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ABSTRACT

With the popularity of social media applications, large amounts

of social images associated with rich context are available,
which is helpful for many applications. In this paper, we
propose a Low Rank distance Metric Learning (LRML) al-
gorithm by discovering knowledge from these rich contextu-
al data, to boost the performance of CBIR. Different from
traditional approaches that often use the must-links and
cannot-links between images, the proposed method exploits
information from the visual and textual domains. We as-
sume that the visual similarity estimated by the learned met-
ric is expected to be consistent with the semantic similarity
in the textual domain. Since tags are usually noisy, mis-
spelling or meaningless, we also leverage the preservation of
visual structure to prevent overfitting those noisy tags. On
the other hand, the metric is straightforward constrained
to be low rank. We formulate it as a convex optimization
problem with nuclear norm minimization and propose an
effective optimization algorithm based on proximal gradient
method. With the learned metric for image retrieval, some
experimental evaluations on a real-world dataset demon-
strate the outperformance of our approach over other related
work.
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Figure 1: The framework for image retrieval based
on the learned metric. The distance metric is
learned from social data with rich context and then
applied to content-based image retrieval.

Content-based
Image Retrieval

1. INTRODUCTION

With the advance of digital cameras and high quality mo-
bile devices as well as internet technologies, there are in-
creasingly large amounts of images available on the web
such as Flickr, Zooomr and Picasa, which necessitates ef-
fective and efficient image retrieval techniques [14]. As one
paradigm of image retrieval, Content-Based Image Retrieval
(CBIR) typically ranks images according to the visual sim-
ilarities measured with Euclidean distance [13]. However,
its retrieval performance is often unsatisfied due to the well-
known semantic gap between visual representation and se-
mantic meaning [11, 9, 7, 16]. Fortunately, lots of image
sharing sites provide us with plentiful community contribut-
ed resources, in particular, images and their associated tags,
from which raw correspondences between images and tags
are available but possibly noisy. Consequently, how to learn
an appropriate distance metric by leveraging the available
contextual information is essential to alleviate the semantic
gap in CBIR, which is also our focus in this paper.

So far, distance metric learning has been extensively stud-
ied in machine learning and data mining work [5, 1, 4, 15],
which usually exploits some side information given in the
form of either class labels, or pairwise constraints indicat-
ing whether two simples are similar (must-link) or dissimilar
(cannot-link). The side information is usually collected from
users as a kind of exact knowledge. This makes it difficult
to be applied in the case of web application provided with
a large-scale but noisy collection. Some methods focus on



feature selection to measure sample similarity [6, 8]. There
are some work [10, 15] devoted to learn distance metric by
leveraging community contributed resources. As one of most
related to our work, multi-label distance metric learning [10]
is proposed to learn a metric from social media data. It con-
siders the user tags and visual content by two linear trans-
formation matrices, which transform the visual features and
text features into two latent spaces, respectively. These two
latent spaces are assumed to have some common structures.
Due to the different characteristics of the both features, such
assumption may be ideal and strict too much.

Based on the above considerations, in this paper, we pro-
pose a robust low-rank metric learning algorithm by lever-
aging social media, and then apply it to image retrieval, as
shown in Fig. 1. We investigate the problem from the fol-
lowing aspects. First, a more reasonable assumption about
the co-constraints from the visual and tagging information
are presented. Specifically, we assume that the image simi-
larities with the learned metric should be consistent with the
semantic similarities according to the raw tagging informa-
tion of images. Second, considering the inevitable noise in
tagging information, the learned metric is constrained not
to deviate from the visual structure, which is regularized
with the preservation of typical Euclidean distance. Third,
as indicated in the paper title, the learned metric should be
(approximately) low rank to better reflect the intrinsic struc-
ture of data. Finally, the proposed problem is formulated as
a convex optimization problem with nuclear norm minimiza-
tion and is solved based on proximal gradient method.

2. LOW RANK METRIC LEARNING

In this section, we first define some notions and problem
setting in Section 2.1. Then we elaborate our formulation in
Section 2.2 and finally the proposed optimization algorithm
is detailed in Section 2.3.

2.1 Problem Setup

Throughout this paper, we use bold uppercase characters
to denote matrices, bold lowercase characters to denote vec-
tors. For any matrix A, a; means the i-th column vector
of A, ||[A]|r denotes the Frobenius norm of A and Tr[A] is
the trace of A if A is square. AT denotes the transposed
matrix of A.

In metric learning problems, we are often given a set of
n data points X = [x1,Xa2,- -+ ,X,], where x; € R! is the |
dimensional visual feature vector. In our problem, there ex-
ist textual representations of samples Y = [y1,y2, - ,¥n]-
Here y; € R™ is the m dimensional textual feature vector,
which is binary or calculated by TF-IDF model. The goal
is to compute the distance function dm(x;,x;):

dv(xi,%5) = [|xi — x5]lm = /(% — %) TM(x; — x;) (1)

Here M € R'*! is the Mahalabobis metric, a symmetric ma-
trix. To satisfy the properties of metric, i.e., non-negativity
and triangle inequality, M must be positive semi-definite
(p.s.d.), that is M > 0. Our goal aims at learning an opti-
mal M by leveraging the knowledge of the visual and textual
spaces. Note that when M is equal to the identity matrix I,
the distance in Eq. 1 reduces to the Euclidean distance.

2.2 Formulation

We now elaborate the formulation of the proposed low
rank metric learning method. The main idea is that the
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visual similarity computed by the learned metric is expected
to be consistent with the semantic similarity in the textual
domain and should not deviate from the original similarity
in the Euclidean space. To this end, we formulate our metric
learning problem into the following optimization framework.

M = arg mNiIn FM)+R(M) st. M>0 (2)

F(M) is the objective function defined over the given data
to preserve the similarity in the textual space and the visual
space simultaneously. R(M) is the regularization term for
the low rank constraint. The learned metric can not only
introduce the semantic information but also prevent overfit-
ting the noisy tags in the real-world problem. In practice,
each valid metric M can be decomposed as M = WW7T,
where W = [wi,wz,---,w,] € R™*". Hence, W can be
interpreted as a linear mapping function: R! — R”.

First, to constrain the consistency of the pairwise similari-
ty in the mapping space and the textual space, we encourage
the pairwise similarities of images to be similar across these
two spaces. For this, we propose the following cost function
as a measure of disagreement between the structures with
pairwise similarities.

()
Here ¢(-,-) is a loss function. K is the similarity matrix
for the corresponding space. We choose linear kernel, i.e.,
. X . Yi Yj
kv (yo.¥5) = TilaviTs

textual space. In the mapping space, the Gaussian kernel
is adopted to measure the similarities, i.e., km(x;,x;) =

min E(KM, Ky)
M

as the similarity measure in the

e~ Cxi)) where dy (xi,%;) = v/(xi — %) TWWT (x; — x;)
= |[WT(x; — x;)|. By minimizing the above disagreemen-
t, we try to keep the semantic similarity under the learned
metric. The pairwise similarities across two spaces are guar-
anteed to be consistent.

However, tags of social images are created by users, which
leads to that the tags are noisy, subjective and irrelevant.
This may cause that the learned metric M is inaccurate and
overfits noisy semantic similarity. To address this problem,
we employ the visual content of images to prevent overfitting
the noisy tags and enhance generalization and robustness
of the learned metric. We expect that the learned metric
enables to preserve the original visual similarity. Specifically,
we aim to regularize M as close as possible to the identity
matrix I. In this work, we adopt Bregman divergence [4] to
measure the closeness between M and I as

DMI[T) = g(M) — g(I) = (V4(I), M = T), (4)

where g(-) is a strict convex and continuously differentiable
function. In this work, we use the log det function to define
g(+), i.e., g(M) = —log det(M). Consequently, we have

D(M||I) = Tr(M) — log det(M) — n. (5)

Combining Eq. 3 and Eq. 5, we obtain:

F(M) = %E(KM, Ky) + AD(M]|T). (6)
Here « and A are two trade-off parameters. The above func-
tion is convex, sine the first term and the Bregman diver-
gence is convex obviously.

For the regularization term R(M), we constrain it to be
low rank and it is intuitive to minimize its rank. Howev-
er, rank(M) is a non-convex function with respect to M



and hard to optimize due to the combinational nature. To
address this problem, we replace rank(M) with its nuclear
norm, which is a surrogate of matrix rank and convex [2].
The nuclear norm of M is defined as the sum of its singu-
lar values, ie., M|« = > I, 0s(M), where o; is the i-th
singular value of M and r is the rank of M. Hence, we have

R(M) = [[M]].. (")

Substituting F(M) and R(M) by the above definitions, our
objective function in Eq. 2 can be rewritten as:

min %Z(KM, Kvy) + M(Tr(M) — log det(M)) + [ M|, (8)
Given a convex loss function, we can see that this objective

function is convex with respect to M and has a clear closed
form. We will detail its optimization in the next subsection.

2.3 Optimization Algorithm

To solve the optimization problem (8), we first decide the
function £(-,-). In this work, we use the function ¢(z,y) =
(x — y)? to measure the disagreement. To optimize the
above objective function with the nuclear norm regulariz-
er, we utilize the proximal gradient method [12]. Instead of
directly minimizing our objective function, proximal gradi-
ent algorithms minimize a sequence of separable quadratic
approximations to it by Taylor expansion at current value of
M = M. and Lipschitz coefficient «, denoted as Q(M, M ).

Q(M,M,) = F(M,) + (VF(M,), M — M,)
a
+§||M*MTH%+I|M||* )
Here VF(M,) is the gradient computed as follows.
VEM,) =5 Y [(km(xi,%;) — ky (v, ¥5))kna (xi, ;)

i,5=1

X (= (xi = 35)" (xi = 35))| + AT =M"")  (10)
In the above derivation, we use w = M~! and

agllaM] =1 Let G- = M. — o 'VF(M,). We obtain

Q(Mv MT)

[0
SIM = G [} + [M].

(11)

. . o . g . 2
M= argml\}an(M,MT) = argmin o IM — G-||7 + ||M]]«.
(12)

1
+ (M) - 5o [VFM) |,

M can be updated by minimizing Q(M, M) with fixed M,
iteratively. We can see that M can be learned by a fixed-
pointed iterative method involving two alternating steps:

(1) (gradient step) G, = M, —a 'VF(M,),
(2) (shrinkage step) M,41 = Su(G-)

In the shrinkage step, S (G~) is a matrix shrinkage operator
on G,. This can be solved by singular value thresholding
since G is a symmetric and p.s.d. matrix. Letting G, =
UAUT be the eigenvalue decomposition of G, Su (G+)
Umax{A - £, 0}U”, where max is element-wise. This step
truncates any eigenvalue less than £ to 0, which reduces the
nuclear norm as well. We summarize the proximal gradient
method based method in Algorithm 1.
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Algorithm 1 Proximal Gradient Method for LRML
Input:
Visual Representation X and Text Representation Y;
Parameters v and .

1: 7 = 1; Initialize M, as an identity matrix;
2: repeat
3: Initialize a = ap;
4: repeat
5: Set G =M, — a_1VF(MT);
6: Decomposition G, = UAUT
7 Update M,;1 = Umax{A — £ 0}U";
8: Update a = na
9: until F(Mr41) + [[Mr ][« < Q(Mry1, M)
10: T=7+1,
11: until Convergence criterion satisfied
Output:

Metric M = M,

3. EXPERIMENTS

In this section, we evaluate LRML on the NUS-WIDE-
Lite dataset [3], which is a challenging collection of real-
word web images from Flickr. These social images contain
rich information, including user tags and other metadata.
This dataset contains 55,615 images with 5,018 unique tags.
The ground-truth annotations over 81 concepts have been
provided. For visual feature representation, we use fea-
tures provided by the dataset: 64-D color histogram (LAB),
144-D color auto-correlation (HSV), 73-D edge direction his-
togram, 128-D wavelet texture and 225-D block-wise color
moments (LAB). We sequentially combine these 5 groups in-
to 634-D features. For the text domain, the textual feature
vectors are represented by binary vectors. For performance
evaluation, this set is randomly divided into three parts:
5,000 images for learning M, 2,000 images as query images
and the remaining images as retrieval database.

We apply the learned metric to image retrieval and adopt
Normalized Discounted Cumulative Gain at top £ (NDCGQk),
a ranking-based evaluation measure, to evaluate the retrieval
performance. It measures the different levels of relevance
and prefers the retrieved ranking results that follow the
actual relevance order. Due to the space limit, we omit
the definition of NDCGQ¥k (please refer to [10]). To evalu-
ate the entire ranking list, we use Average Precision (AP),
a good combination of precision and recall, based on the
groundtruths over 81 concepts. If the returned image has a
common concept with the query image, we treat it relevan-
t. Mean Average Precision (MAP) is obtained by averaging
the APs on all test images.

The two parameters v and 8 are important, which trade
off the importance of visual information and tag information.
We tune them in the range {0.001,0.01,0.1,1,10} by cross
validation. For MLML, we also tune its trade-off parameter
in the same range as ours by cross validation.

Next, we compare the proposed method with the state-
of-the-art algorithms: 1) Euclidean (Eu), 2) Relevant Com-
ponent Analysis (RCA) [1], 3) Neighborhood Components

Analysis (NCA) [5] and 4) Multi-Label Metric Learning (MLM-

L) [10]. The compared experimental results are shown in
Table 1 and Table 2 in terms of NDCGQ@Qk and MAP, re-
spectively. From the results, first we can see that all the dis-
tance metric learning approaches significantly outperforms



Table 1: NDCG@Q@k of our proposed LRML and the
compared algorithms.

NDCG@k Eu RCA NCA | MLML | LRML
5 0.4240 | 0.4241 | 0.4356 | 0.4506 | 0.4549

10 0.4451 | 0.4461 | 0.4502 | 0.4661 | 0.4832

50 0.4689 | 0.4701 | 0.4721 | 0.4821 | 0.4966
100 0.4829 | 0.4843 | 0.4842 | 0.5213 | 0.5488
500 0.5359 | 0.5369 | 0.5350 | 0.5473 | 0.5793
1000 0.5647 | 0.5674 | 0.5713 | 0.5938 | 0.6199

Table 2: MAP of our proposed LRML and the com-
pared algorithms.

Eu
0.6791

RCA
0.6798

NCA
0.6812

MLML
0.7272

LRML
0.7508

MAP

the Euclidean distance. It does not utilize any tagging infor-
mation. This shows that the distance metric learning using
tags is beneficial and important for image retrieval. Second,
the proposed metric learning algorithm achieves the overal-
I best performance among other metric learning methods.
This demonstrates the advantages of our method to learn a
low rank distance metric leveraging the visual and textual
information. Finally, compared with MLML, our method
gains better results, which reveals that the pairwise similar-
ity preservation across domains and low rank constraint are
suitable to learn a semantic metric.

Finally, the qualitative image retrieval performance achieved

by different methods are evaluated by randomly choosing
several test images. Figure 2 illustrates top 5 relevant im-
ages returned by different distance metrics. The irrelevant
images are marked with red boundary. We can observe that
our metric learning method often achieves better quality.

4. CONCLUSIONS

In this work, we study the metric learning problem to
boost the performance of CBIR, and propose a low rank dis-
tance metric for social image retrieval by exploiting knowl-
edge from community contributed images associated with
tags. The learned metric can preserve the sematic similari-
ty in textual space and the visual similarity in visual space,
which can enable to learn a robust distance metric. The pro-
posed problem is formulated as a convex optimization with
the nuclear norm regularization and then an effective opti-
mization method is provided. Finally, We apply the learned
metric to image retrieval and conduct extensive experiments,
which show that our method is effective and promising.
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