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ABSTRACT
Recently, some recommendation methods try to relieve the
data sparsity problem of Collaborative Filtering by exploit-
ing data from users’ multiple types of behaviors. Howev-
er, most of the exist methods mainly consider to model
the correlation between different behaviors and ignore the
heterogeneity of them, which may make improper informa-
tion transferred and harm the recommendation results. To
address this problem, we propose a novel recommendation
model, named Group Latent Factor Model (GLFM), which
attempts to learn a factorization of latent factor space in-
to subspaces that are shared across multiple behaviors and
subspaces that are specific to each type of behaviors. Thus,
the correlation and heterogeneity of multiple behaviors can
be modeled by these shared and specific latent factors. Ex-
periments on the real-world dataset demonstrate that our
model can integrate users’ multiple types of behaviors into
recommendation better.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering

Keywords
Recommender Systems; Matrix Factorization

1. INTRODUCTION
In the past decade, Collaborative Filtering (CF) has be-

come one of the most popular techniques for recommender
systems, which makes predictions by mining users’ histori-
cal behaviors on items. In particular, Matrix Factorization
(MF) models [6, 2] have become dominant in current CF
methods. MF methods learn low-dimensional latent factor
vectors of users and items to represent their characteristics,
and predictions are made by the inner product of them. Tra-
ditionally, CF methods are designed to deal with single type
of user behavior at a time. However, the behavioral data
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is typically very sparse, that is, most users have interacted
with a very few items. It is indeed hard for CF methods
including MF to make accurate recommendations with such
insufficient data.

To address the data sparsity problems, some works have
been proposed to exploit users’ multiple types of behaviors
for recommendation [1, 7, 4]. As we know, with the preva-
lence of massive web applications, users often have various
types of behaviors on the web, varying from rating movies,
listening music, to making friends. Considering simultane-
ously multiple behaviors of a user offers us more informa-
tion to model the user’s taste better. The most widely used
method addressing this issue is Collective Matrix Factoriza-
tion (CMF) [7], which decomposes the rating matrices for
different types of user behaviors jointly by sharing the same
user latent factor matrix across different behaviors. That
is, in CMF a user is characterized by the same latent factor
vector across different behaviors. Through these shared us-
er latent factors, CMF aims to transfer information between
different behaviors to improve the recommendation results.
Inspired by the idea of CMF, some following works [5, 8, 3]
have demonstrated that better predictions can be achieved
by sharing the same user latent factors across multiple types
of behaviors.

However, the CMF ignores the heterogeneity of different
behaviors. When characterizing a user by the same latent
factor vector across different behaviors, the underlying as-
sumption is that user’s taste should be the same when she/he
conducts different behaviors. This is too strict to be real-
istic. For example, a user’s taste on music may be quite
different from her/his taste on movie. When users conduct
different types of behaviors, there should exist some correla-
tions between behaviors as well as some specific character-
istics for each type of behaviors. Nevertheless, traditional
methods like CMF mainly consider to model the correlation
of different behaviors but neglect the heterogeneity of them,
which could not effectively model the characteristics of a us-
er on various behaviors and may make improper information
transferred to harm the recommendation results.

In this paper, we propose to integrate multiple types of
user behaviors into recommendation effectively by modeling
both the correlation and heterogeneity of them. Particular-
ly, we present a novel recommendation model, named Group
Latent Factor Model (GLFM), which attempts to learn a
factorization of the latent factor space into subspaces that
are shared across multiple behaviors and subspaces that are
specific to each type of behaviors. In GLFM, when user
conducts different types of behaviors, she/he is character-
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ized by different latent factor vectors, among which, some
dimensions are shared by multiple types of behaviors while
the others are specific for certain behavior. Thus, the corre-
lation and heterogeneity of multiple behaviors can be mod-
eled by these shared and specific latent factors. Experiments
show that our method can achieve better recommendation
results than other state-of-the-art methods.

2. THE PROPOSED METHOD

2.1 Problem Statement
Suppose that we have a set of n users U = {u1, · · · , un}

and their B types of behavior records. Each type of user
behavior demonstrating her/his opinions on a kind of items
can be regarded as ratings (binary or real values), thus we
have B rating matrices for different behaviors, denoted as
{R1, · · · ,RB}, where Rb = [Rb

ij ]n×mb denotes the rating

matrix for the b-th type of behavior. Rb
ij denotes the rating

of ui on item vbj , v
b
j denotes the j-th item in the b-th type

of behavior, mb is the number of items belong to the b-
th type. Our goal is to predict the missing values in each
behavior matrix Rb (b = 1, · · · , B) by effectively exploiting
the observed data from users’ multiple types of behaviors.

2.2 Group Latent Factor Model
We formulate our problem on the basis of Matrix Fac-

torization [6], which learns latent factors of the users and
the items to characterize them. In our cases, for each user
we have her/his multiple types of behavior records, leading
to multiple rating matrices with the same user dimension.
To correctly account for the correlation and heterogeneity
of different behaviors, we cast the problem as finding a fac-
torization of the latent factor space into subspaces that are
shared across multiple behaviors and subspaces that are spe-
cific to each type of behaviors.
Let U0 ∈ RKs×n denote the user latent factor matrix

shared among different behaviors, with each column U0
i rep-

resenting the shared latent factor vector for user ui. Ks is
the number of the shared factors. For the b-th type of be-
haviors, let Ub ∈ RKb×n denote the behavior-specific user
latent factor matrix, with each column Ub

i representing the
behavior-specific latent factor vector for user ui. Kb is the
number of the specific factors for the b-th type of behaviors.
As shown in Figure 1, when user ui conducts the b-th be-
haviors, she/he is modeled by Ũb

i = [U0
i ;U

b
i ] ∈ R(Ks+Kb)×1,

which consists of both the shared and the behavior-specific
latent factors. We denote Ũb ∈ R(Ks+Kb)×n to be the b-th
user latent factor matrix with each column as Ũb

i , thus we
have Ũb = [U0;Ub].

For items belong to the b-th type, we letVb ∈ R(Ks+Kb)×mb

denote the item latent factor matrix, with each column V b
j

representing the latent factor vector for item vbj . We denote

V b
j = [Db

j ;P
b
j ], where D

b
j ∈ RKs×1 corresponds to the shared

latent factor space of U0
i and P b

j ∈ RKb×1 corresponds to the

behavior-specific latent factor space of Ub
i . Thus, the ratings

of user ui on item vbj can be predicted as:

R̂b
ij = (Ũb

i )
TV b

j = [U0
i ;U

b
i ]

TV b
j = (U0

i )
TDb

j + (Ub
i )

TP b
j (1)

Thus, given users’ B types of behavior records {R1, · · · ,
RB}, we learn {Ũb}Bb=1 and {Vb}Bb=1 by minimizing the
following objective function:
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Figure 1: In GLFM, user ui is modeled by Ũb
i = [U0

i ;U
b
i ]

when she/he conducts the b-th behavior, where U0
i is shared

across multiple behaviors and Ub
i is specific for the b-th be-

havior. vbj , the j-th item belongs to the b-th type, is modeled

by V b
j = [Db

j ;P
b
j ], where Db

j corresponds to the latent factor

space of U0
i and P b

j corresponds to that of Ub
i .

L({Ũb}Bb=1, {Vb}Bb=1)

=

B∑
b=1

(
n∑

i=1

mb∑
j=1

Ibij(R
b
ij − (Ũb

i )
TV b

j )
2 + λ(∥Ũb∥2F + ∥Vb∥2F )

)

=

B∑
b=1

n∑
i=1

mb∑
j=1

Ibij

(
Rb

ij − (U0
i )

TDb
j − (Ub

i )
TP b

j

)2
+ λ(B

n∑
i=1

∥U0
i ∥2F +

B∑
b=1

n∑
i=1

∥Ub
i ∥2F +

B∑
b=1

mb∑
j=1

∥V b
j ∥2F )

(2)
In Eq.(2), the first term measures the quality of the approx-
imation of the predicted ratings to the observed ratings in
multiple types of user behaviors by squared error, where Ibij
is the indicator function which is equal to 1 if the user ui

rated the item vbj and is 0 otherwise. In the second term,
∥ · ∥F is the Frobenius regularization norm which is used to
avoid over-fitting. Parameter λ controls the strength of the
regularization term.

Notice that, traditional MF can be viewed as a special
case of our model by restricting the number of shared latent
factors Ks = 0; CMF can be viewed as a special case of our
model by restricting the number of behavior-specific latent
factors Kb = 0.

2.3 Optimization Algorithm
Eq.(2) is convex with respect to one of the variables U0,

U1, · · · ,UB ,V1, · · · ,VB when the others are fixed. Thus,
we apply an alternating optimization to solve the problem,
which update U0, {Ub}Bb=1, and {Vb}Bb=1 iteratively and
alternatingly.

Optimizing U0, when {Ub}Bb=1 and {Vb}Bb=1 fixed: U0

can be obtained by solving following optimization problem,

min
U0

L(U0) =
B∑

b=1

n∑
i=1

mb∑
j=1

Ibij

(
Rb

ij − (U0
i )

TDb
j − (Ub

i )
TP b

j

)2
+ λB

n∑
i=1

∥U0
i ∥2F

(3)

solving ∂L(U0)

∂U0
i

= 0, we have:

U0
i =

λBE0 +
B∑

b=1

mb∑
j=1

IbijD
b
j(D

b
j)

T

−1

×

 B∑
b=1

mb∑
j=1

Ibij(R
b
ij − (Ub

i )
TP b

j )D
b
j


(4)

where E0 is a Ks ×Ks identity matrix.
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Algorithm 1 Optimization Algorithm for GLFM

Require: {Rb}Bb=1, Parameters Ks, Kb, λ

Ensure: U0, {Ub}Bb=1 and {Vb}Bb=1

1: Initialize U0, {Ub}Bb=1 and {Vb}Bb=1;
2: Repeat
3: Update U0

i , ∀1 ≤ i ≤ n with Eq. (4)
4: for b = 1 to B do
5: Update Ub

i , ∀1 ≤ i ≤ n with Eq. (6)
6: end for
7: for b = 1 to B do
8: Update V b

j , ∀1 ≤ j ≤ mb with Eq. (8);

9: end for
10: Until convergence
11: Return U0, {Ub}Bb=1 and {Vb}Bb=1

Optimizing {Ub}Bb=1, given U0 and {Vb}Bb=1: When U0

and {Vb}Bb=1 are fixed, the constraints are independent on
each Ub (b = 1, · · · , B), suggesting that we can optimize
each Ub separately. Ub can be obtained by solving following
problem,

min
Ub

L(Ub) =
n∑

i=1

mb∑
j=1

Ibij

(
Rb

ij − (U0
i )

TDb
j − (Ub

i )
TP b

j

)2
+ λ

n∑
i=1

∥Ub
i ∥2F

(5)

solving ∂L(Ub)

∂Ub
i

= 0, we have:

Ub
i =

λEb +

mb∑
j=1

IbijP
b
j (P

b
j )

T

−1mb∑
j=1

Ibij(R
b
ij − (U0

i )
TDb

j)P
b
j


(6)

where Eb is a Kb ×Kb identity matrix.
Optimizing {Vb}Bb=1, given U0 and {Ub}Bb=1: We can also

optimize each Vb separately by solving following problem:

min
Vb

L(Vb) =
n∑

i=1

mb∑
j=1

Ibij

(
Rb

ij − (Ũb
i )

TV b
j

)2
+ λ

mb∑
j=1

∥V b
j ∥2F (7)

solving ∂L(Vb)

∂V b
j

= 0, we have:

V b
j =

(
λEsb +

n∑
i=1

IbijŨ
b
i (Ũ

b
i )

T

)−1( n∑
i=1

IbijR
b
ijŨ

b
i

)
(8)

where Esb is a (Ks +Kb)× (Ks +Kb) identity matrix.
The detailed optimization algorithm is described in Al-

gorithm 1. Note that, the number of behavior-specific la-
tent factors Kb can be different for different behaviors. In
order to reduce the model complexity, we set all the Kb

(b = 1, · · · , B) the same in our experiments.

3. EXPERIMENTS

3.1 Experiment Settings
Datasets: To evaluate our model’s recommendation qual-

ity, we crawled the dataset from the publicly available web-
site Douban1, where users can provide their ratings for movie,
books and music, as well as establish social relations with
others. Thus, we have four types of user behaviors here. To
have sufficient observations to be split in various proportions
of training and testing data for our evaluation, we filtered

1http://www.douban.com

out users who have rated less than 10 books, or 10 movie,
or 10 music, and then removed users without social relation-
ships with others. Retrieving all items rated by the selected
users, we have a dataset containing 5,916 users with their
ratings on 14,155 books, 15,492 music and 7,845 movie, as
well as their social relations between each other. The ratings
are real values in the range [1,5], while the social relations
are binary, indicating whether or not a social relation exists.
The detailed statistics are showed in Table 1.

Table 1: Statistics of the Datasets
Behavior Type #Items Sparsity #Ratings per User

Book 14,155 99.85% 22
Music 15,492 99.75% 38
Movie 7,845 98.87% 88

Social Relation 5,916 99.72% 17

Performance Metric: We focus on the task of rating
prediction in recommendation to evaluate our models’ qual-
ity. The most popular metric, Root Mean Square Error
(RMSE) is used to measure the prediction quality.

RMSE =

√√√√ 1

T

∑
i,j

(Rij − R̂ij)2 (9)

where Rij and R̂ij denote the true and predicted ratings
respectively, and T denotes the number of tested ratings.
The smaller RSME value means a better performance.

Baseline Methods: For comparison, we consider follow-
ing related methods: (1)PMF [6], the state-of-the-art tra-
ditional MF method, which learns latent factors for each
type of behaviors separately with no information transferred;
(2)NCDCF U and NCDCF I [1], the early multi-behavior
based methods which integrate multiple types of behaviors
into recommendation by the user-based and item-based neigh-
borhood method, respectively; (3)CMF [7], the state-of-the-
art multi-behavior based MF method as discussed before.

To perform comprehensive comparison, we conducted ex-
periments on different training sets (80%, 60% and 40%) to
test the models’ performance under different sparsity cases.
For example, for training data 80%, we randomly select 80%
of the data from each types of the behaviors for training and
the rest for testing. The random selection was carried out 5
times independently, and we report the average results.

3.2 Experimental Results
Performance Comparison. We evaluate the rating pre-

diction performance for book, music and movie using the
above constructed training/testing sets. Since the social re-
lation prediction belongs to the task of link prediction, which
is different from rating prediction task and unsuitable to be
evaluated by RMSE, here we use social relations as a kind of
auxiliary behavior and do not do the social relation predic-
tion task. The experimental results using 10 dimensions to
represent the latent factors are shown in Table 2. The pa-
rameter values of our GLFM are: λ = 0.2, Ks = 6, Kb=4,
which are determined by cross-validation.

From Table 2, we can observe that the multi-behavior
based MF methods, CMF, is consistently better than the
PMF, which demonstrates that integrating information from
multiple types of user behaviors is useful for recommenda-
tion. However, the two multi-behavior based neighborhood
methods, NCDCF U and NCDCF I, do not get consistently
better results, which may because that our dataset is very
sparse and the neighborhood based methods usually fail to
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Table 2: Performance Comparison on different sparsity cases
Behavior Training PMF NCDCF U NCDCF I CMF GLFM

Book
80% 0.8150 0.8355 0.7976 0.7849 0.7684
60% 0.8329 0.8367 0.8026 0.8011 0.7878
40% 0.8500 0.8394 0.8143 0.8181 0.8061

Music
80% 0.7309 0.7826 0.7367 0.7112 0.6922
60% 0.7326 0.7812 0.7376 0.7187 0.6943
40% 0.7639 0.7859 0.7465 0.7411 0.7111

Movie
80% 0.7577 0.8941 1.0866 0.7452 0.7288
60% 0.7671 0.8954 1.0920 0.7581 0.7374
40% 0.7955 0.8971 1.1060 0.7790 0.7542

(a) Book (c) Movie(b)Music
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Figure 2: Impact of Parameter Ks (Kb)

find similar neighbors under such sparse data. It is obvi-
ous that our GLFM model consistently outperforms other
approaches in all sparsity cases, especially achieving signifi-
cant improvement over CMF, which illustrates that the by
modeling the shared and behavior-specific latent factors a-
mong behaviors, GLFM can integrate users’ multiple types
of behaviors into recommendation more effectively.
Impact of Parameter Ks and Kb. In GLFM, the

shared latent factors model the correlation between multi-
ple behaviors and the behavior-specific latent factors model
the heterogeneity of them. Hence, we investigate the ef-
fects of the important parameter in GLFM: the number of
shared latent factors Ks and the number of behavior-specific
latent factors Kb. In the extreme cases, if Ks = 0, it degen-
erates to PMF, which will not share any information be-
tween behaviors; if Kb = 0, it degenerates to CMF, which
will not model the specific characteristics of different behav-
iors. Fixing the total number of latent factors (Kb + Ks)
as 10, Figure 2 shows the performance of GLFM on dif-
ferent training sets with different values of Ks (Kb is also
different for Kb = 10 − Ks). We can see that, in all cases
the RMSE results decrease (prediction accuracy increases)
at first with Ks increasing, which demonstrates that shar-
ing information between users’ multiple types of behaviors is
useful for recommendation; however, when Ks goes greater
than a threshold the RMSE increase (prediction accuracy
decreases) with Ks increasing (Kb decreasing), which may
because that improper information is transferred to harm
the recommendation results for lack of modeling the specific
characteristics of different behaviors.

4. CONCLUSION
In this paper, we propose a novel recommendation mod-

el, GLFM, to integrate multiple types of user behaviors ef-
fectively by modeling the correlation and heterogeneity of

them. To achieve this goal, GLFM attempts to find a factor-
ization of latent factor space into subspaces that are shared
across multiple behaviors and subspaces that are specific to
each type of behaviors. Experiment on real-world dataset
demonstrate that the proposed method can achieve better
recommendation results than other competitors.
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