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Abstract—With the permeation of Web 2.0, large-scale user
contributed images with tags are easily available on social
websites. How to align these social tags with image regions
is a challenging task while no additional human intervention is
considered, but a valuable one since the alignment can provide
more detailed image semantic information and improve the
accuracy of image retrieval. To this end, we propose a large
margin discriminative model for automatically locating un-
aligned and possibly noisy image-level tags to the corresponding
regions, and the model is optimized using concave-convex
procedure (CCCP). In the model, each image is considered
as a bag of segmented regions, associated with a set of
candidate labeling vectors. Each labeling vector encodes a
possible label arrangement for the regions of an image. To make
the size of admissible labels tractable, we adopt an effective
strategy based on the consistency between visual similarity and
semantic correlation to generate a more compact set of labeling
vectors. Extensive experiments on MSRC and SAIAPR TC-12
databases have been conducted to demonstrate the encouraging
performance of our method comparing with other baseline
methods.

Keywords-Image Region Annotation; Partially-supervised
Learning

I. INTRODUCTION

There are explosive photo sharing websites with large-

scale image collections available online, such as Flickr 1,

Picasa 2, and Zooomr 3. These Web 2.0 websites allow

users not only share their photos, but tag and comment their

interested ones. How to manage and index the huge image

resources efficiently is a challenging problem. Automatic

image annotation is the basement of image index, search

technologies and other applications. Traditional image-level

annotation methods focus on assigning labels to entire

images and can hardly deal with the diversity and vari-

ation of web image content. Different from image-level

annotation, image region annotation by learning an explicit

correspondence between image regions and semantic labels

within an image is more valuable because it can provide

more detailed, reliable image annotation results and facilitate

image retrieval based on tagging information.

In most public image collections, tags are provided to

indicate the semantics of whole images rather than individual

1http://www.flickr.com
2http://picasa.google.com
3http://zooomr.com

regions. Thus, compared to the traditional image annotation

problem, image region annotation is more difficult due to

the lack of training sets with region-level ground-truth.

Furthermore, the web images usually confront with noisy la-

bels which significantly limit the performance of traditional

image region annotation methods.
In this paper, we formulate the task of image region

annotation as a partially-supervised learning problem where

instances and labels come in the form of bags with asso-

ciated candidate labeling vector sets. Each labeling vector

encodes a possible combination of image-level labels for

corresponding regions and only one of the candidate labeling

vectors is the correct one. Since the size of all possible

labeling vectors is a value about numbers of regions and

tags, naive generation of the candidate labeling set becomes

intractable.
To overcome the above issues, we formulate the partially-

supervised learning problem as a large margin discriminative

model, and propose an efficient method to obtain a compact

candidate labeling set. Apparently, only a subset of all

possible labeling vectors should be maintained. Our method

is based on the assumption of the correlation consistency

between visual similarity and semantic relevance for image

regions. This notion can also be understood as that, visual

similar regions often reflect similar semantic themes, the

visual similarity can be used to approximate the extent of

two regions have same labels. Based on this view, we present

an explicit formulation about the correlation consistency to

obtain reliable correspondences between image regions and

tags. The correspondences ambiguities between regions and

labels are greatly reduced. Exploring the obtained candidate

labeling vectors as a partially supervision, a large margin

classifier is trained and solved with the concave-convex

procedure (CCCP). In addition, we consider the fact that

tagging a region with a relevant tag to the ground-truth is

more favorable than with an irrelevant tag, and adopt a tag-

correlation-based soft loss function to quantize the influences

from the relevant extent between the estimated tag and the

ground-truth for each region. Figure 1 shows the flowchart

of the proposed method.
The main contributions of this paper are summarized as

follows.

• We formulate the task of tag alignment with image
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Figure 1. This is the flowchart of proposed algorithm. In figure (c) the edge marked with green represents visual similarity and semantic similarity is
marked with pink.

regions as a partially-supervised learning problem.

• We present an automatic method to generate concise

and compact candidate labeling sets.

• We adopt a tag-correlation-based soft loss function

which is proved to be effective for image region an-

notation task.

The rest of this paper is organized as follows. Section

2 overviews some related work. Section 3 presents the

partially-supervised learning framework. Section 4 elabo-

rates an effective method to generate compact candidate

labeling sets based on the correlation consistency. The

experimental results are reported in Section 5, followed by

the conclusions in Section 6.

II. RELATED WORK

In this section, some related works about image region

annotation and partially-supervised learning methods are

reviewed.

The classical methods about image region annota-

tion can be roughly divided into two categories: super-

vised and partially-supervised. Several supervised solution-

s [1], [2], [3], [4] to this problem have been proposed

using RF (Random Field) formulation and achieved good

performance. The main difference between semi-supervised

and partially-supervised is, semi-supervised learning means

whether labeled or unlabeled samples are explored dur-

ing the learning process, in which the labels are correct.

Partially-supervised learning means that one sample can

have several candidate labels but of which only one is the

correct one. For partially-supervised methods, [5]. In [6],

a bi-layer coding formulation was proposed for uncovering

how an image or semantic region can be robustly recon-

structed from the over-segmented image patches of an image

set. The method in [7] is also well developed from sparse

coding, it not only considers the intrinsic correlations among

encoding regions and also integrates spatial correlations

among basic regions.

For partially-supervised learning, in [8], the author formu-

lates the learning problem as partially-supervised multiclass

classification where each instance is labeled ambiguously

with more than one label. Luo et al. [9] generalize these

works to the cases where instances and possible labels come

in the form of bags associated with candidate labeling sets,

this work is the most relevant to ours. Since image region

annotation is a more challenging task on either the scale

of labeling instances and labels or the complex correlations

among them, we make the following improvements : 1) an

automatic method to generate the candidate labeling sets is

proposed, instead of employing heuristic rules in [9]; 2) the

image visual similarity and the tag relevance are exploited

in our solution, while the independence assumption is given

in [9]; 3) a more favorable loss function by considering the

above correlations is presented in this paper which is more

suitable for the image region annotation task.

III. LEARNING WITH PLAUSIBLE LABELS

A. Formulation

In our problem, the instances and candidate labels come

in the form of bags with associated candidate labeling sets

like {Xi, Ci}Ni=1. Xi is a bag containing Mi instances

{xi,m}Mi
m=1 , xi,m ∈ Rd, ∀i = 1, ..., N,m = 1, ...,Mi. Let

Y = {1, 2, ..., L} denote the label space. Ci = {ci,l}Li

l=1

is the associated candidate labeling set of image Xi which

includes Li possible label vectors, each ci,l ∈ YMi is a

possible combination of Mi labels for the Mi instances in

the i-th bag. The label vector can encode the relationships

between instances and their labels explicitly. Considering an

heuristic way, given an image containing two regions “sky”

and “grass”, prior knowledge tells us that the two regions

cannot be labeled with the same label because of their

distinctions on visual similarities. The candidate labeling
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set C can be generated like this: ci,1 ={“sky”,“grass”},
ci,2 ={“grass”,“sky”}. However, this way to encode the

relationships is too simple and unreliable. In subsection 4.1,

we will introduce our strategy to generate candidate labeling

set in details.

At first, we define he compatibility of image X and label

vector y as follows:

f(X, y;w) =
M∑

m=1

w · φ(xm)⊗ ϕ(ym)

+α ·
M−1∑
i=1

M∑
j=i+1

V (xi, xi) · T (yi = yj)

(1)

where X = {x1, ..., xM} and y = {y1, y2, ..., yM} is

the label vector. φ and ϕ are the feature and label space

mapping [10], and ⊗ is the Kronecker product. w is the

model parameter. V (xi, xj) indicates the visual similarity

of region xi and xj . T is an indicator function , where

T = 1 means yi = yj , while T = 0 means it does not.

α is a weight parameter that indicates the importance of the

second component against the first term and we empirically

set α = 1.

The first component measures the total compatibility of

mapping all image regions to their corresponding labels. The

second component incorporates the pairwise relationships

between image regions, which encourages the semantic

cohesion of similar regions. A gaussian function with a

radius parameter σ is used to compute visual similarity :

V (xi, xj) = exp(−‖xi − xj‖22
σ2

), (2)

‖ · ‖2 denotes the l2-norm. σ is set as the median value of

all pairwise l2-norm between the regions.

Loss function Δ(ŷ, y) is introduced to measure the dis-

tance of the prediction label vector ŷ and the true label vector

y for the bag . Then the model parameter w is learned by

minimizing the average loss on the training set {Xi, Ci}Ni=1.

In the case of 0-1 loss, the loss function simply statistics the

number of wrongly classified instances in a bag:

lΔ(ŷ,y) =
M∑

m=1

Δ(ŷm, ym), (3)

Δ(ŷm, ym) is 1 when ŷm = ym else is 0. Because the real

label vector y is ambiguous while the candidate labeling set

C is available , the loss function should be redefined as:

lΔ(ŷ, C) = min
c′∈C

lΔ(ŷ, c
′) (4)

Direct minimizing this loss is very hard so [9] uses an

upper bound function to replace the ambiguous loss:

lmax(X,C;w)

= |max
c/∈C

(lAΔ(c, c) + f(X, c;w))−max
c∈C

f(X, c;w)|+(5)

During test period, the label vector for a bag is predicted

according to the rule:

ŷ = argmax
y∈C

f(X, y;w). (6)

B. Learning Objective

We learn the model parameters w by solving the following

optimization problem:

min
w

λ

2
‖ w‖22 +

1

N

N∑
i=1

lmax(Xi, Ci;w), (7)

Here, we empirically set λ = 1
N in the experiment.

An effective method to solve the optimization problem is

the Concave-Convex Procedure(CCCP) [11] algorithm. The

basic idea for CCCP algorithm is to substitute the concave

part of the objective function with its first order Taylor

expansion at the initial value at this iteration. At the r-th

round, we use the following equation to replace the non-

convex part maxc∈Ci f(Xi, c;w) in the loss function:

max
c∈Ci

f(Xi, c;w(r)) + (w− w(r)) · ∂(max
c∈Ci

f(Xi, c;w)) (8)

later the stochastic subgradient descent algorithm is used to

solve w(r). More details about the solution please refer to

[9].

C. Soft Loss function

As mentioned above, w is obtained by minimizing the

average loss on the training data. In the case of 0-1 loss,

the cumulative loss is exactly the number of misclassified

instances in the bag. However, if the distribution of the

class labels is nonuniform and interdependent, 0-1 loss is

arbitrary to measure the real loss of misclassifying regions.

Moreover, co-occurrence relationships among certain class

labels should be considered to enhance the performance.

We define a soft loss function to quantize the influences

from the relevant extent between the estimated tag and

the groundtruth for each region. Consider the label co-

occurrence matrix U :

U(m,n) =
corr(m,n)

corr(m) + corr(n)− corr(m,n)
, (9)

where corr(m,n) is the number of images in the training

set in which both label m and label n co-occur. corr(m) is

the number of images in the training set in which label m
occurs. The higher U(m,n) means label m and label n tend

to appear together more frequently. The soft loss function is

defined as following:

lΔ(ŷ,y) =
M∑

m=1

Δ(ŷm, ym) =
M∑

m=1

e−U(ŷm,ym) (10)

In the experiments, we adopt the soft loss function and

compare it with the 0-1 loss function.
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IV. CANDIDATE LABEL SETS GENERATION

In this section, we will introduce how to generate candi-

date labeling sets, which is also the main contribution of this

paper. Intuitively, only a subset of all possible label vectors

should be exploited. Big scale of candidate labeling sets tend

to include impossible label vectors which will degenerate

training and cost too much time as well.

Figure 2. A simple example: visual similar regions may share similar
confidence distribution over labels.

The key assumption is that similar regions usually tend to

have large overlap in their semantic labels. Figure 2 illus-

trates this notion. Assume the region collections containing

K regions {x1, ..., xK}. Y = {1, 2, ..., L} is the label space

containing L labels. Denote R as a K × L matrix and Rij

means the confidence score of region xi can have label j.

Each row vector ri of R can be seen as the confidence score

distribution over labels of region xi.
Firstly, we still use Equation 2 to compute the K × K

symmetric visual similarity matrix V , but the difference is,

we only compute the region-pairs which one region is the

k-nearest neighbors of another region. k is set as 100 for all

the experiments.
Secondly, the semantic similarity of two regions can be

measured with each pair dot product of rirTj . However, the

correlation of labels should be leveraged in the approach.

Here, Equation 9 is employed to represent the relationship

among labels. The semantic similarity can be redefined as

riUrTj .
Based on the assumptions of visual and semantic consis-

tency, Vij ≈ riUrTj . We can get the following formulation:

min
R

K∑
i,j=1

(Vij −
L∑

k,l=1

RikUklRjl)
2

⇒min
R
‖ (V −RSRT ) ‖2F

s.t. Rjl ≥ 0, j = 1, 2, ...,K, l = 1, 2, ..., L.

(11)

We use the non-negative matrix factorization method [12]

to solve this optimization.

After obtaining R, the candidate labeling set for each

training image can be generated according to the confidence

matrix. For each region, top T candidate labels are selected

to do permutations and combinations and then generate the

candidate labeling set. By this way, we can get the candidate

labeling sets {Ci}Ni=1 for the classifier f introduced in

subsection 3.1.

V. EXPERIMENTS

In this section, to validate the effectiveness of the pro-

posed algorithm, we conduct extensive experiments on two

public image datasets MSRC-350 [6] and SAIAPR TC-12

[13]. We compare our results with other existing baseline

image region annotation algorithms.

A. Experimental Settings

1) Datasets: We use two public available datasets,

MSRC-350 and SAIAPR TC-12 to evaluate our method.

MSRC-350 is comprised of 350 images with 18 labels.

SAIAPR TC-12 contains 40 subsets and we use the same

subset as [7] which contains 251 images with 90 tags. Both

of them are labeled with pixel-level groundtruth.

MSRC dataset does not provide the segmentation masks.

Here, we use Ncut [14] algorithm to segment each image in-

to several regions. For SAIAPR TC-12 dataset, the segmen-

tation masks of images are provided. For both datasets, we

extract Sift [15] features and use the Bag-of-Words(BOW)

representations.

All the images of both datasets are used to train and we

test on the same images respectively.

2) Comparing Schemes: We compare our proposed al-

gorithm against the following state-of-the-art algorithms for

image region annotation task.

• Bi-layer Sparse Coding proposed in [6].

• JSGSC proposed in [7].

• Multi-edge Graph proposed in [5].

• At last, we also implement the classical KNN algorithm

to compare with our models. k is empirically set to 50
and 100.

We evaluate the image region annotation performance in two

quantitative ways including pixel-level accuracy and region-

level accuracy which respectively measures the percentage

of pixels and regions with agreement between the assigned

label and groundtruth. For MSRC dataset, the Ncut seg-

mentation cannot generate the same segmentation with the

manual groundtruth, so we assign each region a dominant

label to be its groundtruth label.

B. Experiment Results

To evaluate the proposed image region annotation method,

we conduct five experiments and illustrate the results in

order.

The first experiment is designed to exploit the effects on

the performance of different parameter settings of our model
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Figure 3. Effects of parameter T in our VSC candidate labeling sets
generation method.

Figure 4. Effects of noisy labels of our algorithm on both datasets.

to get the best result. There are one adjustable parameters

in our model: threshold T to decide how many candidate

labels should be selected for each region to generate the

candidate labeling sets. We choose T under two constraints,

one is to include the groundtruth label and exclude the

impossible labels of each instance as much as possible;

another one is to control the scale of the set . We need to

keep balance between the two norms. We set the same range

T ∈ {2, 3, 4, 5, 6} for both datasets. The results for effects

of different parameter T are illustrated in Figure 3. We can

find that the accuracies do not increase monotonically with

T increases on both datasets. For both datasets, the best

T is 4 which is in the middle range means that the most

accurate candidate label vectors are included in the sets and

impossible label vectors are excluded. After the peak point,

with the increase of T , the accuracy is decrease slightly

which means noisy label vectors are brought in.

In the second experiment, we verify the effectiveness of

our VSC ( Visual and Semantic Consistency ) candidate

labeling set generation method comparing with another

heuristic strategy. The strategy is like this: for each region,

we assign its groundtruth to itself and choose several labels

randomly from the remaining labels set to do permutation-

s and combinations then generate the candidate labeling

sets. For fairness, in the first experiment we get the best

performance when T = 4, so here we randomly choose

3 labels from remaining labels for each region. We name

this baseline method as ”heuristic method”. Table I and

Table II show the results using both candidate labeling

sets generation methods. We can see from the tables: our

candidate labeling set generation method achieves much

higher performance than the heuristic method. The reason

is, our method based on the consistency between visual

similarity and semantic relevance can incorporate the prior

knowledge of training data in an implicit manner and can

reduce the correspondence ambiguities of regions and labels

greatly.

Table I
THE PIXEL-LEVEL ACCURACY OF DIFFERENT CANDIDATE LABELING

SETS GENERATION METHODS ON BOTH DATASETS.

method MSRC-350 SAIAPR TC-12

Heuristic 0.58 0.38
V SC 0.74 0.55

Table II
THE REGION-LEVEL ACCURACY OF DIFFERENT CANDIDATE LABELING

SETS GENERATION METHODS ON TWO PUBLIC DATASETS.

method MSRC-350 SAIAPR TC-12

Heuristic 0.55 0.34
V SC 0.70 0.53

In the third experiment, we evaluate the performance of

our method comparing with the state-of-art image region

annotation methods. Table III and IV shows the results.

Because the comparing baseline methods adopt different

evaluations of performance so we directly report the best

results in their papers. Several observations can be obtained.

Firstly, proposed method outperforms all the other baseline

methods except JSGSC on MSRC-350 dataset. It is worth

noting that JSGSC uses much groundtruth spatial informa-

tion while our method does not. Secondly, we can believe

that our VSC method provides a good partially supervision

to training.

Table III
THE PIXEL-LEVEL ACCURACY OF DIFFERENT ALGORITHMS ON TWO

PUBLIC DATASETS. FOR KNN ALGORITHM, WE SET K=50 AND 100
EMPIRICALLY.

method MSRC-350 SAIAPR TC-12

kNN(k = 50) 0.45 0.22
kNN(k = 100) 0.37 0.21
Bi− layer [6] 0.63 -

Multi− Edge Graph [5] 0.73 -
ours 0.74 0.55

In the fourth experiment, we discuss the effects of soft

loss function comparing with 0-1 loss function. Table V and

Table VI shows the results on both datasets. Only region-

level accuracy is reported in this experiment. The region-

level accuracies of both loss functions are similar. However,

the soft loss improves the mean per class accuracy a little on

both datasets which approves the tag-correlation-based loss

is reasonable for the image region annotation task.
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Table IV
THE REGION-LEVEL ACCURACY OF DIFFERENT ALGORITHMS ON TWO

PUBLIC DATASETS. FOR KNN ALGORITHM, WE SET K=50 AND 100
EMPIRICALLY.

method MSRC-350 SAIAPR TC-12

kNN(k = 50) 0.42 0.19
kNN(k = 100) 0.39 0.18
Bi− layer [6] 0.64 0.39
JSGSC [7] 0.77 0.49

ours 0.70 0.53

Table V
THE REGION-LEVEL ACCURACY AND MEAN PER CLASS ACCURACY OF

SOFT LOSS AND 0-1 LOSS ON MSRC-350 DATASET.

method overall mean per-class

Δsoft 0.70 0.58
Δ0/1 0.69 0.56

In the fifth experiment, we illustrate the results on artificial

noisy datasets. The artificial training sets are conducted as

follows: firstly, we randomly choose 10, 15, 20 percent of

the training images as ”noisy images” to form artificial noisy

datasets. For each noisy image in the artificial dataset, except

its own labels we respectively choose 1,2,3,4 labels from the

remaining labels set as the additional noisy labels. Then we

adopt the best parameter setting T = 4 as in the previous

experiment has been verified. The region-level results on

both datasets are shown in Figure 4. With the growing

numbers of noisy images and noisy labels, the accuracy of

our algorithm decreases at a tolerable speed. There are two

reasons. Firstly, the noisy labels may always disobey the

prior knowledge of visual and semantic consistency then gets

a relatively low confidence score. Secondly, the framework

of learning from candidate labeling sets itself has ability of

tolerating noisy labels.

VI. CONCLUSION

In this paper, a novel image region annotation method

based on partially-supervised learning framework is pro-

posed. Based on the assumption of consistency between low-

level visual features and high-level semantic relevances, the

correspondence ambiguities between regions and labels are

greatly reduced then accurate and appropriate size candidate

labeling sets are created. We incorporate tag correlations into

the soft loss function which is proved to be effective in

boosting the performance. Extensive experiments show our

method is advantageous over many state-of-the-art image

region annotations methods.
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Table VI
THE REGION-LEVEL ACCURACY AND MEAN PER CLASS ACCURACY OF

SOFT LOSS AND 0-1 LOSS ON SAIAPR TC-12 DATASET.

method overall mean per-class

Δsoft 0.53 0.44
Δ0/1 0.52 0.43
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