet
PtrNet+D

Fig.3. Statistics of generated unknown values by USPN, Ptr-
Net, and PtrNet+D on the simulated dataset with 45% unknown
values. “All UNK” is the number of generated unknown values.
“Correct UNK” is the count of correct unknown values.

5 Conclusions

In the DST task, we proposed a unified strategy

to predict values from both the dialogue history and

the predefined values with a shared-private architec-

ture. The shared-private encoder transforms the dia-

logue history and predefined values into the complete

generative space for each slot. The shared-private de-

coder predicts values from the generative space via the

copy mechanism. As a result, our model can handle un-

known values as well as uncovered and non-pointable

mentions through the unified strategy. Furthermore,

we proposed a reinforcement learning algorithm with

semantic relations to handle the label noise problem.

Therefore, our method can accurately track dialogue

states for task-oriented dialogue systems. Experiments

on three public datasets and many DST tasks showed

the effectiveness of our model by outperforming strong

baselines. In the future, we will apply our method in

many other slot-filling tasks and explore automatic in-

ference of predefined values in the unsupervised DST

task.
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