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Decentralized Event-Driven Constrained Control
Using Adaptive Critic Designs
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Abstract— We study the decentralized event-driven control
problem of nonlinear dynamical systems with mismatched inter-
connections and asymmetric input constraints. To begin with,
by introducing a discounted cost function for each auxiliary sub-
system, we transform the decentralized event-driven constrained
control problem into a group of nonlinear H2-constrained optimal
control problems. Then, we develop the event-driven Hamilton–
Jacobi–Bellman equations (ED-HJBEs), which arise in the non-
linear H2-constrained optimal control problems. Meanwhile,
we demonstrate that all the solutions of the ED-HJBEs together
keep the overall system stable in the sense of uniform ultimate
boundedness (UUB). To solve the ED-HJBEs, we build a critic-
only architecture under the framework of adaptive critic designs.
The architecture only employs critic neural networks and updates
their weight vectors via the gradient descent method. After that,
based on the Lyapunov approach, we prove that the UUB stability
of all signals in the closed-loop auxiliary subsystems is assured.
Finally, simulations of an illustrated nonlinear interconnected
plant are provided to validate the present designs.

Index Terms— Adaptive critic designs (ACDs), adaptive
dynamic programming (ADP), decentralized event-driven con-
trol, input constraint, reinforcement learning (RL).

I. INTRODUCTION

INTERCONNECTIONS are typical features of many com-
plex systems, such as cooperating robotic systems, intel-

ligent transportation systems, and water distribution systems.
These characteristics often make it intractable to design sta-
bilizing controllers for such systems via one-shot methods.
To tackle this difficulty, the decentralized control methodology
was introduced [1]. For the late few years, applications of
optimal control methods to decentralized control have been
an attractive field [2]–[4]. This is because the decentralized
control of the whole system can be obtained through solving
a series of optimal control problems of isolated subsystems.
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More importantly, adaptive critic designs (ACDs) have been
widely exploited and become powerful tools to solve optimal
control problems (note: the detailed description of ACDs
was provided in [5]). A noticeable advantage of using ACDs
lies in that “the curse of dimensionality” is obviated. There
are some synonyms for ACDs, such as adaptive dynamic
programming (ADP) [6]–[8] and reinforcement learning (RL)
[9]–[11]. In this article, we will develop an ACD-based
decentralized control strategy for a class of nonlinear systems
having mismatched interconnections and asymmetric input
constraints.

It is well known that there are two types of interconnec-
tions involved in complex nonlinear systems, namely, matched
interconnections [12] and mismatched interconnections [13].
For matched interconnected systems, one often introduces
a set of nominal subsystems (or rather, isolated nominal
subsystems) to assist obtaining the decentralized controller
when using ADP-based optimal control methods (see [12]),
whereas for mismatched interconnected plants, one generally
proposes a group of auxiliary subsystems to help deriving
the decentralized controller (see [13]). The key characteris-
tic distinguishing the nominal subsystem and the auxiliary
subsystem is that an additional control (namely, the auxiliary
control) is introduced to the auxiliary subsystem. Because
of this feature, there are two issues arising in designing
ACD-based decentralized controllers for mismatched inter-
connected systems. First, the auxiliary control must satisfy
certain inequalities, such as the inequalities �υ∗i (xi(t))�2 ≤
Qi (xi(t)), i = 1, 2, . . . , N , given in [13, Th. 1]. Unfortunately,
these inequalities often cannot be proved analytically. Then,
a question to be asked: can we remove such inequalities?
This article will tackle this issue. Second, the control pol-
icy and the auxiliary control policy for each auxiliary sub-
system are often tuned in different triggering mechanisms.
Specifically, when designing the decentralized event-driven
controllers for mismatched interconnected systems, one often
updates the control policy and the auxiliary control policy
in the event-driven mechanism and the time-driven mecha-
nism, respectively. According to [14], the event-driven control
policies have better performance than the time-driven con-
trol policies in reducing computational burden because they
are executed aperiodically. In view of this fact, what are
the effects on control performance if we update the control
policy and the auxiliary control policy simultaneously in the
event-driven mechanism? This article will also address this
problem.
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Input constraints widely exist in engineering applications
because of intrinsic physical properties, such as air pressure,
temperature, and voltage. To assure the safety or stability of
the controlled systems, one has to consider plants with input
constraints. Until now, several studies have been conducted
to present decentralized adaptive controllers for nonlinear
interconnected systems in the presence of symmetric input
constraints (see the related work in the following). However,
rather few works have been reported on studying the decen-
tralized control problem of nonlinear interconnected systems
with asymmetric input constraints. When considering the inter-
connected systems with asymmetric input constraints, we can
observe that the obtained decentralized controller does not stay
at zero when the state vector arrives at the equilibrium point
(see u∗i (xi) defined in later formula (14) and Remark 2). This
characteristic leads to a significant difference with the case that
the interconnected systems have symmetric input constraints,
where the decentralized controller must stay at zero with
the steady state being obtained. Thus, how to propose novel
methods to handle this feature is another issue to be tackled
in this article.

A. Related Work

For nonlinear systems having no input constraints,
Wang et al. [15] introduced an ACD-based optimal control
approach to obtain the decentralized stabilizing controller for
matched interconnected systems. The decentralized control
algorithm in [15] makes the initial admissible control no longer
necessary for its implementation. By taking a similar technique
as [15], Qu et al. [16] suggested a decentralized tracking
control strategy for large-scale nonlinear systems with matched
interconnections. In [15] and [16], the nominal subsystems
were required to help deriving the decentralized control (or the
decentralized tracking control). Note that the control methods
for matched interconnected systems are not always suitable for
mismatched interconnected systems. Zhao et al. [17] studied
the decentralized control problem of large-scale mismatched
interconnected systems by using the local policy iteration.
To tackle the mismatched interconnections, they introduced a
cost function containing its partial derivative for each isolated
subsystem. Recently, Narayanan et al. [18] used ADP to solve
nonzero-sum games in order to acquire a distributed nearly
optimal event-triggered control for mismatched interconnected
systems. Actually, the distributed optimal event-triggered con-
trol is a Nash equilibrium point of the nonzero-sum games.
More recently, Yang and He [19] developed a decentralized
event-driven control strategy for mismatched interconnected
systems via adaptive critic learning together with experience
replay. Just as previously mentioned, a group of auxiliary
subsystems have to be presented in [19] to assist obtaining the
decentralized event-driven control. Meanwhile, the auxiliary
control policies have to satisfy certain inequalities.

For nonlinear systems having input constraints,
Liu et al. [20] proposed an integral RL to derive
the decentralized optimal tracking control for matched
interconnected systems with totally unavailable priori
knowledge. After that, Yang and He [21] developed a policy

iteration-based ADP to obtain the decentralized optimal
control law for partially unknown mismatched interconnected
systems. Similar to [15]–[17], nominal subsystems and
auxiliary subsystems were presented in [20] and [21] to
help obtaining the decentralized optimal tracking control
and the decentralized optimal control, respectively. Actually,
with the introduction of nominal (or auxiliary) subsystems,
the decentralized optimal (tracking) control was derived via
solving a group of H2-constrained optimal (tracking) control
problems. Recently, Tan [22] solved a set of H∞-constrained
control problems to derive the distributed event-triggered
control for interconnected strict-feedback systems with
partially unavailable dynamics. However, Liu et al. [20],
Yang and He [21], and Tan [22] all considered the nonlinear
interconnected systems suffering from symmetric input
constraints.

B. Contribution

The main contributions of this article are fourfold.
1) The restrictive inequalities imposed on auxiliary control

policies (such as �υ∗i (xi(t))�2 ≤ Qi (xi(t)) given in [13])
are removed when we design the decentralized event-
driven controller by using auxiliary subsystems (see
Theorem 1). Thus, the present decentralized event-driven
control scheme could be more flexible for applications.

2) Rather than solving the event-driven H∞-constrained
optimal control problems or nonzero-sum games,
we obtain the decentralized event-driven control via
solving a group of event-driven H2-constrained optimal
control problems. Accordingly, our method does not
need to assure the existence of the saddle point or the
Nash equilibrium point in advance, which is a necessary
and challenging task in solving the H∞-constrained
optimal control problems or nonzero-sum games.

3) When implementing the present decentralized control
strategy, we update the control policy and the auxiliary
control policy simultaneously in the event-driven mech-
anism. This makes the computational burden further
lower down in comparison with the case only updating
the control policy in the event-driven mechanism.

4) With a discount term and a nonquadratic function being
together introduced to the cost function, we can tackle
the decentralized event-driven control problem of mis-
matched interconnected systems with asymmetric input
constraints via the present ACDs. Hence, the ACDs
proposed in this article are applicable for general inter-
connected plants, especially those mismatched intercon-
nected systems having asymmetric input constraints.

C. Notation

R, R
+, and Z

+ denote the sets of real numbers, positive
real numbers, and positive integral numbers, respectively. R

mi

and R
ni×mi denote the spaces of real vectors of size mi × 1

and real matrices of size ni ×mi , respectively. �i ⊂ R
ni is a

compact set and A (�i) denotes the set of admissible control
defined on �i . “T” and “�” are symbols for “transposition”
and “equal by definition,” respectively. The matrices Qi > 0
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and A > 0 mean that Qi and A are positive definite. For the
vector xi = [xi1, xi2, . . . , ximi ]T ∈ R

mi , its norm is denoted
by �xi� = (

�mi
p=1 x2

ip)
1/2. For the matrix D = (bkp)ni×mi , its

Frobenius norm is denoted by �D� = (
�ni

κ=1

�mi
p=1 bkp)

1/2.

II. PROBLEM DESCRIPTION AND PRELIMINARIES

A. Problem Description

We consider the interconnected continuous-time system,
which is composed of N nonlinear subsystems given by

ẋi(t) = fi (xi(t))+ gi(xi(t))ui (t)+� fi (x(t))

xi(0) = xi0, i = 1, 2, . . . , N (1)

where xi ∈ R
ni is the state vector of i th subsystem with

xi0 ∈ R
ni being its initial state, ui ∈ Ui ⊂ R

mi is the input
vector of i th subsystem, and Ui denotes the set of input vectors
having asymmetric bounds, that is,

Ui =
��

ui1, ui2, . . . , uimi

�T ∈ R
mi : ui

min ≤ uip ≤ ui
max,��ui

min

�� �= ��ui
max

��, p = 1, 2, . . . ,mi

�
where ui

min ∈ R and ui
max ∈ R denote the minimum and

maximum bound of input variables uip ∈ R, p = 1, 2, . . . ,mi ,
used in the i th subsystem, respectively, fi (xi) ∈ R

ni and
gi(xi) ∈ R

ni×mi are known vector-valued function and matrix
function, respectively, and � fi(x) is an uncertain intercon-
nection with x = [xT

1 , xT
2 , . . . , xT

N ]T ∈ R
n (note: n =�N

i=1 ni )
being the whole state.

Assumption 1: For every i ∈ {1, 2, . . . , N}, the i th sub-
system defined in (1) is controllable. Meanwhile, xi = 0 is
the unique equilibrium point of the i th subsystem over �i

with fi (0) = 0. In addition, � fi (x) meets the mismatched
condition, which is presented in the form

� fi (x) = hi (xi)di(x), i = 1, 2, . . . , N

where hi (xi) ∈ R
ni×li is a known matrix function (note:

hi (xi) �= gi(xi) for every xi ∈ R
ni if li = mi ), di (x) ∈ R

li is
an uncertain function satisfying

�di(x)� ≤
N�

j=1

ai j Pi j (x j), i = 1, 2, . . . , N (2)

where ai j ≥ 0, j = 1, 2, . . . , N , are adjustable parameters
and Pi j : Rn j/{0} → R

+ with Pi j (x j) being positive definite
functions. Moreover, di(0) = 0 and Pi j (0) = 0.

Letting

Pi(xi ) = max
1≤ j≤N

	
Pji (xi)



(3)

we have (2) further relaxed as

�di (x)� ≤
N�

j=1

bi j Pj (x j), i = 1, 2, . . . , N (4)

where bi j ≥ ai j Pi j(x j)/Pj (x j) ≥ 0, j = 1, 2, . . . , N .
Assumption 2: For each i th subsystem (i ∈ {1, 2, . . . , N}),

rankgi(xi) = mi (mi < ni ) and gi(0) = 0. Meanwhile, for
every xi ∈ R

ni , gT
i (xi)hi(xi) = 0. In addition, for arbitrary,

xi ∈ R
ni �gi (xi)� ≤ bgi and �hi (xi)� ≤ bhi with bgi and bhi

being the positive constants.
Control Objective: The goal of this article is to develop a

decentralized control strategy in an appropriate mechanism for
interconnected system (1), which meets Assumptions 1 and 2,
such that uniform ultimate boundedness (UUB) stability of the
entire closed-loop system is ensured.

Due to system (1) having mismatched interconnected terms
and asymmetric input constraints, one often finds it hard to
acquire the decentralized control using a direct method. Thus,
we will present an indirect method. To be specific, we trans-
form the decentralized control problem of input-constrained
interconnected system (1) into a series of H2-constrained
optimal control problems of auxiliary subsystems.

B. Hamilton–Jacobi–Bellman Equation for the i th
Constrained Auxiliary Subsystem

In order to convert the decentralized constrained control
problem into a group of H2-constrained optimal control prob-
lems of auxiliary subsystems, we first need to present the i th
(i = 1, 2, . . . , N) auxiliary subsystem, that is, the auxiliary
system for the i th subsystem of interconnected system (1).
According to [23], the auxiliary system associated with the
i th subsystem defined in (1) has the form

ẋi = fi (xi)+ gi(xi)ui +
�
Ini − gi(xi)g

+
i (xi)

�
hi (xi)νi (5)

with g+i (xi) ∈ R
mi×ni being the Moore–Penrose pseudoinverse

of gi(xi) and νi ∈ R
li being the auxiliary control. Noting that

ui has asymmetric bounds (that is, ui ∈ Ui ), we call (5) the
i th constrained auxiliary subsystem.

Using Assumption 2 (or rather, rankgi(xi) = mi ) and the
theory of matrix computations [24, Ch. 5.5], we can calculate
g+i (xi) via

g+i (xi) =
�
gT

i (xi)gi(xi)
�−1

gT
i (xi). (6)

Inserting (6) into (5) and noticing that gT
i (xi)hi (xi) = 0

(see Assumption 2), we have the i th constrained auxiliary
subsystem (5) simplified as

ẋi = fi (xi)+ gi(xi)ui + hi (xi)νi . (7)

The discounted cost function for the i th constrained auxiliary
subsystem (7) has the form

V ui ,νi
i (xi) =

�∞
t e−αi (τ−t)Ri (xi(τ ), ui(τ ), νi (τ ))dτ (8)

where αi > 0 is the discount factor

Ri (xi , ui , νi ) = ρi P2
i (xi)+ Qi (xi)+Wi(ui )+ ηi�νi�2 (9)

with ρi > 0 and 0 < ηi ≤ 1 being the adjustable parameters,
Pi (xi) ∈ R being defined in (3), Qi (xi) = xT

i Qi xi and Qi > 0,
Wi(ui ) ∈ R being the semipositive definite function, and
�νi�2 = νT

i νi . Due to ui ∈ Ui , motivated by the works of
[25] and [26], we let Wi (ui) be the nonquadratic function
with respect to ui in order to tackle asymmetric constraints.
Specifically, Wi (ui) is defined as

Wi(ui ) = 2βi

mi�
p=1

� uip

ci

ψ−1
�
β−1

i (ξp − ci )
�
dξp
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where

βi =
�
ui

max − ui
min

�
/2, ci =

�
ui

max + ui
min

�
/2 (10)

and ψ−1(·) ∈ C1(�i) is an odd monotonic function with
ψ−1(0) = 0. To facilitate discussion, we let ψ(·) = tanh(·)
[note: tanh(x) = (ex − e−x)/(ex + e−x)].

Remark 1: Due to the decay term e−αi (τ−t) involved in the
integral term on the right-hand side of (8), V ui ,νi

i (xi) is called
the discounted cost function. If we ignore such a decay term
(that is, let αi = 0), then V ui ,νi

i (xi) might be divergent. This
is because ui will not converge to zero when the state arrives
at the equilibrium point xi = 0 (note: the detailed explanation
is given in Remark 2). This is why we present a discounted
cost function like (8).

Let the optimal value of V ui ,νi
i (xi) be stated as

V ∗i (xi) = min
ui ,νi∈A (�i )

V ui ,νi
i (xi). (11)

Then, according to [27], V ∗i (xi) satisfies the Hamilton–Jacobi–
Bellman equation (HJBE)

min
ui ,νi∈A (�i )

H
�
xi ,∇V ∗i (xi), ui , νi

� = 0 (12)

where H (xi,∇V ∗i (xi), ui , νi ) is called the Hamiltonian and
expressed as

H
�
xi ,∇V ∗i (xi), ui , νi

�
= �∇V ∗i (xi)

�T
( fi (xi)+ gi(xi)ui + hi (xi)νi )− αi V

∗
i (xi)

+ρi P2
i (xi)+ Qi (xi)+Wi (ui)+ ηi�νi�2 (13)

with ∇V ∗i (xi) = ∂V ∗i (xi)/∂xi and ∇V ∗i (0) = 0.
Let the optimal control be denoted by u∗i (xi). Then, accord-

ing to the stationary condition [28, Ch. 5.9], we have

∂H
�
xi ,∇V ∗i (xi), u∗i (xi), νi

�

∂u∗i (xi) = 0.

Together with (13), this yields that the optimal control u∗i (xi)
has the form

u∗i (xi) = −βi tanh

�
1

2βi
gT

i (xi)∇V ∗i (xi)

�
+ Ci (14)

where Ci = [ci , ci , . . . , ci ]T ∈ R
mi .

Remark 2: Due to the existence of asymmetric constraints
(i.e., |ui

min| �= |ui
max|), there holds ci �= 0 [see ci defined

in (10)]. Then, it follows from (14) that u∗i (0) = Ci �= 0.
Thus, for guaranteeing Assumption 1 to make sense (or rather,
to ensure that xi = 0 is the equilibrium point), we need the
condition gi(0) = 0 to be presented in Assumption 2.

In a way similar to deriving u∗i (xi) in (14), we deduce that
the optimal auxiliary control ν∗i (xi) is

ν∗i (xi) = − 1

2ηi
hT

i (xi)∇V ∗i (xi). (15)

Inserting (14) and (15) into (12), we have the HJBE for the
i th constrained auxiliary subsystem (7) restated as�∇V ∗i (xi)

�T
fi (xi)+ ρi P2

i (xi)+ Qi (xi)

+ Wi

�
−βi tanh

�
1

2βi
gT

i (xi)∇V ∗i (xi)

�
+ Ci

�

−βi
�∇V ∗i (xi)

�T
gi(xi) tanh

�
1

2βi
gT

i (xi)∇V ∗i (xi)

�
+�∇V ∗i (xi)

�T
gi(xi)Ci − αi V

∗
i (xi)

−
���� 1

2
√
ηi

hT
i (xi)∇V ∗i (xi)

����2

= 0. (16)

Equation (16) is called the time-driven HJBE, for it is solved
in a time-driven mechanism. As proved in [21], the solutions
of the N time-driven HJBEs like (16) all together consti-
tute the decentralized control. Apparently, the decentralized
control law developed in [21] was implemented in the time-
driven mechanism. As pointed out in [29], the time-driven
control laws updated the control policies periodically and
often resulted in heavy computational burden. To avoid such
a deficiency, we shall present a decentralized event-driven
control law for interconnected system (1).

III. DECENTRALIZED EVENT-DRIVEN CONSTRAINED

CONTROL STRATEGY

We first introduce an event-driven mechanism used in
[30] and develop the event-driven HJBE (ED-HJBE) for
the i th constrained auxiliary subsystem. Then, we build a
bridge between the decentralized event-driven control of input-
constrained interconnected system (1) (note: we call it the
decentralized event-driven constrained control for brevity) and
the solutions of N ED-HJBEs. After that, for obtaining the
decentralized event-driven constrained control, we solve the N
ED-HJBEs via a critic-only architecture under the framework
of ACDs. Finally, we present the stability analysis of the i th
closed-loop auxiliary subsystem.

A. Event-Driven Mechanism and ED-HJBE for i th
Constrained Auxiliary Subsystem

Let the triggering instants for i th constrained auxiliary
subsystem be written as t i

k (k = 0, 1, 2, . . .) and satisfy
t i
k < t i

k+1. Then, the sequence of triggering instants is {t i
k}∞k=0.

At the triggering instant t i
k , we say that the i th constrained

auxiliary subsystem state is sampled and denote it by

x̄i,k = xi
�
t i
k

�
, k = 0, 1, 2, . . .

Before the next triggering instant t i
k+1 releases, there usually

generates a gap between the two states x̄i,k and xi(t) over the
interval [t i

k, t i
k+1). The gap is described by an error function

ei,k(t), which is in the form

ei,k(t) = x̄i,k − xi(t), t ∈ �
t i
k, t i

k+1

�
. (17)

The main characteristics of the present event-driven mecha-
nism could be described via (17) as follows: 1) if the event in
the i th constrained auxiliary subsystem is triggered (such as
t = t i

k), then we have ei,k(t i
k) = 0 and thus update the control
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policy, and 2) if the event given in the i th constrained auxiliary
subsystem is not triggered (such as t �= t i

k), we get ei,k(t i
k) �= 0

and thus keep the control policy unchanged over the interval
[t i

k, t i
k+1), k = 0, 1, 2, . . . The latter needs the zero-order hold

technique [31], which is expressed as

μi
�
x̄i,k, t

� = ui
�
x̄i,k

� = ui
�
xi
�
t i
k

��
, t ∈ �

t i
k, t i

k+1

�
.

Under the present event-driven mechanism, we can obtain
from (14) that the optimal event-driven control for the i th
constrained auxiliary subsystem (7) and the cost function (8)
is

μ∗i
�
x̄i,k, t

� = u∗i (x̄i,k)

= −βi tanh

�
gT

i (x̄i,k)∇V ∗i (x̄i,k)

2βi

�
+ Ci (18)

with t ∈ [t i
k, t i

k+1) and ∇V ∗i (x̄i,k) = (∂V ∗i (xi)/∂xi)|xi=x̄i,k .
Likewise, based on (15), we have the optimal event-driven

auxiliary control expressed as [note: t ∈ [t i
k, t i

k+1)]

υ∗i
�
x̄i,k, t

� = ν∗i (x̄i,k) = − 1

2ηi
hT

i (x̄i,k)∇V ∗i (x̄i,k). (19)

Replacing ui and νi in (12) with u∗i (x̄i,k) in (18) and ν∗i (x̄i,k)
in (19), respectively, we obtain that the ED-HJBE for the i th
constrained auxiliary subsystem at triggering instants t = t i

k ,
k = 0, 1, 2, . . ., is�∇V ∗i (xi)

�T
fi (xi)+ ρi P2

i (xi)+ Qi (xi)

+ Wi

�
−βi tanh

�
1

2βi
gT

i (x̄i,k)∇V ∗i (x̄i,k)

�
+ Ci

�

−βi
�∇V ∗i (xi)

�T
gi(xi) tanh

�
1

2βi
gT

i (x̄i,k)∇V ∗i (x̄i,k)

�
+�∇V ∗i (xi)

�T
gi(xi)Ci − αi V

∗
i (xi)

− 1

2ηi

�∇V ∗i (xi)
�T

hi (xi)h
T
i (x̄i,k)∇V ∗i (x̄i,k)

+
���� 1

2
√
ηi

hT
i (x̄i,k)∇V ∗i (x̄i,k)

����2

= 0. (20)

Remark 3: If there is no confusion of symbols, we omit
the time variable “t” in both μ∗i (x̄i,k, t) and υ∗i (x̄i,k, t). To be
specific, we denote μ∗i (x̄i,k, t) and υ∗i (x̄i,k, t) as μ∗i (x̄i,k) and
υ∗i (x̄i,k), respectively.

B. Relationship Between Decentralized Event-Driven
Constrained Control and the Solutions of N ED-HJBEs

Prior to proceeding, we present an assumption for u∗i (xi) in
(14) and ν∗i (xi) in (15). The assumption was widely employed
in the literature, such as [30], [32], and [33].

Assumption 3: There are two positive constants Ku∗i and
Kν∗i (i.e., Lipschitz constants) such that, for any xi , x̄i,k ∈ �i ,��u∗i (xi)− u∗i

�
x̄i,k

��� ≤ Ku∗i

��xi − x̄i,k

�� = Ku∗i

��ei,k

����ν∗i (xi)− ν∗i (x̄i,k)
�� ≤ Kν∗i

��xi − x̄i,k

�� = Kν∗i

��ei,k

��.
Remark 4: Together with (18), (19), and Remark 3, we find

that Assumption 3 yields��μ∗i �x̄i,k
�− u∗i (xi)

�� ≤ Ku∗i

��ei,k

����υ∗i �x̄i,k
�− ν∗i (xi)

�� ≤ Kν∗i

��ei,k

��.

Theorem 1: Consider N constrained auxiliary subsystems
defined as (7) with their relevant cost functions described
as (8). Let Assumptions 1–3 hold. Then, there must have
N positive constants ρ∗i , i = 1, 2, . . . , N , such that, for
each ρi ≥ ρ∗i , the N optimal event-driven control policies
μ∗1(x̄1,k), μ

∗
2(x̄2,k), . . . , μ

∗
N (x̄N,k) together [note: μ∗i (x̄i,k) is

defined in (18)] can keep interconnected system (1) stable in
the sense of UUB as long as the triggering condition is��ei,k(t)

��2 ≤
�

1− 2γi

4K 2
max

�
Qi (xi(t)) � ěi,T (t) (21)

where 0 < γi < 1/2, Kmax = max{Ku∗i , Kν∗i } with Ku∗i and
Kν∗i being defined in Assumption 3, and ěi,T (t) is the triggering
threshold.

Proof: See Appendix I.
Remark 5: Some notes for Theorem 1 are given as follows.

1) As shown in Theorem 1, there was no restrictive inequal-
ity imposed on the auxiliary control policies. Specifi-
cally, Theorem 1 removed strictly restrictive inequalities
�ν∗i (xi(t))�2 ≤ Qi (xi(t)), i = 1, 2, . . . , N , used in
[19]. This is an advantage of Theorem 1. Note that
Theorem 1 developed in this article only assured the
UUB stability rather than asymptotical stability of the
entire closed-loop system like [19]. Thus, there might
exist a tradeoff between the control performance and
the restrictive inequalities.

2) The triggering condition (21) makes sense only when it
excludes the Zeno behavior. According to [34, Th. III.1]
and [35, Th. 2], The Zeno behavior can be prevented
from happening when the minimum intersample time is
positive. Fortunately, under Assumptions 2 and 3, there
holds the minimum intersample time (�t i

k)mink > 0,
where �t i

k = t i
k+1 − t i

k , i = 1, 2, . . . , N . Because the
proof is analogous to [30] and [36], we omit it here for
avoiding redundancy.

According to Theorem 1, the decentralized event-driven
constrained control could be obtained by finding N optimal
event-driven control policies μ∗1(x̄1,k), μ∗2(x̄2,k), . . ., μ∗N (x̄N,k).
To this end, we solve the N ED-HJBEs like (20) by using a
critic-only architecture in the framework of ACDs.

C. Critic-Only Architecture for Solving N ED-HJBEs

Note that solving N ED-HJBEs is in a way similar to solv-
ing the ED-HJBE (20) for i th constrained auxiliary subsystem.
Thus, we only provide the procedure of solving (20).

According to [37, Th. 3.1], neural networks (NNs) could
approximate any continuous function over the compact set.
Thus, we could use an NN to reconstruct V ∗i (xi) over �i as
follows:

V ∗i (xi) = ωT
ci
σci (xi)+ εci (xi) (22)

where ωci ∈ R
�i is the ideal weight vector generally unavail-

able in advance, �i ∈ Z
+ is the number of neurons, σci (xi) =

[σci1(xi), σci2 (xi), . . . , σci�i
(xi)]T ∈ R

�i is the vector activation
function, which is continuously differentiable over �i with
its elements σci1 (xi), σci2 (xi), . . . , σci�i

(xi) being linearly inde-
pendent for any xi �= 0 (note: σcis (0) = 0, s = 1, 2, . . . , �i ),
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and εci (xi) ∈ R is the approximation error. According to
[25], εci (xi) can be small enough if �i is sufficiently large.
Specifically, εci (xi)→ 0 when �i →∞.

The derivative of V ∗i (xi) in (22) at the sampled state x̄i,k is

∇V ∗i (x̄i,k) = ∇σ T
ci
(x̄i,k)ωci +∇εci (x̄i,k) (23)

where

∇B̌(x̄i,k) = ∂B̌(xi)

∂xi

����
xi=x̄i,k

with B̌(·) denoting σci (·) or εci (·).
Inserting ∇V ∗i (x̄i,k) in (23) into (18) and using Remark 3,

we have μ∗i (x̄i,k) restated as [note: t ∈ �
t i
k, t i

k+1

�
]

μ∗i (x̄i,k) = −βi tanh
�
�1(x̄i,k)

�+ εμ∗i (x̄i,k)+ Ci (24)

where

�1(x̄i,k) = 1

2βi
gT

i (x̄i,k)∇σ T
ci
(x̄i,k)ωci

εμ∗i (x̄i,k) = −(1/2)
�
Imi − E(ς(x̄i,k))

�
gT

i (x̄i,k)∇εci (x̄i,k)

and E(ς(x̄i,k)) = diag{tanh2(ςp(x̄i,k))} (p = 1, 2, . . . ,mi )
with ς(x̄i,k) = [ς1(x̄i,k), ς2(x̄i,k), . . . , ςmi (x̄i,k)]T ∈ R

mi being
selected between (1/(2βi))gT

i (x̄i,k)∇V ∗i (x̄i,k) and �1(x̄i,k).
Similarly, using ∇V ∗i (x̄i,k)) in (23), we have υ∗i (x̄i,k) in (19)

represented as [note: t ∈ [t i
k, t i

k+1)]

υ∗i (x̄i,k) = − 1

2ηi
hT

i (xi)∇σ T
ci
(x̄i,k)ωci + ευ∗i (x̄i,k) (25)

where ευ∗i (x̄i,k) = −hT
i (xi)∇εci (x̄i,k)



(2ηi ).

Note that ωci in (22) is unknown beforehand. Thus, it makes
μ∗i (x̄i,k) in (24) and ν∗i (xi) in (25) infeasible for practical
implementation. A promising way to tackle this issue is to
replace ωci with its estimated value ω̂ci . Specifically, rather
than using V ∗i (xi) in (22), we utilize its estimated value
V̂ ∗i (xi), which is the output of the critic NN, that is,

V̂ ∗i (xi) = ω̂T
ci
σci (xi). (26)

Then, making use of (26) and taking a way similar to obtaining
μ∗i (x̄i,k) in (24), we have the estimated value of μ∗i (x̄i,k)
expressed as

μ̂i (x̄i,k) = −βi tanh
�
�2(x̄i,k)

�+ Ci , t ∈ �
t i
k, t i

k+1

�
(27)

where

�2(x̄i,k) = 1

2βi
gT

i (x̄i,k)∇σ T
ci
(x̄i,k)ω̂ci .

Likewise, we could obtain the estimated value of υ∗i (x̄i,k) in
(25) as

υ̂i(x̄i,k) = − 1

2ηi
hT

i (x̄i,k)∇σ T
ci
(x̄i,k)ω̂ci , t ∈ �

t i
k, t i

k+1

�
. (28)

Letting V ∗i (xi), ui , and νi in (13) be replaced with V̂ ∗i (xi)
in (26), μ̂i(x̄i,k) in (27), and υ̂i(x̄i,k) in (28), respectively,
we deduce that the approximation Hamiltonian is [note: t ∈
[t i

k, t i
k+1)]

Ĥ
�
xi ,∇ V̂ ∗i (xi), μ̂i (x̄i,k), υ̂i (x̄i,k)

� = ω̂T
ci
φi

+ρi P2
i (xi)+ Qi (xi)+Wi(ûi (x̄i,k))+ ηi

��υ̂i(x̄i,k)
��2

where

φi = ∇σci (xi)
�

fi (xi)+ gi(xi)μ̂i(x̄i,k)

+ hi(xi)υ̂i (x̄i,k)
�− αiσci (xi). (29)

Recall that the time-driven HJBE defined in (12) implies

H
�
xi ,∇V ∗i (xi), u∗i (xi), ν

∗
i (xi)

� = 0.

We, therefore, get an error function of Hamiltonian, denoted
by eci , formulated as

eci = Ĥ
�
xi ,∇ V̂ ∗i (xi), μ̂i (x̄i,k), υ̂i (x̄i,k)

�
−H

�
xi ,∇V ∗i (xi), u∗i (xi), ν

∗
i (xi)

�
= ω̂T

ci
φi + ρi P2

i (xi)+ Qi (xi)+Wi
�
ûi(x̄i,k)

�
+ηi

��υ̂i (x̄i,k)
��2
. (30)

To make ω̂ci → ωci , we need to force eci → 0, that is, eci in
(30) must be made small enough. To attain this goal, we tune
ω̂ci to minimize E(eci ) = (1/2)eT

ci
eci . The tuning rule for ω̂ci

is derived via applying both the gradient descent approach
and the normalization technique to E(eci ), that is, [note: t ∈
[t i

k, t i
k+1)]

˙̂ωci = −
λi

2
�
1+ φT

i φi
�2

∂E(eci )

∂ω̂ci

= − λiφi�
1+ φT

i φi
�2 eci (31)

where λi > 0 is a designable parameter, (1 + φT
i φi )

−2 is the
normalization term, and φi is defined in (29).

Define the weight error as ω̃ci = ωci − ω̂ci . Then, together
with (31), we have ω̃ci satisfied

˙̃ωci = −λiϕiϕ
T
i ω̃ci + λi

ϕi

1+ φT
i φi

εHi (32)

where ϕi = φi

�

1 + φT
i φi

�
and εHi = −∇εT

ci
(xi)

�
fi (xi) +

gi(xi )μ̂i(x̄i,k)+ hi (xi)υ̂i (x̄i,k)
�+αiεci (xi) is the residual error

(note: because of obtaining εHi in a way similar to [32], we
omit the detailed process here).

D. Stability Analysis

Before conducting the stability analysis, we present some
basic assumptions used in [38]–[40].

Assumption 4: For all xi ∈ �i , �∇σci (xi)� ≤ bσci
with

bσci
being the positive constant. Meanwhile, for all xi ∈ �i ,

�εμ∗i (xi)� ≤ bεμ∗i
, �ευ∗i (xi)� ≤ bευ∗i

, and �εHi� ≤ bεHi
with

bεμ∗i
, bευ∗i

, and bεHi
being the positive constants.

Assumption 5: Over the interval [t, t + T0], ϕi defined in
(32) is persistently exciting. Specifically, we have constants
0 < �1 ≤ �2 and T0 > 0 such that

�1 I�i ≤
� t+T0

t
ϕi(τ )ϕ

T
i (τ )ds ≤ �2 I�i (33)

where I�i is the identity matrix of size �i × �i .
Theorem 2: Consider the i th constrained auxiliary subsys-

tem (7) with its related ED-HJBE (20). Let Assumptions 1–5
hold and let the event-driven control policies be proposed as
(27) and (28). If the initial control policies are admissible and
the weight vector is tuned via (31), then the UUB stability of
the i th auxiliary subsystem state xi and the weight error ω̃ci
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is ensured, provided that the triggering condition is (21) and
the following inequality holds:

3λiθmin
�
ϕiϕ

T
i

�− 4

�
bhi bσci

ηi

�2

> 0 (34)

with θmin
�
ϕiϕ

T
i

�
being the minimum eigenvalue of symmetric

matrix ϕiϕ
T
i .

Proof: See Appendix II.
Remark 6: There are two reasons for presenting Assump-

tion 5. First, according to [32, Th. 2], we have to keep ϕi

persistently exciting in order to make ω̂ci converge to the ideal
weight vector ωci . Second, by using Assumption 5 [or rather,
the inequality (33)], we can deduce that θmin(ϕiϕ

T
i ) defined in

(34) is positive. In this circumstance, by properly selecting λi ,
we can keep the inequality (34) valid.

To make the present decentralized event-driven constrained
control scheme better for understanding, we summarize it as
Algorithm 1.

Algorithm 1 Decentralized Event-Driven Constrained Control
Strategy for Mismatched Interconnected Systems
1: initialization: Choose the positive parameters αi , ρi , �i ,

and λi ; Determine the parameters bi j ≥ 0, ci , 0 < ηi ≤ 1,
βi > 0, 0 < γi < 1/2, Kmax > 0, and the matrix Qi ; Set
the initial states xi0 and x̄i0, the computational accuracy
�0 > 0, the maximum iteration step qmax ∈ Z

+, the initial
iteration index q = 0, and the initial weight vector ω̂(0)ci

.
2: repeat
3: μ̂

(q)
i (x̄i,k)← Eq. (27); υ̂

(q)
i (x̄i,k)← Eq. (28);

4: ω̂
(q+1)
ci ← Eq. (31);

5: q ← q + 1;
6: ei,k ← x̄i,k − xi ; ěi,T ← (1− 2γi)Qi (xi)/(4K 2

max);
7: if �ei,k� >

�
ěi,T then

μ̂
(q)
i (x̄i,k)←−βi tanh

�
�
(q)
2 (x̄i,k)

�
+ Ci

� �(q)
2 (x̄i,k) = 1

2βi
gT

i (x̄i,k)∇σ T
ci
(x̄i,k)ω̂

(q)
ci ;

υ̂
(q)
i (x̄i,k)←− 1

2ηi
hT

i (x̄i,k)∇σ T
ci
(x̄i,k)ω̂

(q)
ci ;

8: end if
9: until q ≥ qmax or

���ω̂(q+1)
ci − ω̂(q)ci

��� < �0;

10: Insert ω̂
(q+1)
ci into (27), and thus obtain the approxi-

mate optimal event-driven control μ̂∗i (x̄i,k). Then, μ̂∗1(x̄1,k),
μ̂∗2(x̄2,k), . . ., μ̂∗N (x̄N,k) all together constitute the decentral-
ized event-driven constrained control.

Remark 7: Some notes for the decentralized event-driven
constrained control and the present ACDs are given as follows.

1) The present decentralized event-driven constrained con-
trol scheme is obtained by using ACDs incorporated
with adaptive control methods, such as Laypunov sta-
bility analyses and gradient descent approaches. Thus,
the ACDs developed in this article are totally different
from the ADP method proposed in [6], which does not
look into stability analyses of the closed-loop system.

2) The present ACDs are actually in a similar spirit as [5].
In this article, we extend the work of [5] to obtain the

decentralized event-driven control of nonlinear systems
with mismatched interconnections and asymmetric input
constraints. There are two main characteristics distin-
guishing this article and [5].

a) First, in this article, we have to introduce an event-
driven auxiliary control υ̂i(x̄i,k) defined as (28),
which was not required in [5].

b) Second, the event-driven control μ̂i (x̄i,k) defined in
(27) is more complex than the event-driven control
proposed in [5].

Due to the above mentioned two core differences [in par-
ticular, the added event-driven auxiliary control υ̂i (x̄i,k)
defined in (28)], it is much more difficult and com-
plex than [5] to employ ACDs to derive the decen-
tralized event-driven control law for nonlinear systems
with mismatched interconnections and asymmetric input
constraints (note: [5] only considered nonlinear plants
with matched perturbations and ignored the interconnec-
tions). Therefore, the work of this article is nontrivial.

IV. SIMULATION EXPERIMENT

We study the interconnected nonlinear systems modified
from [41], which have the form

ẋ1 =
�

−x11 + x12

−0.5(x11 + x12)+ 0.5x2
11x12

�
+

�
0

sin(x12)

�
u1

+
�

1

0

�
(x11 + x22) sin2(q1x12) cos(0.5x21)

ẋ2 =
�

0.5x22

−x21 − 0.5x22 + 0.5x21 cos2(x22)

�

+
�

0

sin(x21) cos(x22)

�
u2

+
�

1

0

��
0.6(x12 + x22) cos

�
q2ex2

11

��
(35)

where x1 = [x11, x12]T and x2 = [x21, x22]T are the state
vectors of subsystems 1 and 2, respectively, and their initial
state vectors are x10 = [0.5,−0.5]T and x20 = [1,−1]T,
u1 ∈ U1 = {u1 ∈ R : − 2 ≤ u1 ≤ 4} and u2 ∈ U2 = {u2 ∈
R : −2 ≤ u2 ≤ 3} are input variables for subsystems 1 and 2,
respectively, and q1 and q2 are unknown scalar parameters
(note: we select q1 and q2 randomly within the interval
[−3, 3]).

To make Assumption 1 [or rather, the inequality (4)] hold,
we choose P1(x1) = �x1�, P2(x2) = �x2�, b11 = 1,
b12 = 1, b21 = 0.6, and b22 = 0.6. Meanwhile,
we get from (35) that g1(x1) = [0, sin(x12)]T, g2(x2) =
[0, sin(x21) cos(x22]T, and hi(xi) = [1, 0]T, i = 1, 2. Thus,
there hold gi(0) = 0 and rank(gi(xi)) < 2 as well as
gT

i (xi)hi (xi) = 0, i = 1, 2. Apparently, gi(xi) and hi (xi)
(i = 1, 2) are bounded. Hence, Assumption 2 holds.

Two constrained auxiliary subsystems associated with inter-
connected system (35) could be obtained via (7) (note:
here, functions for constrained auxiliary we call them the
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constrained auxiliary subsystems 1 and 2). As shown in
Theorem 1, we need to find the optimal control policies for
constrained auxiliary subsystems 1 and 2 in order to derive
the decentralized event-driven control of system (35). To this
end, we first present two cost functions like (8) for constrained
auxiliary subsystems 1 and 2, respectively. We set α1 = 0.6,
α2 = 0.6, η1 = 0.25, η2 = 0.25, and Q1 = Q2 = I2 with
I2 being the identity matrix of size 2× 2. Meanwhile, we let
ρ1 = 4 and ρ2 = 4 in order to ensure the matrix A defined
in later (45) to be positive definite. Then, according to (8),
the cost functions for constrained auxiliary subsystems 1 and
2 are given (note: Vi(xi) denotes V ui ,νi

i (xi), i = 1, 2. Besides,
xi , Wi (ui), and νi separately denote xi(τ ), Wi (ui(τ )), and
νi (τ ) without mentioning the variable τ ), respectively

V1(x1) =
� ∞

t
e−0.6(τ−t)

�
5�x1�2 +W1(u1)+ 0.25ν2

1

�
dτ

V2(x2) =
� ∞

t
e−0.6(τ−t)

�
5�x2�2 +W2(u2)+ 0.25ν2

2

�
dτ

where (note: i = 1, 2)

Wi(ui ) = 2βi

� ui

ci

tanh−1�β−1
i (s − ci )

�
ds

= 2βi(ui − ci) tanh−1((ui − ci)/βi)

+β2
i ln

�
1− (ui − ci )

2/β2
i

�
. (36)

Performing calculations through (10), we have β1 = 3, c1 = 1,
β2 = 2.5, and c2 = 0.5.

Now, we use critic NNs defined as (26) to solve
the two ED-HJBEs like (20) for constrained auxiliary
subsystems 1 and 2. To this end, motivated by the work of
[25], we choose two different vector activation functions
σc1(x1) and σc2(x2) used in (26) as (note: �1 = 8 and �2 = 8)

σc1(x1) =
�
x2

11, x2
12, x11x12, x4

11,

x4
12, x3

11x12, x2
11x2

12, x11x3
12

�T

σc2(x2) =
�
x2

21, x2
22, x21x22, x4

21,

x4
22, x3

21x22, x2
21x2

22, x21x3
22

�T
.

Meanwhile, we write the two associated weight
vectors (namely, ω̂c1 and ω̂c2 ) used in (26) as
ω̂c1 = [ω̂c11 , ω̂c12 , . . . , ω̂c18]T and ω̂c2 = [ω̂c21 , ω̂c22 , . . . , ω̂c28]T,
respectively. To keep initial control policies (including
the initial auxiliary control policy) admissible for
constrained auxiliary subsystems 1 and 2, we let
the initial weight vectors of critic NNs be ω̂initial

c1
=

[0.437, 0.218, 0.2283, 0.4225, 0.3815, 0.3565, 0.174, 0.4197]T
and ω̂initial

c2
= [0.131, 0.3593, 0.4742, 0.0708, 0.4969, 0.0535,

0.0155,−0.1693]T, respectively. Here, ω̂initial
c1

and ω̂initial
c2

are
obtained via trail and error. The parameters given in the
triggering condition (21) and the weight tuning rule (31) are
Kmax = 3.5, γi = 0.25, and λi = 0.6, i = 1, 2.

With the MATLAB 2017(a) soft package being applied
to the simulation study, we obtain the performance of critic
NN weight vectors ω̂c1 and ω̂c2 shown in Figs. 1 and 2.
Observing Fig. 1, we find that ω̂c1 is convergent after

Fig. 1. Performance of weight vector ω̂c1 =
�
ω̂c11 , ω̂c12 , . . . , ω̂c18

�T.

Fig. 2. Performance of weight vector ω̂c2 =
�
ω̂c21 , ω̂c22 , . . . , ω̂c28

�T.

the first 45 s and its converged value is ω̂
converged
c1 =

[0.9924, 2.656, 0.7189, 0.424, 1.8564, 0.3273, 0.221, 0.5066]T.
Meanwhile, we can see from Fig. 2 that ω̂c2 is convergent
after the first 50 s and its converged value is ω̂

converged
c2 =

[0.807, 2.651, 0.279, 0.1915, 1.1676,−0.132, 0.205,−0.317]T.
Fig. 3(a) and (b) shows the event-driven control μ̂1(x̄1,k) and
the auxiliary event-driven control υ̂1(x̄1,k) for constrained
auxiliary subsystem 1. As shown in Fig. 3(a), μ̂1(x̄1,k) does
not exceed the lower bound (u1)min = −2 and the upper
bound (u1)max = 4. Fig. 4(a) and (b) shows the event-driven
control μ̂2(x̄2,k) and the auxiliary event-driven control
υ̂2(x̄2,k) for constrained auxiliary subsystem 2. According to
Fig. 4(a), μ̂2(x̄2,k) does not surpass the asymmetric bounds,
namely, (u2)min = −2 and (u2)max = 3. It is verified in
Figs. 3(a) and 4(a) that the asymmetric input constraints are
overcome with the nonquadratic function defined in (36).
It can also be seen from Figs. 3(a) and 4(a) that μ̂1(x̄1,k)
and μ̂2(x̄2,k) converge to 1 and 0.5, respectively. In other
words, both μ̂1(x̄1,k) and μ̂2(x̄2,k) converge to nonzero points.
This characteristic is consistent with Remark 2. Fig. 5(a)
describes the norm of e1,k(t) defined in (17) (i.e., �e1,k�)
and the square root of ě1,T defined in (21) (i.e.,

�
ě1,T ) for
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Fig. 3. (a) Event-driven control μ̂1(x̄1,k ). (b) Event-driven auxiliary control
υ̂1(x̄1,k).

Fig. 4. (a) Event-driven control μ̂2(x̄2,k ). (b) Event-driven auxiliary control
υ̂2(x̄2,k ).

constrained auxiliary subsystem 1. Meanwhile, the associated
intersample time, denoted by �t1

k = t1
k+1 − t1

k , is shown
in Fig. 5(b). Likewise, Fig. 6(a) shows �e2,k� and

�
ě2,T for

constrained auxiliary subsystem 2. The related intersample
time �t2

k = t2
k+1− t2

k is shown in Fig. 6(b). It is observed from
Figs. 5(b) and 6(b) that min{�t1

k ,�t2
k } = 0.1 s. According to

Remark 5, this guarantees the Zeno behavior not to happen.

Inserting previously obtained weight vectors ω̂
converged
c1 and

ω̂
converged
c2 into (27), respectively, we derive the approximate

optimal event-driven control policies, denoted by μ̂∗1(x̄1,k)
and μ̂∗2(x̄2,k), for constrained auxiliary subsystems 1 and 2.
Then, according to Theorem 1, μ̂∗1(x̄1,k) and μ̂∗2(x̄2,k) together
constitute the decentralized event-driven control of system
(35). With the obtained decentralized event-driven control,
the entire state of system (35) is stable (see Fig. 7).

To show the advantage of the present event-driven ACDs
in reducing the computational burden, we make a com-
parison with the time-driven ACDs proposed in [41] (see
Tables I and II). According to Table I (or Table II), the total
numbers of computation are 100 800 and 26 680 (or 51 000 and

Fig. 5. (a) Norm of e1,k (i.e., �e1,k�) and the square root of ě1,T (i.e.,
�

ě1,T ).
(b) Intersample time �t1

k = t1
k+1 − t1

k .

Fig. 6. (a) Norm of e2,k (i.e., �e2,k�) and the square root of ě2,T (i.e.,�
ě2,T ). (b) Intersample time �t2

k = t2
k+1 − t2

k (note: the index “2” denotes
the constrained auxiliary subsystem 2).

TABLE I

COMPARISON OF THE COMPUTATIONAL LOAD FOR SUBSYSTEM 1
BETWEEN THE PRESENT EVENT-DRIVEN ACDS AND THE

TIME-DRIVEN ACDS PROPOSED IN [41]

21 111) when we implement the time-driven ACDs developed
in [41] and the present event-driven ACDs for constrained
auxiliary subsystem 1 (or auxiliary subsystem 2), respectively.
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Fig. 7. Overall state vector x(t) = [x11(t), x12(t), x21(t), x22(t)]T.

TABLE II

COMPARISON OF THE COMPUTATIONAL LOAD FOR SUBSYSTEM 2
BETWEEN THE PRESENT EVENT-DRIVEN ACDS AND THE

TIME-DRIVEN ACDS PROPOSED IN [41]

TABLE III

COMPUTATIONAL BURDEN OF ACDs WITH TIME-DRIVEN AUXILIARY
CONTROL AND ACDs WITH EVENT-DRIVEN AUXILIARY CONTROL

This indicates that we only need to make 47791 (i.e., 26 680
+ 21 111) computations for implementing the present event-
driven ACDs for auxiliary subsystems 1 and 2 together.
However, there are 151 800 (i.e., 100 800 + 51 000) compu-
tations made to implement the time-driven ACDs proposed
in [41] for auxiliary subsystems 1 and 2 together. Thus,
the event-driven ACDs make the computational load cut up
to 68.52% (i.e., (151 800 − 47 791)/151 800). In addition,
to show that updating the control policies and the auxiliary
policies simultaneously in the event-driven mechanism for

auxiliary subsystems 1 and 2 leads to less computational
burden than only tuning the control policies in the event-
driven mechanism, we provide comparison results in Table III.
According to Table III, the computational burden cuts up to
52.40% (i.e., (100 394 − 47 791)/100 394) when we utilize the
ACDs together with the event-driven control and the event-
driven auxiliary control.

V. CONCLUSION AND FUTURE WORK

This article has presented a novel ACD-based decentralized
event-driven control strategy for mismatched interconnected
systems having asymmetric input constraints. The newly
proposed decentralized event-driven control scheme not only
removes the restrictive inequalities imposed on its implemen-
tation but also remarkably lowers down the computational
load. It is worth noting here that there probably exists a
tradeoff between the control performance and the restrictive
conditions (see Remark 5). In addition, due to the restrictive
conditions imposed on interconnected system (1) (such as
gi(0) = 0 in Assumption 2) and the requirement of accurate
mathematical models, it is challengeable to make the present
decentralized event-driven control strategy applicable for
general practical engineering systems. Thus, how to relax the
restrictive conditions (such as Assumptions 1 and 2) at no cost
of weakening the control performance and make the present
decentralized event-driven control scheme suitable for general
practical engineering systems is a direction of our future
studies.

Though the decentralized event-driven constrained control
strategy is developed to deal with regulation problems, it can
be extended to handle the decentralized tracking control prob-
lem of interconnected systems if the tracking error is defined
similar to [16]. It is worth emphasizing that system (1) suffers
from the mismatched interconnections rather than the matched
interconnections in [16]. This feature will give rise to some
differences between this article and [16] when we consider
the decentralized tracking control problem of interconnected
system (1). Due to the space limit, we cannot look deep
into this issue in this article. Recently, an adaptive actor-
critic tracking control scheme has been proposed for nonlinear
systems with the quantized input [42]. In comparison with
asymmetric input constraints (see Ui defined in Section II),
the quantized input imposes more restrictions on the systems’
input. Therefore, how to make an extension of the present
event-driven control method to cope with the decentralized
tracking control problem of interconnected systems with quan-
tized input constraints is also one direction of our future
works.

More recently, adaptive NN-based control methods together
with backstepping techniques have been suggested to derive
decentralized control laws for a class of uncertain strict-
feedback (or nonstrict-feedback switched) interconnected sys-
tems (see [43], [44]). Then, how to combine these NN-based
control approaches and the present event-driven control strat-
egy to tackle decentralized event-driven constrained control
problems of strict-feedback (or nonstrict-feedback switched)
interconnected systems is another direction of our future
research.
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APPENDIX I
PROOF OF THEOREM 1

Let the Lyapunov function candidate be

L(x) =
N�

i=1

V ∗i (xi) (37)

where V ∗i (xi), i = 1, 2, . . . , N , are defined in (11). The
definition of V ∗i (xi) in (11) implies that V ∗i (xi) > 0 for
xi �= 0, and V ∗i (0) = 0, i = 1, 2, . . . , N . Thus, V ∗i (xi),
i = 1, 2, . . . , N , are positive definite functions [45]. We thus
have the conclusion that the function L(x) is positive definite.

Using N trajectories generated from ẋi = fi (xi) +
gi(xi)μ

∗
i (x̄i,k) + � fi (x), i = 1, 2, . . . , N , and Assumption 1,

we deduce that the time derivative of L(x) in (37) yields [note:
� fi(x) = hi (xi)di(x)]

L̇(x) = dL(x)/dt =
N�

i=1

�∇V ∗i (xi)
�T

ẋi

=
N�

i=1

��∇V ∗i (xi)
�T�

fi (xi)+ gi(xi)μ
∗
i

�
x̄i,k

��
+�∇V ∗i (xi)

�T
hi (xi)di(x)

�

=
N�

i=1

��∇V ∗i (xi)
�T�

fi (xi)+ gi(xi)u
∗
i (xi)

�
+�∇V ∗i (xi)

�T
gi(xi)

�
μ∗i

�
x̄i,k

�− u∗i (xi)
�

+�∇V ∗i (xi)
�T

hi (xi)di(x)

�
. (38)

Meanwhile, it follows from (12), (13), and (15) that:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�∇V ∗i (xi)
�T�

fi (xi)+ gi(xi)u
∗
i (xi)

�
= −ρi P2

i (xi)− Qi (xi)−Wi(u
∗
i (xi))

+αi V
∗
i (xi)+ ηi

��ν∗i (xi)
��2�∇V ∗i (xi)

�T
hi (xi) = −2ηi

�
ν∗i (xi)

�T
.

(39)

Inserting (39) into (38), we have

L̇(x) =
N�

i=1

�
αi V

∗
i (xi)− ρi P2

i (xi)− Qi (xi)−Wi (u
∗
i )

+ �∇V ∗i (xi)
�T

gi(xi)
�
μ∗i

�
x̄i,k

�− u∗i (xi)
�� � !

�1

+ηi

��ν∗i (xi)
��2−2ηi

�
ν∗i (xi)

�T
di(x)� � !

�2

�
. (40)

Using Young’s inequality 2āTb̄ ≤ �ā�2 + �b̄�2 and the first
inequality in Remark 4, we deduce from �1 in (40) that [note:
ā = −(1/2)(∇V ∗i (xi))

Tgi(xi) and b̄ = u∗i (xi)− μ∗i (x̄i,k)]

�1 ≤
����1

2

�∇V ∗i (xi)
�T

gi(xi)

����2

+ ��u∗i (xi)− μ∗i
�
x̄i,k

���2

≤ 1

4

����∇V ∗i (xi)
�T

gi(xi)
���2 + K 2

u∗i

��ei,k

��2
.

Meanwhile, using the Cauchy–Schwarz inequality [28, Th.
10.55] and Assumption 1 [or rather, the inequality (4)], we
find that �2 in (40) yields

�2 ≤ 2ηi

��ν∗i (xi)
���di(x)� ≤ 2ηi

��ν∗i (xi)
�� N�

j=1

bi j Pj (x j).

Thus, we deduce from (40) that

L̇(x) ≤ −
N�

i=1

�
(3+ 2γi)

4
Qi (xi)− �i

�
xi , V ∗i , ν

∗
i (xi)

��

−
N�

i=1

�
(1− 2γi)

4
Qi (xi)− K 2

u∗i

��ei,k(t)
��2

�

−
N�

i=1

Wi (u
∗
i )−

N�
i=1

ηi(1− ηi)
��ν∗i (xi)

��2

−
N�

i=1

�
ρi P2

i (xi)+ η2
i

��ν∗i (xi)
��2

−2ηi

��ν∗i (xi)
�� N�

j=1

bi j Pj (x j)

�
(41)

where

�i
�
xi , V ∗i , ν

∗
i (xi)

� = αi V
∗
i (xi)+ 2ηi

��ν∗i (xi)
��2

+(1/4)
����∇V ∗i (xi)

�T
gi(xi)

���2
. (42)

According to [27], for every xi ∈ �i , V ∗i (xi) is continuously
differentiable. We, therefore, obtain that V ∗i (xi) and ∇V ∗i (xi)
are bounded over �i . Here, we denote

max{�V ∗i (xi)�, �∇V ∗i (xi)�} ≤ bV ∗i

where bV ∗i > 0 is a constant. Then, recalling the expres-
sion ν∗i (xi) given in (15) and using Assumption 2, we have
�i (xi , V ∗i , ν

∗
i (xi)) in (42) bounded as

�i
�
xi , V ∗i , ν

∗
i (xi)

� ≤ αi bV ∗i +
1

2ηi
b2

hi
b2

V ∗i
+ 1

4
b2

gi
b2

V ∗i� � !
δMi

. (43)

To simplify notations, we let⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ̄ = diag{ρ1, ρ2, . . . , ρN }
1̄ = diag{11, 12, . . . , 1N } (1i = 1, i = 1, 2, . . . , N)

z(x) = �− P1(x1),−P2(x2), . . . ,−PN (xN ),

η1

��ν∗1 (x1)
��, η2

��ν∗2 (x2)
��, . . . , ηN

��ν∗N (xN )
���T

.

Then, combining (21) with (43) and observing the facts that
Qi (xi) = xT

i Qi xi ≥ θmin(Qi )�xi�2 (note: θmin(Qi ) denotes
the minimum eigenvalue of Qi ) and 0 < ηi ≤ 1 as well as
−Wi(u∗i ) ≤ 0 (note: the function Wi(ui ) defined in (9) is
semipositive definite), we further develop (41) as

L̇(x) ≤ −
N�

i=1

�
(3+ 2γi)

4
θmin(Qi )�xi�2 − δMi

�
−zT(x)Az(x) (44)
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where δMi is defined in (43) and

A =
⎡
⎣ρ̄ BT

B 1̄

⎤
⎦ with B =

⎡
⎢⎢⎢⎢⎣

b11 b12 · · · b1N

b21 b22 · · · b2N

...
...

. . .
...

bN1 bN2 · · · bN N

⎤
⎥⎥⎥⎥⎦. (45)

Apparently, A defined in (45) is a symmetric real-valued
matrix. According to [46, Th. 2.5.6], the matric A is orthogo-
nally diagonalizable. Thus, we can choose large positive con-
stants ρi , i = 1, 2, . . . , N , to make A > 0 due to the fact that
these parameters lie in the principle diagonal of A. Or rather,
there must have constants ρ∗i > 0, i = 1, 2, . . . , N , such that
ρi ≥ ρ∗i , i = 1, 2, . . . , N , ensure that −zT(x)Az(x) < 0 for
any z(x) �= 0. Then, (44) leads to

L̇(x) ≤ −
N�

i=1

�
(3+ 2γi)

4
θmin(Qi )�xi�2 − δMi

�
.

Therefore, we have L̇(x) < 0 if letting each i th subsystem
state xi /∈ Dxi with Dxi being given as

Dxi =
(

xi : �xi� ≤ 2

)
δMi

(3+ 2γi)θmin(Qi )

*
.

This verifies the UUB stability of interconnected system (1)
based on the Lyapunov theorem extension [47]. The proof is
completed.

APPENDIX II
PROOF OF THEOREM 2

Note that system (7) with event-driven control policies
(27) and (28) constitutes the i th closed-loop auxiliary system.
Hence, the i th closed-loop auxiliary system contains xi and
x̄i,k as well as ω̃ci (note: ω̂ci = ωci − ω̃ci ). Due to this fact,
we consider the Lyapunov function candidate having the form

L1(t) = V ∗i (x̄i,k)� � !
L11(t)

+ V ∗i (xi(t))� � !
L12(t)

+ (1/2)ω̃T
ci
ω̃ci� � !

L13(t)

. (46)

Because there are continuous state xi(t) and discrete state (or
sampled state) x̄i,k in L1(t), we present the discussion from
the two following cases.

Case I: Let t ∈ [t i
k, t i

k+1), k = 0, 1, 2, . . . Then, according
to the definition of derivative [28, Ch. 5], we have

L̇11(t) = dV ∗i (x̄i,k)/dt = 0. (47)

Taking the derivation of L12(t) and using the trajectory of
system ẋi = fi (xi)+ gi(xi)μ̂i(x̄i,k)+ hi (xi)υ̂i (x̄i,k), we get

L̇12(t) =
�∇V ∗i (xi)

�T�
fi (xi)+ gi(xi)μ̂i(x̄i,k)

�
+�∇V ∗i (xi)

�T
hi (xi)υ̂i (x̄i,k)

= �∇V ∗i (xi)
�T�

fi (xi)+ gi(xi)u
∗
i (xi)

�
+�∇V ∗i (xi)

�T
gi(xi)

�
μ̂i(x̄i,k)− u∗i (xi)

�
+�∇V ∗i (xi)

�T
hi (xi)υ̂i (x̄i,k).

Together with (39), this yields

L̇12(t) = −ρi P2
i (xi)− Qi (xi)−Wi (u

∗
i (xi))+ αi V

∗
i (xi)

+ηi

��ν∗i (xi)
��2 − 2ηi

�
ν∗i (xi)

�T
υ̂i (x̄i,k)

+�∇V ∗i (xi)
�T

gi(xi)
�
μ̂i

�
x̄i,k

�− u∗i (xi)
�
. (48)

Using Young’s inequality 2āTb̄ ≤ �ā�2 + �b̄�2, we find that
the last term on the right-hand side of (48) satisfies [note:
here, ā = (1/2)

�∇V ∗i (xi)
�T

gi(xi) and b̄ = μ̂i
�
x̄i,k

�− u∗i (xi)]�∇V ∗i (xi)
�T

gi(xi)
�
μ̂i

�
x̄i,k

�− u∗i (xi)
�

≤ (1/4)
����∇V ∗i (xi)

�T
gi(xi)

���2 + ��μ̂i
�
x̄i,k

�− u∗i (xi)
��2
.

Then, (48) yields

L̇12(t) ≤ −ρi P2
i (xi)− Qi (xi)−Wi(u

∗
i (xi))

−ηi

��υ̂i(x̄i,k)
��2 + ηi

��υ̂i
�
x̄i,k

�− ν∗i (xi)
��2

−2ηi

��ν∗i (xi)
��2 + ��μ̂i

�
x̄i,k

�− u∗i (xi)
��2

+�i
�
xi , V ∗i , ν

∗
i (xi)

�
(49)

with �i (xi , V ∗i , ν
∗
i (xi)) being defined in (42). Apparently, there

hold −ρi P2
i (xi) ≤ 0 and −Wi(u∗i (xi)) ≤ 0 as well as

−ηi
��υ̂i (x̄i,k)�2 + 2�ν∗i (xi)�2

� ≤ 0. Thus, (49) implies

L̇12(t) ≤ −Qi(xi)+ δMi +
��μ̂i

�
x̄i,k

�− u∗i (xi)
��2� � !

�1

+ ηi

��υ̂i
�
x̄i,k

�− ν∗i (xi)
��2� � !

�2

(50)

where δMi defined in (43) is the bound of �i (xi , V ∗i , ν
∗
i (xi)).

Applying the inequality �ā + b̄�2 ≤ 2�ā�2 + 2�b̄�2 to �1

in (50) and using (24) and (27) as well as the first inequality
given in Remark 4, we have [note: here ā = μ̂i(x̄i,k)−μ∗i (x̄i,k)
and b̄ = μ∗i (x̄i,k)− u∗i (xi)]

�1 =
���μ̂i (x̄i,k)− μ∗i (x̄i,k)

�+ �
μ∗i (x̄i,k)− u∗i (xi)

���2

≤ 2
��μ̂i(x̄i,k)− μ∗i (x̄i,k)

��2 + 2
��μ∗i (x̄i,k)− u∗i (xi)

��2

≤ 4
��F(�1(x̄i,k))− F(�2(x̄i,k))

��2 + 4
��εμ∗i (x̄i,k)

��2

+2K 2
u∗i
�ei,k�2

≤ 8
���F(�1(x̄i,k))

��2 + ��F(�2(x̄i,k))
��2

�
+2K 2

u∗i
�ei,k�2 + 4b2

εμ∗i
(51)

where F(�s(x̄i,k)) = βi tanh(�s(x̄i,k)) (s = 1, 2) with
�1(x̄i,k) and �2(x̄i,k) defined in (24) and (27), respectively.
Noticing that �s(x̄i,k) ∈ R

mi , we denote �s(x̄i,k) =
[�s1(x̄i,k),�s2(x̄i,k), . . . ,�smi (x̄i,k)]T with �sp(x̄i,k) ∈ R, p =
1, 2, . . . ,mi . Then, using the fact that | tanh(y)| ≤ 1 holds for
every y ∈ R, we obtain (note: s = 1, 2)

��F(�s(x̄i,k))
�� = βi

⎛
⎝ mi�

p=1

tanh2(�sp(x̄i,k))

⎞
⎠1/2

≤ βi
√

mi .

Thus, it follows from (51) that:
�1 ≤ 2K 2

u∗i
�ei,k�2 + 16miβ

2
i + 4b2

εμ∗i
. (52)
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Taking a way similar to deriving (51) to calculate �2 and using
(25) and (28) as well as the second inequality in Remark 4,
we have

�2 ≤ 2
��υ̂i(x̄i,k)− υ∗i (x̄i,k)

��2 + 2
��υ∗i (x̄i,k)− ν∗i (xi)

��2

≤ 4

����− 1

2ηi
hT

i (xi)∇σ T
ci
(x̄i,k)ω̃ci

����2

+2K 2
ν∗i
�ei,k�2 + 4

��ευ∗i (x̄i,k)
��2

≤
�

b2
hi

b2
σci



η2

i

���ω̃ci

��2 + 2K 2
ν∗i
�ei,k�2 + 4b2

ευ∗i
. (53)

Combining (52) and (53), we deduce from (50) that

L̇12(t) ≤ −Qi(xi)+ 4K 2
max�ei,k�2

+
�

b2
hi

b2
σci



η2

i

���ω̃ci

��2 + 16miβ
2
i

+4b2
εμ∗i
+ 4b2

ευ∗i
+ δMi (54)

where Kmax = max{Ku∗i , Kν∗i }.
The derivative of L13(t) along the solution of (32) is

L̇13(t) = −λi ω̃
T
ci
ϕiϕ

T
i ω̃ci + λi

ω̃T
ci
ϕi

1+ φT
i φi

εHi . (55)

Applying the inequality 2āTb̄ ≤ āTā+ b̄Tb̄ to the second term
on the right-hand side of (55) and noting 1/(1 + φT

i φi ) ≤ 1,
we get [note: here, āT = (1/2)ω̃T

ci
ϕi and b̄ = εHi )]

λi ω̃
T
ci
ϕiεHi

1+ φT
i φi
≤ λi

1+ φT
i φi

�
1

4
ω̃T

ci
ϕiϕ

T
i ω̃ci + εT

Hi
εHi

�

≤ λi

4
ω̃T

ci
ϕiϕ

T
i ω̃ci + λiε

T
Hi
εHi .

Then, (55) yields

L̇13(t) ≤ −3λi

4
ω̃T

ci
ϕiϕ

T
i ω̃ci + λiε

T
Hi
εHi

≤ −3λi

4
θmin

�
ϕiϕ

T
i

��ω̃ci �2 + λi b
2
εHi
. (56)

Combining (47), (54), and (56), we have the derivative of L(t)
in (46) satisfied

L̇1(t) ≤ −2γi Qi (xi)− (1− 2γi)Qi (xi)

−
/

3λi

4
θmin

�
ϕiϕ

T
i

�− b2
hi

b2
σci

η2
i

0��ω̃ci

��2

+4K 2
max�ei,k�2 + π0 (57)

with θmin(ϕiϕ
T
i ) being given in (34) and π0 being defined as

π0 = 16miβ
2
i + 4b2

εμ∗i
+ 4b2

ευ∗i
+ λi b

2
εHi
+ δMi . (58)

Using (21) and noticing

Qi (xi) = xT
i Qi xi ≥ θmin(Qi )�xi�2

we obtain from (57) that

L̇1(t) ≤ −2γiθmin(Qi )�xi�2 + π0

−1

4

�
3λiθmin

�
ϕiϕ

T
i

�− 4 b2
hi

b2
σci
/η2

i

���ω̃ci

��2
.

Therefore, under the condition (34), L̇1(t) < 0 holds if either
xi /∈ Bxi or ω̃ci /∈ Bω̃ci

with Bxi and Bω̃ci
being, respectively,

defined as

Bxi =
�

xi : �xi� ≤
1

π0

2γiθmin(Qi)

�

Bω̃ci
=

(
ω̃ci : �ω̃ci � ≤

)
4π0

3λiθmin
�
ϕiϕ

T
i

�− 4b2
hi

b2
σci
/η2

i

*

where π0 is defined in (58). Then, using the Lyapunov
theorem extension [47], we obtain the UUB stability of both xi

and ω̃ci .
Case II: Let t = t i

k+1, k = 0, 1, 2, . . . Then, we need to
consider the Lyapunov function candidate (46) in the form of
difference, that is,

�L1
�
t i
k+1

� = V ∗i (x̄i,k+1)− V ∗i (x̄i,k)+!i (59)

where

!i = V ∗i
�
xi
�
t i
k+1

��− V ∗i
�
xi(t

i−
k+1)

�
+1

2
ω̃T

ci

�
t i
k+1

�
ω̃ci

�
t i
k+1

�− 1

2
ω̃T

ci

�
t i−
k+1

�
ω̃ci

�
t i−
k+1

�
and xi(t

i−
k+1) = limι→0+ xi(t i

k+1 − ι), ω̃ci (t
i−
k+1) =

limι→0+ ω̃ci (t
i
k+1 − ι), with ι ∈ (0, t i

k+1 − t i
k).

As proved in Case I, when either xi /∈ Bxi or ω̃ci /∈
Bω̃ci

we have L̇1(t) < 0 for t ∈ [t i
k, t i

k+1). This implies
d(L12(t)+ L13(t))/dt < 0 for all t ∈ [t i

k, t i
k+1) [note: L12(t)

and L13(t) are defined in (46)]. Hence, L12(t) + L13(t) is
strictly monotonically decreasing over [t i

k, t i
k+1). Apparently,

L12(t)+ L13(t) is continuous over [t i
k, t i

k+1]. We thus deduce
that L12(t)+L13(t) is monotonically decreasing over [t i

k, t i
k+1].

Then, letting ι ∈ (0, t i
k+1 − t i

k), we get

L12(t
i
k+1 − ι)+ L13(t

i
k+1 − ι) ≥ L12(t

i
k+1)+ L13(t

i
k+1). (60)

It follows by taking the right limit (that is, ι→ 0+) over both
sides of (60) that:

L12
�
t i−
k+1

�+ L13
�
t i−
k+1

�
= lim

ι→0+
L12

�
t i
k+1 − ς

�+ lim
ι→0+

L13
�
t i
k+1 − ς

�
≥ L12

�
t i
k+1

�+ L13
�
t i
k+1

�
.

Together with L12(t) and L13(t) defined in (46), this yields

V ∗i
�
xi(t

i−
k+1)

�+ 1

2
ω̃T

ci

�
t i−
k+1

�
ω̃ci

�
t i−
k+1

�
≥ V ∗i

�
xi
�
t i
k+1

��+ 1

2
ω̃T

ci

�
t i
k+1

�
ω̃ci

�
t i
k+1

�
that is, !i ≤ 0 [note: !i is defined in (59)]. On the
other hand, UUB stability of xi(t) in Case I implies that
V ∗i (x̄i,k+1) ≤ V ∗i (x̄i,k). Thus, we have �L1(t i

k+1) < 0 if
xi /∈ Bxi or ω̃ci /∈ Bω̃ci

. Then, the UUB stability of xi and
ω̃ci is guaranteed based on the Lyapunov theorem extension
[47]. The proof is completed.
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