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Abstract

Recent handwritten mathematical expression recogni-
tion (HMER) approaches treat the problem as an image-
to-markup generation task where the handwritten for-
mula is translated into a sequence (e.g. LATEX). The
encoder-decoder framework is widely used to solve this
image-to-sequence problem. However, (i) for structured
mathematical formula, the hierarchical structure nei-
ther in the formula nor in the markup has been ex-
plored adequately. In addition, (ii) existing image-to-
markup methods could not explicitly segment mathe-
matical symbols in the formula corresponding to each
target markup token. In this paper, we address the
above issues by formulating the HMER as a graph-to-
graph (G2G) learning problem. Graph is more flexi-
ble and general for structure representation and learning
compared with image or sequence. At the core of our
method lies the embedding of input formula and output
markup into graphs on primitives, with Graph Neural
Networks (GNN) to explore the structural information,
and a novel sub-graph attention mechanism to match
primitives in the input and output graphs. We conduct
extensive experiments on CROHME datasets to demon-
strate the benefits of the proposed G2G model. Our
method yields significant improvements over previous
SOTA image-to-markup systems. Moreover, it explic-
itly resolves the symbol segmentation problem while
still being trained end-to-end, making the whole system
much more accurate and interpretable.

Introduction
Mathematical notation has essential applications in many
fields, such as education, office automation, and conference
systems. Recognizing mathematical formulas requires the
ability to analyze both their mathematical semantics and
complex hierarchical structures. As early as 1960s, there
has been research interest (Anderson 1967) in converting
mathematical images into structured language or markup
(e.g. LATEX, MathML and Symbol Layout Tree (SLT, Zanibbi
and Blostein 2012)) that identifies symbol descriptions and
associated structures. See an example in Fig. 1.
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Figure 1: Handwritten formula with its SLT and LATEX for-
mat markups. Primitives in the formula and markup have
hierarchical relations. Besides, each primitive in the formula
has specific representation in the markup. For example, the
8th and 9th strokes in the input formula correspond to the
node “+” in SLT and the token “+” in LATEX.

Recently, inspired by the success of sequence-to-sequence
learning in different applications such as speech recognition
(Chorowski et al. 2015), machine translation (Bahdanau,
Cho, and Bengio 2014), and image captioning (Xu et al.
2015; Li et al. 2017), the encoder-decoder framework has al-
so been proposed for HMER. Essentially, these approaches
treat HMER as a special case of general image-to-sequence
problem, that is, image-to-markup generation (Deng et al.
2017). Given a source formula input x (e.g. image or hand-
writing trajectory) and its target representation y, the image-
to-markup system models x → y from the training data.
Generally, y = (y1, · · · , yT ) is a LATEX string with T tokens.
In fact, the LATEX string is a tree with additional formatting
annotations and can be obtained by depth-first traversal of
the SLT. However, this kind of information is actually ig-
nored in image-to-sequence approaches.

Despite recent progress in image-to-markup based H-
MER, these approaches could not achieve accurate and sat-
isfactory results. The defects of these methods are main-
ly in the following aspects: (i) the input representation of
image or handwriting trajectory makes the encoder unable
to effectively explore the spatial and temporal structures a-
mong input primitives. (ii) Although formulas have linear
forms markup, i.e. LATEX string, the underlying structure of

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

2925



Grammar-based 
Post-processing

Image-to-Markup

Graph-to-Graph

Previous:

Ours:

LaTeX: \sum _ { i }
^ { n } a _ { i } = 2

Grammatical Methods

SLT

Sub-graph 
Attention

Decoder

Graph on Target 
SLT

Attention

=

\sum

i

i

2

an

Graph on Input 
Primitives

Graph on Input 
Primitives

Figure 2: Brief description of different HMER approaches. We construct the source graph on input primitives (i.e. handwriting
strokes) and the target graph based on SLT format markup. Compared with existing HMER systems, our G2G model explores
the hierarchical relationship among primitives both in the formula and the markup. It explicitly segments symbols in the input
formula while still being trained end-to-end.

formulas is known to be hierarchical. Sequential decoder
could not explicitly leverage the hierarchical structure em-
bedded in the markup. (iii) Moreover, during generation,
the decoder “looks” at the relevant regions of each token
yt, t = {1, · · · , T} with an implicit segmentation func-
tion Attn(x, t), i.e. the vanilla attention mechanism, and
is unable to explicitly segment the primitives xn ∈ x =
(x1, · · · , xN ), n = {1, · · · , N} corresponding to yt. For ex-
ample, see the process of identifying “=” in Fig. 2.

In addition to image-to-markup methods, grammatical
methods (Julca-Aguilar et al. 2020) were also proposed for
HMER. Although such methods can explicitly parse the
primitives corresponding to the target token, they require
complicated manual work to design grammars, and thus, are
less efficient compared with data driven learning.

To solve the problems described above, in this paper,
we formulate HMER as a graph-to-graph learning problem
Gx → Gy. Specifically, (i) Gx = (Vx, Ex) is a directed
graph on the handwritten strokes of input formula x, where
Vx is the node (or vertex) set corresponding to the input
strokes, and Ex is the edge set that records the spatial and
temporal relationship between strokes. (ii) Gy = (Vy, Ey)
is an directed graph constructed on the SLT of x. Represent-
ing the markup as a graph allows explicit use of the hierar-
chical information contained therein. (iii) Then, association
between these two graphs is learned via a novel sub-graph
attention mechanism. By consolidating the idea of model-
ing HMER as G2G learning, we present a novel GNN-GNN
architecture to model the primitive representations and rela-
tionships in the source and target graphs.

The main contributions of our work are highlighted as fol-
lows:

• We formulate HMER as a G2G learning problem. GNN-
based encoder and decoder are exploited to learn the
structural information of the input formula and output
markup from training data.

• Our G2G model is an end-to-end approach for explicit

symbol segmentation, symbol identification, and hierar-
chical structure analysis, and so, is more accurate and in-
terpretable.

• The proposed method establishes new SOTA results
on the benchmark datasets CROHME 2014 and 2016,
pushing the expression recognition rate (ExpRate) from
50.41% to 54.46%, and 49.61% to 52.05%, respectively.

The rest of this paper is organized as follows. Section 2
presents a brief review to HMER approaches. Section 3 de-
tails the proposed G2G model. Section 4 presents extensive
ablation experiments and comparison experiments to eval-
uate our method. Finally, concluding remarks are drawn in
Section 5.

Related Work
HMER requires to convert the input formula (in the formats
of either image or handwriting trajectory) into a structured
representation, which contains both mathematical symbols
and their placement on the writing line. In the following, we
review the main HMER approaches.

Grammatical Methods
Recognizing a formula usually involves three steps: symbol
segmentation, symbol recognition, and structural analysis.
Most grammatical methods apply modifications of context-
free string grammars to solve these tasks (Alvaro, Sánchez,
and Benedı́ 2014, 2016). However, such grammar limits
the inclusion of at most two elements on the right side of
the rule. To overcome this limitation, other manually de-
signed string grammars, such as fuzzy relational grammar
(MacLean and Labahn 2013), have been proposed.

Compared with string grammar, graph grammar can bet-
ter represent the hierarchical structure of formula. Several
graph grammar based methods have been investigated for
recognizing formula as graph (Lavirotte 1997; Julca-Aguilar
et al. 2020). There are also some approaches (Mahdavi et al.

2926



Graph-to-Graph

n

aj =

\frac
b

3

2

Graph on Input 
Primitives

Graph on Target 
SLT

1
2

3

4
5

6
7

8

9 10

BGRU

TCN
Mask

Node Features

Geometric Edge 
Features

…

…

vi

vj

Encoder GNN Decoder GNN

Sub-graph 
Attention

n

aj =

\frac
b

3

2

Target 
SLT

…

𝐺𝐱
𝑠,𝑡 𝐺𝐲

<𝑡

vp

vc

Figure 3: An overview of our G2G model for HMER. The source graph (left) is built on the input primitives (i.e. online stokes)
and target graph is construct on the SLT. Each node in the target graph are generated conditioned on the sub-graphs both in the
input and output. Association between the generated node, such as node “=” in the target graph, and the source sub-graph are
learned with a sub-graph attention. By learning from G2G, our model enables accurate, interpretable and end-to-end HMER.

2019; Mahdavi, Sun, and Zanibbi 2020) directly generate a
second graph on symbols by merging nodes of the source
graph on primitives and identify spatial relationships from
edges without using graph grammars.

Image-to-Markup
To make the training data-driven and end-to-end, image-to-
markup method based on encoder-decoder framework has
been proposed (Deng et al. 2017). Such methods use a CN-
N or RNN based encoder to embed the input formula, and
an attention based sequential decoder to generate the target
markup. Specially, an image-to-markup approach, named
PAL (Wu et al. 2018), trains the recognizer with paired ad-
versarial learning to overcome the writing-style variation
faced by handwritten formulas. Its improved version PAL-
v2 (Wu et al. 2020) utilizes a pre-aware unit to enhance the
accuracy of attention. A dual loss attention based method
(Le 2020) shares similar idea with PAL in learning semantic
invariant features with the guide of printed templates.

Different encoders, such as encoders based on VGG
(Zhang et al. 2017) and multi-branch DenseNet (Zhang,
Du, and Dai 2018) have been investigate to improve per-
formance. Some works use bidirectional RNNs to direct-
ly encode online formula strokes (Le and Nakagawa 2017;
Zhang, Du, and Dai 2018). There are also image-to-markup
approaches which apply data augmentation (Le and Naka-
gawa 2017) and multi-modal ensemble (Wang et al. 2019)
methods to investigate the impact of training data. A paral-
lel work (Zhang et al. 2020) explicitly considers the tree-
structured markup with a parent-child decoder.

Summary
As described above, grammatical methods could not auto-
matically learn from the markup corpus. On the other hand,
image-to-markup methods do not effectively explore the hi-
erarchical structure embedded both in the formula and the

markup. In addition, the latter could not explicitly segment
symbols in the input corresponding to output token.

Recently, neural network structure operating on graph-
s has received a surge of attention (Yao et al. 2018; Liu
et al. 2019). Compared with image or sequence represen-
tations for formula, graph representations are more natural
and general. Modeling HMER in the form of graphs makes
the recognition process more accurate and interpretable.

Method
Given an input formula x (e.g. online handwriting strokes or
the image rendered by them) and its LATEX format markup
y = (y1, · · · , yT ), the image-to-markup system infers y by
modeling:

p(y|x) =
∏
t

p(yt|y<t;Attn(x, t)), (1)

where y<t denotes previous t−1 tokens before yt. Intuitive-
ly, mathematical formula is a kind of structured data. How-
ever, (i) hierarchical structures in both x and y are not ex-
plored adequately, and (ii) the vanilla attention mechanism
Attn(·) could not explicitly segment primitives correspond-
ing to yt. To this end, we propose to treat the structured input
and output as graphs. Fig. 3 illustrates our method. We rede-
fine the Equation 1 as:

p(Gy|Gx) =
∏
t

p((vty, E
t
y)|G<t

y ;Gs,t
x ), (2)

where vty denotes the generated node at step t,Ety is the gen-
erated directed edge set from the existing target graph G<t

y
to vty, andGs,t

x indicates the source sub-graph corresponding
to vty. We now present details of our G2G model.

Representations of Source and Target Graph
Graph on Input Primitives In this work, we use online
strokes x = (x1, · · · , xN ) which make up the mathematical
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symbols as the primitives of the input graphGx = (Vx, Ex),
where Vx is the node set corresponding to input strokes, and
Ex is the edge set composed of spatial edges constructed
with line-of-sight (LOS) algorithm (Hu and Zanibbi 2016)
and bidirectional temporal edges between time neighbors.
For the n-th stroke xn, n = {1, · · · , N}, with Ln track
points, the corresponding node vnx is embedded by:

fn0 = F (x)kn/||kn||1, (3)
where kn = (kn1 , · · · , knL) ∈ RL is a binary mask,
L =

∑
n Ln is the input trajectory length, knl = 1 when∑(n−1)

i=1 Li < l ≤
∑n

i=1 Li and otherwise knl = 0, and
F (x) ∈ RC×L is the feature sequence encoded by cascaded
deep neural network blocks. Each block consists of a bidi-
rectional GRU and a subsequent Temporal Convolutional
Network (TCN, Gehring et al. 2017), activated by the Gated
Linear Uint (GLU, Dauphin et al. 2017). Besides, for each
directed edge ei,jx , i, j = {1, · · · , n}, between a pair of input
primitives, we extract a geometric feature (Ye et al. 2019)
and project the feature into bi,j

0 ∈ RC .

Graph on Target SLT The SLT,GSLT = (VSLT , ESLT ),
of a mathematical formula records both symbols and struc-
tural relationship between different symbols. Our goal is to
explicitly use hierarchical information embedded in it.

To this end, we set Vy = VSLT and design three types
of edges to represent the hierarchical structure, i.e. direct-
ed edges pointing to the current node from its grandparent
(Egg), parent (Epc), and left brother (Ebb) in the SLT, re-
spectively. For convenience, we index the nodes of STL in
depth-first order. Moreover, to guarantee that the decoder
can decide whether current node is the last child node of its
parent, we modify the SLT by adding an end child node to
each node as the rightmost child. The relationship between
the end child node and its parent is represented as “ ”.
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Figure 4: Modified SLT and the corresponding target graph.
Spatial relationship between symbol in the blue box and
symbol in other boxes (left) is recorded by the parent-child
edge in SLT. Black circle (center and right) represents the
added end child node.

Graph-to-Graph Learning
Encoder GNN The representation of the source graph Gx
is modeled with a modified Graph Attention Network (GAT,
Velickovic et al. 2018). For the q-th GAT layer, we first up-
date the edge feature bi,j

q by:

bi,j
q = δ(Wb,q[fiq−1; bi,j

q−1; fjq−1]), (4)

where Wb,q ∈ RC×(2C+C) is the weight matrix, δ(·) is the
LeakyRelu activation function, and “;” denotes the concate-
nation. Updating the edge embedding by combining the vi-
sual feature of the current node i and its neighborhood po-
tentially enables the encoder to learn where to attend given
the current node.

After that, the hidden features for every node are comput-
ed based on the self-attention mechanism:

fiq = δ(
∑
j∈Ni

ai,jWf,qfjq−1), (5)

where ai,j is the attention coefficient, Wf,q ∈ RC×C is a
weight matrix, and Ni is the neighborhood of the current
node i. The attention mechanism is designed as:

ai,j =
exp(βri,j)∑

k∈Ni
exp(βri,k)

, (6)

where β is a temperature set to 1 in this work, and ri,j is
calculated as:
ri,j = δ(uT

b,q(W
′

b,qbj,i
q + W

′

f,qfiq−1 + W
′

f,qfjq−1)), (7)

where ub,q ∈ RC is a weight vector, W
′

b,q,W
′

f,q ∈ RC×C

are learnable parameters. When set β as zero, the model de-
grades to the vanilla Graph Convolutional Network (GCN).

Decoder GNN Taking the inspiration from sequence-to-
sequence learning (Gehring et al. 2017), we devise an atten-
tional GNN-based decoder to learn the representation of tar-
get graph Gy and the association between Gx and Gy. Each
block of the decoder is equipped with a modified GCN layer
and subsequent attention mechanism. Embedded node fea-
ture ztm ∈ RC , t = {1, · · · , |Vy| = T} of the m-th decoder
block is updated based on both the previous block output and
related node features fn ∈ RC , n = {1, · · · , |Vx| = N} of
the source graph. Specially, zt0 is the word embedding cor-
responding to target node t.

Formally, for each modified GCN layer, we leverage sep-
arate weight parameters for different types of edges to make
the decoder sensitive to the hierarchical structure. Accord-
ingly, the node output of the GCN layer in the m-th block is
computed by:

ht
m = ρ(

∑
j∈Nt

Wd(j,t),mzjm−1). (8)

where d(j, t) dynamically selects the learnable weight ma-
trix Wd(j,t),m ∈ R2C′×C with regard to the type of each
edge (i.e. Wgg,m for grandparent-to-grandchild, Wpc,m for
parent-to-child, Wbb,m for brother-to-brother, and Wcc,m for
current-to-current), and ρ(·) is the GLU activation function.
Specially, the word embedding zt0 of current node t is set to
zero for the first GCN layer, since it is unavailable in the test.

Then, the target node embedding is computed by injecting
the context vector ctm of source graph:

ztm = Wz,m(ht
m + ctm), (9)

where Wz,m ∈ RC×C′
is a weight matrix, and the context

vector is computed with the attention mechanism:

ctm =
N∑

n=1

αt,n
m WV fn. (10)
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WV ∈ RC′×C projects the source node feature as the value,
and the attention coefficient αt,n

m is obtained by:

qt
m = Wh,mht

m + zbro(t)0 + zpa(t)0 , (11)

αt,n
m =

exp(qt
m · (WKfn))∑N

j=1 exp((qt
m · (WKfj)))

, (12)

where Wh,m ∈ RC×C′
is a weight matrix, WK ∈ RC×C

embed fn as a key, and bro(·) and pa(·) are the functions
selecting the left brother and parent of node t, respectively.

Encoder Supervision The training object of the proposed
G2G model includes the representation learning of both Gx
and Gy. The output node embedding of the encoder GNN is
taken for learning the category of the mathematical symbol
to which the corresponding stroke belongs:

p̂f,n = softmax(Wf,ofn), (13)
where Wf,o are the parameters of an Multi-Layer Perceptron
(MLP). The classification loss of nodes is defined as:

Lnf = −
N∑

n=1

log p̂cf,n, (14)

where p̂cf,n represents the probability of ground-truth node
category. Moreover, since edges are embedded with the hi-
erarchical relationship between input primitives, such as the
connection relationship within the symbol and the spatial re-
lationship between different symbols, we classify each edge
according to such relationships:

p̂b,(i,j) = softmax(Wb,obi,j), (15)

Leb = −
∑

ei,jx ∈Ex
log p̂cb,(i,j). (16)

Decoder Supervision Similarly, the decoder is optimized
to predict the target symbol of each node embedding zt:

p̂z,t = softmax(Wz,ozt), (17)

Lnz = −
T∑

t=1

log p̂cz,t. (18)

Furthermore, for the edge in Epc, we embed it as:

gpa(t),t = [zpa(t); zt]), (19)

Then, gpa(t),t is learned to predict the spatial relationship
represented by the corresponding edge in the SLT:

p̂g,(pa(t),t) = softmax(Wg,ogpa(t),t), (20)

Leg = −
∑

e
pa(t),t

y ∈Epc

log p̂cg,(pa(t),t). (21)

Learning from Sub-graph
While the above technique is able to model the generation of
(vty, Ety) in Equation 2 withG<t

y andAttn(Gx, t), source n-
ode selection via Attn(·) is still uncontrollable, because the
vanilla attention is strictly dense and may lack focus on the
right symbol, i.e. sub-graphGs,t

x , when the input is complex.
In this section, we introduce how to learn from Gs,t

x to make
the recognition more accurate and interpretable.

Sub-graph Attention The vanilla attention mechanism
aligns a distribution αt

m with softmax to every nodes in Gx.
However, due to the attribute of softmax function, source n-
odes that are irrelevant to vty will also be assigned weights
greater than zero. Ideally, αt

m should be a uniform distribu-
tion on the related sub-graph Gs,t

x :

pt(n) =

{
1/|V s,t

x |, vnx ∈ V
s,t
x

0, otherwise
. (22)

To this end, we propose Sub-graph Attention to guide the
attention to related sub-graph Gs,t

x . The generation of sub-
graph is elaborated in the next subsection. Specifically, we
regularize the attention coefficients output at time step t via:

Lsa = −
N∑

n=1

pt(n) log ᾱt,n, (23)

where ᾱt,n indicates the average of the attention coefficients
for all the decoder blocks. Furthermore, in order to further
enhance the perception of sub-graphs, the fused node em-
bedding of Gs,t

x is used to predict the target symbol repre-
sented by target node vty:

p̂s,t = softmax(Ws,o(
1

|V s,t
x |

∑
vnx∈V

s,t

x

fn)), (24)

Lsg = −
T∑

t=1

log p̂cs,t. (25)

Non-adjacent Sub-graph Masking As can be seen in
Fig. 4, for a pair of nodes with a parent-child edge in the
target graph, their corresponding symbols are in the adja-
cent areas of the formula. By constructing Gx with the LOS
algorithm, the sub-graphs corresponding to the pair of target
nodes are also adjacent, and we can take advantage. Thus,
when generating the current node, we mask all sub-graphs
that are not adjacent to the corresponding sub-graph of its
parent node. Intuitively, sub-graphs corresponding to previ-
ously parsed nodes are also masked.

Since the label of the correspondence between Gs,t
x and

vty is not available in the generation phase, we segment Gs,t
x

for vty via the output attention coefficients of the last decoder
block and the edge classification results of the encoder GN-
N. Specifically, by removing the edges between the source
primitives that are classified as connections between two d-
ifferent symbols, we get a set of sub-graphs. Then the sub-
graph to which the source node vnx aligned with the largest
coefficient αt

max belongs is regarded as the sub-graph Gs,t
x

for target node vty. An example can been in Fig. 5.

Experiment
Implementation Details
The proposed G2G model is trained end-to-end. The final
objective function of the model combines the supervision of
encoder, decoder, and the sub-graph attention:

L = λ1Lnf + λ2Leb + λ3Lnz + λ4Leg + λ5Lsa + λ6Lsg.
(26)
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The coefficients of different supervision losses are set ex-
perimentally. Specifically, we set λ1 = λ2 = λ6 = 0.5
to impose the same supervision on learning the representa-
tions of the nodes, edges and sub-graphs in the input graph.
The supervision loss coefficients for the generation of nodes
and edges in target graph are set to λ2 = λ3 = 1. We set
λ5 = 0.3 to guide the distribution of attention coefficients
on the source sub-graphs.

The proposed model are optimized via the adaptive mo-
ment estimation (Adam, Kingma and Ba 2015) with learning
rate 5e − 4. Both the decoder and the encoder stack 3 GN-
N blocks. The network for pre-extracting the input primitive
features has 4 blocks. We use 256 for the embedding dimen-
sion C ′ of decoder GNN, and 400 for the dimension C of
sub-graph attention. Our models were implemented in Py-
Torch and optimized on two 12GB Nvidia TITAN X GPUs.

Datasets
We evaluate our model on the large public dataset available
from the Competition on Recognition of Online Handwrit-
ten Mathematical Expressions (CROHME) (Mouchère et al.
2016). There are 101 math symbol classes and 6 structural
relation (“Above”, “Below”, “Inside”, “Superscript”, “Sub-
script”, and “Right”) in this dataset.

The CROHME training set contains 8,835 formulas
with both symbol-level and expression-level annotations,
and the test sets for CROHME 2013/2014/2016 contain
671/986/1,147 formulas, respectively. Consistent with par-
ticipating systems in CROHME, we use the test set of
CROHME 2013 as a validation set in training stage, and use
the test sets of CROHME 2014 and 2016 to evaluate our
proposed model. The performance is measured by ExpRate,
defined as the percentage of correctly recognized formulas.

Ablation Study
We conduct benchmarks on CROHME 2014 to analyze the
contribution of each component in the proposed G2G model.
Image-to-Markup: We set the image-to-markup system as
baseline. The features of handwriting trajectory are fed into
a convolutional decoder with pre-aware unit (Wu et al. 2020)
to generate the LATEX format markup. By learning x → y
end-to-end from training data, the “Baseline” achieves ex-
pression level accuracy with ExpRate 46.16%. However, re-
lationships between source primitives are still unclear.
Encoder GNN: In the method “+ Encoder GNN”, we for-
mulate the input as a graph Gx and further explore the re-
lationship between input primitives with the encoder GNN.
We observe that the ExpRate is increased by 1.31%. More-
over, the embedded edges between different primitives can
be classified by the encoder GNN. The accuracy of stroke
classification (“Node”) and determining whether a pair of
strokes belong to the same mathematical symbol (“Edge”)
achieve 91.93% and 99.26%, respectively.
Sub-graph Attention: It is worth noting that annotation to-
kens like a pair of “{}” in the LATEX format markup and the
added end child nodes in the modified SLT do not corre-
spond to primitives of the source graph. Thus, “+ Visual Sen-
tinel” (Lu et al. 2017) is used to automatically infer these to-
kens or nodes. Although the ExpRate is increased by 2.03%,

Method ExpRate Node Edge
Baseline 46.15 - -
+ Encoder GNN 47.46 91.93 99.26
+ Visual Sentinel 49.49 91.84 99.11
+ Sub-graph Attention 52.13 92.35 99.25
+ Decoder GNN 53.65 92.89 99.33
+ Sub-graph Masking 54.46 92.89 99.33

Table 1: Ablation study of the G2G model on CROHME
2014. “+” denotes to append the current part to the previous
system. Accuracies are in %.

this operation decreases “Node” and “Edge” by 0.09% and
0.15%, respectively.

Besides, after guiding the decoder to learn the correspon-
dence and semantic connection between the target token and
the input sub-graph in the method “+ Sub-graph Attention”,
the ExpRate, “Node”, and “Edge” are increased by 2.64%,
0.51%, and 0.14%, respectively.
Decoder GNN: It explicitly learns the hierarchical struc-
tures in the markup with different types of directed edges
(i.e. grandparent-to-grandchild, parent-to-child, and brother-
to-brother) in the target graph Gy. The application of the
decoder GNN leads to a further improvement for the rec-
ognizer. We observe that after “+ Decoder GNN”, the Ex-
pRate, “Node”, and “Edge” are increased by 1.52%, 0.54%
and 0.08%, respectively.
Non-adjacent Sub-graph Masking: Additionally, during
the generation, we exploit the neighbor relationship in Gy
and the correspondence between the target nodes in Gy and
the sub-graphs of Gx for improvement. In the method “+
Sub-graph Masking”, we observe that the ExpRate is fur-
ther increased by 0.80%. It validates that our proposed G2G
model are accurate and interpretable. Compared with the
image-to-markup baseline, our G2G model boosts the per-
formance by 8.31% on CROHME 2014 test set.

Source Graph Representation Learning

Method Node Edge Spatial
GAT (Ye et al. 2019) 88.20 87.72 -
Encoder GNN w/o S-
patial Classification

89.91 97.93 -

Encoder GNN 90.80 99.21 96.45
G2G 92.89 99.33 97.39

Table 2: The results of source graph representation learning
on CROHME 2014 (in %). “Spatial” indicates to classify
edges according to the spatial relationship between the cor-
responding symbols of two strokes.

We further investigated the performances of differen-
t models on source primitive representations and relation-
ships learning. The GAT model proposed in (Ye et al. 2019)
can directly classify the contextual primitives in the source
graph. We input the same initial features of nodes and edges
used by our method into the model and set it as a benchmark.
The experimental results are listed in Table 2.
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By injecting the embedding of node pairs into the edge
between them, the “Encoder GNN” without spatial classifi-
cation increases the classification accuracies of nodes and
edges by 1.71% and 10.21%, respectively. Moreover, we
observe that after adding spatial relationship classification
task, “Node” and “Edge” are increased by 0.89% and 1.28%,
respectively. Interestingly, when end-to-end learning from
graph to graph, the ability of representing source graph for
the encoder GNN is further enhanced.

R

Sub

R
R

\sum F

z

= 0

Source Sub-
graphs

Target 
Graph

Formula

α 1max= 0.52
α 2max= 0.43

α 3max = 0.96

α 4max = 0.60

α 5max = 0.99

Figure 5: An example of the recognition process. Edges clas-
sified as different symbol in the source graph are deleted to
obtain the set of sub-graphs. The end child node and edge
sets Egg and Ebb in the target graph are not displayed.

Symbol Segmentation
One weakness of the image-to-markup method is that sym-
bol corresponding to the target token could not be segmented
explicitly, which brings difficulties for post-processing and
interpretation. As shown in the Fig. 5, our G2G model re-
solves this problem by combining the representation learn-
ing of source graph and the alignment of sub-graph atten-
tion.

System CROHME 2014 CROHME 2016
Segment Seg+Class Segment Seg+class

UPV G 90.71 84.18 - -
Tokyo G - - 93.25 87.58

Ours G2G 97.34 91.79 96.96 91.05

Table 3: Symbol level evaluation. The precision metrics for
symbol segmentation (“Segment”), and detection of symbol-
s with their correct classification (“Seg+Class”) are in %.
“G” indicates the grammatical system.

Segmentation results are listed in Table 3, “UPV” and
“Tokyo” are the top 1 system using only official training
data in the CROHME 2014 and 2016 competition, respec-
tively. The experimental results show the superiority of our
proposed G2G model over existing HMER methods in terms
of symbol segmentation and explicit structure analysis.

Comparison with the State-of-the-Art
Table 4 shows the results of our proposed G2G model with
comparison with participated systems in CROHME and H-
MER models presented recently. For fairness, we show the

System CROHME
2014 2016

UPV G S 37.22 -
Tokyo G S - 43.94
QD-GGA (Mahdavi, Sun, and Zanib-
bi 2020)

G S 32.04 32.84

Graphics (Julca-Aguilar et al. 2020) G S - 40.80

WYGIWYS (Deng et al. 2017) I2M - 36.41 -
End-to-End (Le and Nakagawa 2017) I2M - 35.19 -
WAP (Zhang et al. 2017) I2M - 40.40 37.10
PAL (Wu et al. 2018) I2M - 39.66 -
DenseMSA (Zhang, Du, and Dai
2018)

I2M - 43.00 40.00

TAP (Zhang, Du, and Dai 2019) I2M S 50.41 -
PAL-v2 (Wu et al. 2020) I2M - 48.88 49.61
Tree Decoder (Zhang et al. 2020) I2M - 49.10 48.50
Dual Loss Attention (Le 2020) I2M - 49.85 47.34

Ours G2G S 54.46 52.05

Table 4: Formula level evaluation of HMER systems on
CROHME 2014 and 2016. The metric ExpRate (in %) is the
index that ranks the participating systems in the CROHME
competitions. “I2M” denotes the image-to-markup system,
and “S” indicates that symbol-level annotations were used
for training.

results of systems trained on only official data. Besides, sys-
tems using additional language corpus, data augmentation,
and model ensemble are also removed.

We can see from Table 4 that the grammatical method
could not automatically leverage the mathematical context
and grammatical information contained in the markup to im-
prove its performance, though such methods can explicitly
parse the component relationships in the input formula. By
learning from graph to graph, our method overcomes such
shortcomings of the grammatical method. Besides, com-
pared with the previous state-of-the-art image-to-markup
method, our method explicitly learns the hierarchical struc-
tures in both input formula and output markup. Our G2G
model establishes new SOTAs on both test sets, and also
provides explicit symbol-level segmentation. Thus, it is both
accurate and interpretable.

Conclusion
In this paper, we propose to formulate HMER as a graph-
to-graph learning problem to explore the mathematical se-
mantics and hierarchical structures in the formula and its
markup. By combining the novel sub-graph attention with
graph representation learning, the proposed G2G model
could explicitly segment mathematical symbols correspond-
ing to each target node while still being trained end-to-end.
Evaluated on both symbol and formula level on the pub-
lic dataset, our G2G model shows significant improvemen-
t compared with previous state-of-the-art image-to-markup
and grammatical methods. Experimental results demonstrate
that the proposed G2G model enables accurate, interpretable
and end-to-end HMER. In the future work, we may extend
the proposed G2G to offline HMER by using connected
components or detected symbols as the input primitive.
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