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Abstract: Identification of bird species from their sounds has become an important area in biodiversity-related research due to the rel-
ative ease of capturing bird sounds in the commonly challenging habitat. Audio features have a massive impact on the classification task
since they are the fundamental elements used to differentiate classes. As such, the extraction of informative properties of the data is a
crucial stage of any classification-based application. Therefore, it is vital to identify the most significant feature to represent the actual
bird sounds. In this paper, we propose a novel feature that can advance classification accuracy with modified features, which are most
suitable for classifying birds from its audio sounds. Modified Gammatone frequency cepstral coefficient (GTCC) features have been ex-
tracted with their frequency banks adjusted to suit bird sounds. The features are then used to train and test a support vector machine
(SVM) classifier. It has been shown that the modified GTCC features are able to give 86% accuracy with twenty Bornean birds. Further-
more, in this paper, we are proposing a novel probability enhanced entropy (PEE) feature, which, when combined with the modified
GTCC features, is able to improve accuracy further to 89.5%. These results are significant as the relatively low-resource intensive SVM
with the proposed modified GTCC, and the proposed novel PEE feature can be implemented in a real-time system to assist researchers,
scientists, conservationists, and even eco-tourists in identifying bird species in the dense forest.
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1 Introduction

The bird population worldwide has been declining rap-
idly due to deforestation and urban developments, and
consequently, bird diversity monitoring projects have re-
ceived considerable attention in recent yearsl!l. When
considering the diversity of birds, there is an incredible
number of bird species and varieties spread worldwide in
various habitats. Due to this and other factors, such as
the harsh environment these birds live in, bird diversity
monitoring has become one of the most challenging biod-
iversity projects. Visual identification of birds is a daunt-
ing task due to the mobile nature and size of these air-
borne creatures and their habitats. Recent technological
developments have given a new leap of life to these very
time-consuming and tedious projects; advancements in
audio signal processing techniques provide an edge over
birds’ visual identification, even in dense environments(2.
Indeed, it has been shown that bird sound classification is
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an essential stage of bird biodiversity monitoringl3l. Gen-
erally, due to bird habitats and environments, recordings
of these environments may contain multiple birds’
sounds, which need to be classified into different classes
for species identification purposes.

General bird sound classification research commonly
follows several stages, including data collection, pre-pro-
cessing, feature extraction, and training of the chosen
model, and then followed by testingl4l. Only few research-
ers have collected their own data. Instead, many re-
searchers have preferred to utilize the volume of freely
available data on online repositories for research pur-
poses, in order to focus on the classification task rather
than the data collection process. In the pre-processing
stage, unwanted noise needs to be removed using various
filtering techniques. Some researchers have also imple-
mented segmentation of bird sounds by considering silent
intervals between bird vocalization present in the record-
ings.

The next stage is the most critical stage of any audio-
based application, which is the feature extraction stage.
Extracting the appropriate feature that can capture the
essence of the bird sounds is crucial, as including too
many redundant features would increase the complexity
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of the model, while excluding some features may result in
reduced accuracy during classification. Researchers have
used various time, frequency, cepstral domain, and im-
age/texture-based featuresl for their works. Some stand-
ard features extracted from bird sounds in the time do-
main include zero crossing rate (ZCR), energy, and auto-
correlation harmonic ratio, while in the frequency do-
main, these include spectral centroid, spectral bandwidth,
mean frequency, spectral flux, spectral roll-off, and spec-
tral flatness!* 5. The most used feature in the literature
has been mel spectral cepstrum coefficient (MFCC)4: 6791,
Apart from MFCC, linear predictive cepstral coefficient
(LPCC) has also been used by a few researchers for bird
sound-related works[l9. Kogan and Margoliashl!!], Lee et
al.l12l extract both average MFCC and average LPCC fea-
tures, and conclude that classification results by using
MFCC features are better than LPCC features.

Even though most researchers have used the standard
features, some have also focused on determining novel
features suitable for bird sound classification. Tyagi et
al.3] introduce prints from computing on the spectrum
by frame-wise averaging fast Fourier transform (FFT)
coefficients as features to automatically identify birds
with good recognition performance. Stowel and
Plumbley!!4 use an unsupervised feature learning method,
which can learn features from four different large data-
bases without any classifier knowledge or even the train-
ing labels. This proposed method strongly outperformed
MFCC. On the other hand, Digby et al.lll use species-
specific features to recognize bird calls. The authors ex-
tract five features from each putative call event: the
change in syllable periodicity throughout the call, the de-
gree of frequency modulation within each syllable, the
consistency of amplitude across the syllables, correlated
acoustic energy outside the bandwidth, and a weighted
combination of the five feature scores namely period
score, chirp score, consistency score, bandwidth score,
and combined score. These are then fed into a suitable
classification algorithm for classification. Graciarena et
al.ll6l compute note-loop lattices from bird song wave-
form and extract expected note n-gram statistics from
lattices. Rank normalization is later used to normalize the
feature before training the model.

Ulla et al.ll7l derive a template from ten standardized
samples to perform template matching using the spectro-
gram cross-correlation method. Furthermore, Bastas et
al.['8] propose a novel feature extraction algorithm called
spectrogram based image frequency statistics (SIFS) to
classify bird fight calls. To detect vanellus chilensis
lampronotus bird species using their sounds, Ganchev et
al.l% propose a log-likelihood ratio estimator based on a
Gaussian mixture model-universal background model
(GMM-UBM) with 85.6% recognition accuracy. For the
NIPS4B 2013 competition, Lasseck[20l uses statistical fea-
tures such as file statistics, segment statistics, and seg-
ment probabilities. Later, he improves the model by

adding more features and consequently, wins the Life-
CLEF 2014 Bird task/21].

For the classification stage, a wide range of super-
vised machine learning (ML) and deep learning al-
gorithms have been used, such as the hidden Markov
model (HMM), dynamic time warping (DTW)[0l, Gaussi-
an mixture model (GMM), K-nearest neighbor (KNN)Ul,
support vector machine (SVM)B: 71 artificial neural net-
work (ANN) and convolution neural network (CNN)[: 222,

Most of the existing works have approached the birds
sound classification research from machine learning or
deep learning approaches?, by considering different clas-
sification models. However, it is also vital to handle this
from the signal processing domain's view by looking into
identifying appropriate features of bird sounds that are
able to give better classification results[!3: 15717, 19] The
feature must be easily extractable from the bird sounds
and should be representative of the actual sound, such
that it will provide high accuracy during the classifica-
tion process despite using a simple classification method.
Moreover, it needs to be easily extractable as it is envis-
aged that the classification task will be performed on a
simple portable device with minimal processing power.
This paper proposes a novel audio feature that can be
used for such a purpose.

2 Procedure

Generally, the bird sound classification process fol-
lows several general stages, including data collection, pre-
processing, feature extraction, and finally, the actual clas-
sificationl¥. Fig.1 depicts a general bird sound classifica-
tion process composed of two important processes: train-
ing and testing. As such, the collected data samples have
been divided into two sets: training and testing datasets.
Naturally, all stages of the bird sound classification pro-
cess would affect the overall classification results. It is im-
portant to choose the optimum method at each stage, by
holistically considering the whole classification process.
However, this paper focuses on the feature extraction
stage by finding suitable features from the bird sounds
that would give the optimum classification results. In this
regard, identical segmentation and classification methods
are used in order to make the performance comparison of
different features easier.

Automated energy-based segmentation is used to re-
move unwanted and silent intervals from the collected
bird sound data. Features from these segmented samples
are then extracted to form the feature matrix, which is
then used to train and test a chosen classification model
for the prediction of bird classes.

2.1 Data collection and segmentation
Data collection is an important but time-consuming
process when considering the nature of the bird and its

habitats. New technologies such as wireless acoustic
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sensor networks and autonomous recording units allow re-
searchers to get more data, even within the dense jungles
of the Amazonl?. To allow researchers to focus on classi-
fication tasks, online sound repositories, such as Xeno-
Cantol23], have been made freely available to share their
data and download necessary sounds for their work. Seg-
mentation may be a necessary step in this process in or-
der to obtain the required bird sounds and remove un-
wanted information24. Metric-based, energy-based, mod-
el-based, and hybrid segmentation methods are the avail-
able types of segmentation methods and can either be
performed automatically or manuallyl4l.

Xie et al.l24
methods, albeit for frog calls, into syllable-based and slid-
ing-window based segmentation. Sliding-window based

conveniently categorize segmentation

segmentation necessitates sliding a window across the au-
dio signal, and hence, is relatively more complex. As this
paper focuses on the extraction features, a simpler, auto-
mated energy-based segmentation method, which comes
under the syllable-segmentation method24, has been ad-
opted. The method automatically identifies silence gaps
in the input audio recording by setting a threshold on the
audio energy and segments bird sounds by truncating the
input signal with energy exceeding the set threshold[23,

2.2 Feature extraction

The next step in both the training and testing pro-
cesses is feature extraction. This paper focuses on extract-
ing appropriate features, specifically suitable for differen-
tiating bird sounds. In general, audio features can be ex-
tracted from several domains such as time, frequency,

Segmented

bird sound '

GTCC feature extraction process

Fig. 2
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and cepstral domains. Many researchers have used
MFCC, which is one of the most widely used cepstral fea-
tures, as inputs to their classification model to give signi-
ficant results, despite the fact that it has been initially
developed for speech processingl?6l. In recent years, re-
searchers working in speech-related applications such as
speaker identification have used Gammatone frequency
cepstral coefficient (GTCC). They have shown that
GTCC outperforms MFCC features to give higher accur-
acy results even with noisy datal?l. This paper attempts
to improve GTCC filter banks, specifically for use in bird
sound classification tasks. Furthermore, a novel time-do-
main feature is also introduced, as an additional feature,
in order to enhance prediction accuracy during the classi-
fication stage.

Gammatone frequency cepstral coefficients. In
recent years, GTCCs have been shown to be more robust
to noise in many automatic speech recognition (ASR) sys-
tems?8: 29 and noisy environmental sound-related re-
searchBBY. GTCCs are based on Gammatone filter banks;
these filter banks give a cochleagram as output, which is
the frequency-time representation of the sound signal.
The extraction process for GTCCs is similar to that of
MFCCs, except for the mel filter bank, which has been
replaced by a Gammatone filter bankl5l. GTCCs are bio-
logically inspired modifications employing Gammatone fil-
with bandwidth (ERB)
bands28l. These filter bands are designed to simulate the

ters equivalent rectangular
process of a human auditory system with frequency resol-
ution features and filtering characteristics of the cochlear
basilar membrane. Fig.2 depicts the GTCC feature ex-

traction process.
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The segmented bird sound sample is passed as input
to the GTCC feature extraction process. The segmented
bird sound sample is passed as input to the GTCC fea-
ture extraction process, and it is converted into its fre-
quency domain representation using fast Fourier trans-
form (FTT). Gammatone filter banks are then applied.
Gammatone filters are linear approximations of the filter-
ing function performed by the cochlea in the inner ear,
whereby the ear analyzes the sub-bands more delicately
at higher frequencies. These linear filters are used to sim-
ulate the motion of the basilar membrane within the
cochlea as a function of time. They are described by an
impulse response that produces a gamma distribution and
sinusoidal tone. The output of each filter models the fre-
quency response of the basilar membrane at a particular
place. The filter bank is defined such that the filter cen-
ter frequencies are distributed across frequencies in pro-
portion to their bandwidth, known as the ERB scale,
with the ERB scale approximately logarithmicBl. A
Gammatone filter with a center frequency f. is defined as

g(t) =at® te ™ cos (27 f. + ¢) (1)

where ¢ refers to the time, ¢ is the phase (usually set to
zero), constant a controls the gain, and o defines the
order of the filter.

The attenuation factor of the i-th filter is represented
by the factor b, which is defined in (2). The factor b de-
termines the decay rate of the impulse response across the
filter bandwidth, with the bandwidth of each filter re-
lated to the human auditory critical band.

B 4.37f.
b—25.17 < 3T 1). )

To obtain a representation similar to spectrograms, a
set of Gammatone filters, often referred to as channels,
with different center frequencies, are used to create a
Gammatone filter bank. The Gammatone filter bank
emulates human hearing by simulating the impulse re-
sponse of the auditory nerve fiber, with its shape resem-
bling a tone cos (27fc + ¢) modulated with a gamma

function e~27PH27]

. Finally, the discrete cosine transform
(DCT) of the signal is taken to produce cepstral coeffi-
cients. Equations (1) and (2) define the Gammatone fil-
ter with a center frequency f. and the bandwidth calcula-
tion, respectively. In this paper, the GTCC filter bands
have been modified according to the bird sounds to re-
trieve the sound’s factual information.

Probability enhanced entropy (PEE) feature.
This paper proposes a novel feature called PEE to ad-
vance the birds' sound classification task. When analyz-
ing the sound signals of different species, it has been ob-
served that different bird species have different character-
istics in terms of the randomness of the sound. In order
to capture this difference in characteristics, the PEE fea-

ture has been introduced, which takes into account the
probability of the sound residing at different energy in-
tensities. In general, the more random the input signal,
the higher the entropy. This feature has five significant
steps, as shown in Fig.3. The segmented i-th bird sample
z; (n) is taken as input and normalised between —1 to 1
as follows:

i () = 2D~ i, (3)

Tmax — Tmin

It is then quantized into L decision levels (A1, Ag, -+,
Apr) by dividing the amplitude range for z;, . (n), with
the size of each interval as 2/[, intervals. The number of
occurrences in each level n; (A) is counted, followed by
probability calculation of each level as in (4).

P(Ai) = Ln(iAl) (4)
n (4;)

J

where P (A;) is the probability of occurrence of the i-th
level, and n (A;) is the number of occurrences on the i-th
level. Finally, based on the probability of each level,
entropy is calculated using

L

Fi(S) = — Y P(A)log, (P(4;)) (5)

Jj=1

where F; (S) is the probability enhanced entropy feature
of the sampled bird sound z; (n).

2.3 Classification

Support vector machine (SVM), developed in the
early 1990s as a non-linear solution for classification
tasks, has been used as the classifier model for the classi-
fication of bird sounds. Admittedly, SVM is not the most
advanced classification method. However, its robustness
against error, its ability to learn well even with fewer fea-
tures, and lower computational complexity compared to
other ML methods, such as neural networks, are just
some of the reasons for choosing SVM for the classifica-
tion task. Support vector classification (SVC) attempts to

Segmented bird Normalization Quantization
sound
Count the number
of occurances
in each level
Probability Compute Probability
enhanced entropy +——— calculation
feature entropy of each level

Fig. 3 Probability enhanced entropy feature extraction process
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find the decision function that can adequately separate
data with a perfect generalization.

SVM algorithms use a set of mathematical functions
defined as their kernel, which takes data as input and
transforms it into the required formB2.. The kernel func-
tions then return the inner product between two points in
a suitable feature space. Equation (6) defines the kernel
K (3),

1,
0,

if 7] <1
otherwise.

K (@)= { (6)

Different SVM algorithms use different types of ker-
nel functions, including linear, non-linear, polynomial, ra-
dial basis function (RBF), and sigmoid. The well-known
polynomial kernel function has been used in the pro-
posed methodology®3l and formally defined in (7).

d
Ky (z,¢) = (x:r ><ci+1) (7)
where z; is a feature matrix and c¢; is the class vector of
two input spaces, and 1 is the constant that allows trade-
offs to influence the higher order and lower order. Since
the polynomial kernel function of order d =3 is used in
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Table 1 List of Bornean birds considered for this paper

Class number

Bird name

Abbreviation used
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© 00 9 O Uk W N = O

20

Bornean blue flycatcher
Bushy crested hornbill
Black copped white-eye
Blue-headed pitta
Bornean spider hunter
Bornean tree pie
Bornean whistler
Eagle (Crested serpent)
Golden naped barbet
Green pitta
Golden whiskered barbet
Rhinocerous hornbill
Kingfisher (collared)
Malaysian banded pitta
Malaysian partridge
Malaysian pied fantail
Savanna nightjar
Owlet (Collared)
Pitta (Hooded)
White-crowned forktail

BBF
BCH
BCW
BHP
BSH
BTP
BW
EAGLE
GNB
GP
GWB
RH
KING
MBP
MP
MPF
SN
OWLET
PITTA
WCF

Confusion matrix
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Fig. 4 Confusion matrix of testing results based on GTCC features for twenty birds

@ Springer



R. Murugaiya et al. / Probability Enhanced Entropy (PEE) Novel Feature for Improved Bird Sound Classification 57

this paper, the classifier can be known as an SVM
classifier with a cubic kernel function and can be defined
as (8).

Ky (zi,¢c) = (m;r ><ci+1)3. (8)

3 Results and discussions

Twenty (C = 20) Bornean bird species, listed in
Table 1, have been chosen. Bird sound recordings were
collected from an online Xeno-Canto database, with the
collected data separated into training and testing data-
sets based on an 80:20 ratio. Forty and ten samples of
each bird species have been used to train and test the
model, respectively, giving a total of 1000 samples con-
sidered.

GTCC featuresY have been extracted from the seg-
mented bird sample and then used to train and test the
SVM classifier. As a result, the SVM classifier produces
81% accuracy, with some low-class wise prediction accur-
acy, as shown in Fig.4. Consequently, the covered fre-
quency range has been analyzed to study in-depth the
GTCC feature, whereby it has been identified that the
frequency range covered by the GTCC feature does not
cover the bird sounds’ frequency range since the funda-
mental frequencies (f,) observed in birds are comparat-
ively high compared to the fundamental frequencies of a
human voicel3s). Furthermore, the center frequency (F.)
plays a major role in the coverage of the frequency range
of the signal. Past research works have highlighted that
bird sound has a wide range of fundamental frequencies
fo between approximately 100-12 000 Hz[3¢l. Therefore, it
is vital to consider the entire bird frequency range when
considering more birds, to represent the bird sounds.

Accordingly, the GTCC filter bank range has been im-
proved along with the center frequency. The bandwidth
(BW) has changed based on the improvement in GTCC,
and the comparison is shown in Table 2. When F. in-
creases, BW also increases considerably. The original
GTCC has 32 filter bands, while the modified GTCC has
34 filter bands, to extract useful information from the
bird sounds. In general, the first few coefficients cover
most of the information of the signal. Thirteen (M = 13)
coefficients have been extracted as the first step from all
the segmented samples, to make the training feature mat-
rix X with size 800 x 13 and testing feature matrix Y
with size 200 x 13. This training matrix is used to train
the SVM classifier, while the testing matrix Y is used to
test the trained model.

Fig.5 shows the confusion matrix based on the modi-
fied GTCC features, giving overall prediction accuracy of
86% prediction for the twenty bird species. Of the twenty
bird species, six bird species: BSH, GP, GWB, RH, SN,
and WCF, have been predicted with 100% accuracy. Oth-
er bird species, including BSH, BCW, BSH, KING, MBP,

Table 2 Comparison of the center frequency (Fe) and
bandwidth (BW) change between GTCC and modified GTCC

GTCC Modified GTCC
Number of filter bands
F. BW F. BW
1 50 30.6 100 36.2
2 82.2 34.2 138 40.4
3 118.1  38.1 181 45.0
4 158.1 42.55 228 50.2
5 202.7 47.46 281 56.1
6 252.5  52.9 340 62.6
7 308.1 59 406 69.8
8 370 65.8 479 77.9
9 439.1 734 561 86.9
10 516.2  81.9 653 97
11 602.2 91.3 455 108.2
12 698 101.9 869 120.7
13 805 113.7 996 134.7
14 924.2 126.8 1138 150.3
15 1057.3 141.4 1296 167.7
16 1205.6 157.7 1473 187.2
17 1371.1 175.9 1670 208.8
18 1555.7 196.2 1890 233.0
19 1761.6 218.9 2135 260.0
20 1991.2 244.1 2409 290.1
21 2247.3 2723 2714 323.7
22 2532.9 303.7 3055 361.2
23 2851.5 338.8 3435 403
24 3206.9 377.8 3859 449.7
25 3603.2 421.4 4333 501.7
26 4045.3 470.1 4861 559.8
27 4538.4 524.3 5450 624.7
28 5088.3 584.8 6108 697
29 5701.7 652.2 6 842 7.7
30 6385.8 727.5 7661 867.8
31 7148.9 8114 8574 968.2
32 8 000 905 9594 1080.4
33 - - 10 731 1205.5
34 - - 12 000 1345

and OWLET birds, reported 90% accuracy. Two samples
of birds for GNB, MP, and PITTA have been predicted
wrongly, while three samples of birds BBF, BHP, BW,
and MPF have also been wrongly predicted. The lowest
prediction accuracy is for EAGLE bird species, with a
prediction accuracy of 60%.

The novel feature, probability enhanced entropy pro-
posed in this paper, is also extracted from both the train-
ing and testing datasets and then added as an additional
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Confusion matrix
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Fig.5 Confusion matrix of testing results based on modified GTCC features for twenty birds

feature into the feature matrix to give a new training fea-
ture matrix (X,) with size 800 x 14 and testing feature
matrix (Y;) with size 200 x 14. Fig.6 shows the predic-
tion results of twenty birds with the modified GTCC fea-
ture combined with the proposed PEE feature.

As demonstrated in Table 3, the novel PEE feature
combined with the modified GTCC features improved the
overall prediction accuracy from 86% to 89.5%. Particu-
larly, the prediction accuracy of EAGLE bird is im-
proved significantly from 60% to 80%. Also, seven bird
classes are predicted with 100% accuracy, and seven more
classes are predicted with 90% accuracy. BBF, GNB, and
MPF also show significant improvements in terms of pre-
diction accuracy.

GTCCB and the other two well-known cepstral fea-
tures, namely, MFCC4 69 and LPCC[912] have also
been modified based on the characteristics of bird sounds
and used to classify birds separately. Table 4 compares
prediction results with and without improvements to cep-
stral features, along with the novel PEE feature. It
clearly shows that the cepstral feature's modification pos-
itively impacts classification results with all three cep-
stral features. Also, the proposed probability enhanced
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entropy feature clearly improves the prediction results
significantly. Modifying GTCC, MFFC, and LPCC using
the appropriate frequency bands specific to bird sounds
improved prediction accuracies from 81%, 76% and 72.5%
to 86%, 77.5% and 74.5%, respectively. Appending the
novel PEE feature improves prediction accuracy even fur-
ther to 89.5%, 81.5%, and 79%, respectively. It is high-
lighted that using the modified GTCC combined with the
PEE as input features to the classifier gives the highest
accuracy of 89.5%.

4 Conclusions

Twenty bird sounds of Bornean species have been col-
lected from an online repository and segmented based on
their energy signals. Once unwanted components of the
sounds have been removed, the samples have been di-
vided into training and testing datasets, in the ratio of
80:20. An extra focus has been given to the feature ex-
traction process, as it is a vital step in the classification
task’s success and has a huge impact on prediction accur-
acy. In recent audio-based research works, researchers
have provided evidence that GTCC outperforms MFCC
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Fig.6 Confusion matrix of testing results based on modified GTCC features combined with the novel PEE feature for twenty birds

Table 3 Comparison of class-wise prediction Table 4 Comparison of prediction accuracy of features
accuracy of twenty birds considered in this paper
Prediction accuracy Prediction accuracy Features used Prediction accuracy (%)
Bird name with modified GTCC  with modified GTCC
(%) and PEE (%) MFCCI# -] 76
BBF 70 80 Modified MFFC 77.5
BCH 90 90 Modified MFCC with PEE 81.5
BCW 90 90
BHP 70 70 LpCco 72.5
BSH 90 90 Modified LPCC 74.5
BTP 100 100 Modified LPCC with PEE 79
BW 70 70
EAGLE 60 80 GTCCR 81
GNB 80 100 Modified GTCC 86
GP 100 100 Modified GTCC with PEE 89.5
GWB 100 100
RH 100 100
KING 90 90 in audio speech processing applications. For this paper,
MBP 90 90 the GTTC features have been modified by considering
I\I:I/IPPF ig :8 the audio characteristics of bird sound. After extracting
SN 100 100 the modified GTCC features from the bird sound
OWLET 90 90 samples, an SVM classifier has been used to train and
PITTA 80 90 then predict unknown bird sounds. For twenty bird spe-
WCF 100 100 cies, 86% accuracy has been achieved. Furthermore, this
Total accuracy 86 89.5

work advances further the classification accuracy by in-
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troducing a novel PEE feature. Using the modified
GTCC together with the novel feature, prediction accur-
acy increases to 89.5%.

Similar modifications to MFCC and LPCC filter-bank
bandwidth,
sounds, have also been shown to improve performance

considering the frequency range of bird

results. This is significant not only for bird sound classi-
fication but also for any audio feature extraction process,
as tuning fundamental frequency range to that of the au-
dio signal under consideration can potentially improve
the process. Furthermore, using the novel PEE feature
also has the potential to improve performance even fur-
ther.

A public repository with the PEE feature extraction
implementation can be found in the following link:
https://github.com/ramashini/PEE_acoustic_feature_ex-
traction.git.
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