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ABSTRACT

The bag-of-visual-words (BOW) model has been widely used
in the field of scene classification. Since it ignores the spa-
tial information, the spatial-pyramid-matching (SPM) model
[1] was presented by partitioning the image into increasing-
ly fine blocks and computing histograms of local features in
each block. However, the spatial symmetry has never been
considered explicitly in scene classification as we known. In
this paper, a novel descriptor named weakly spatial symmetry
(WSS) is proposed to boost the performance of image classi-
fication. After region segmentation, the spatial symmetry is
represented by L1 distances of region histograms. Four kind-
s of spatial symmetry are extracted in blocks of increasing
scales as in SPM [1]. The WSS descriptor can be used in-
dependently or combined with BOW or SPM for scene clas-
sification. Experiments on scene-15 and caltech101 dataset
demonstrate the effectiveness of the proposed approach.

Index Terms— scene classification, spatial symmetry

1. INTRODUCTION

Scene classification is one of hot topics in the communities
of computer vision and multimedia processing. The last ten
years has witnessed a blow up of different models. Beyond
all of these is the bag-of-visual-words (BOW) [2], which de-
scribes the image content as a histogram of visual words.
Though achieves good performance, it exists obvious weak-
ness of neglecting spatial information and correlations among
visual content. Then a spatial-pyramid-matching (SPM) mod-
el [1] was proposed to tackle this problem by dividing the
whole image into hierarchical blocks and concatenating the
appropriately weighted histograms of all the blocks. Exper-
imental results demonstrate that SPM is a powerful model
in scene classification. The SPM model has been improved
in recent years. Some of them[3, 4, 5, 6] tried to improve
the coding procedure to minimize the representation informa-
tion loss. Gemert et al.[3] adopted soft quantization instead
of hard quantization, and Yang et al.[4] used sparse coding,
Wang et al.[5] found that locality was more important than
sparsity. Gao et al.[6] proposed the Laplace-sparse-coding

Fig. 1: Examples of spatial symmetry in natural scenes.

SPM (LScSPM) which achieved state-of-the-art performance.
Others explored better pooling strategy to extract the most
salient visual content. Boureau et al.[7] compared different
pooling methods as max pooling and average pooling. Feng
et al.[8] explored a general pooling strategy. Jia et al.[9] tried
to learn an adaptive pooling partition of images.

Though successfully applied in image classification, there
exist some limitations in the SPM model. Firstly, the finer the
division, the more sensitive it is to the location and orientation
of visual content. As illustrated in [10], the performance of
SPM degrades if images were flipped or rotated randomly. E-
specially, for scene classification task, the intra-class variance
of spatial information is more serious than general object im-
age classification where the salient visual objects usually lo-
cate around the image center.

Due to these problems in SPM model, we attempt to u-
tilize the spatial symmetry information. As shown in Fig.1,
we give two examples from different categories in scene-15
dataset to show the characteristics of spatial symmetry. The
source images, dominant edges and segmented regions filled
with different colors are showed in three columns respective-
ly. Obviously, the segmentation result in ”coast” image con-
tains left to right symmetry, while the result of the ”building”
image contains top to down symmetry. Therefore, we argue
that the symmetry information could serve as a feature to as-
sist distinguishing different scene images, which has not been
discussed before to the best of our knowledge.

In this paper, a weakly spatial symmetry (WSS) descrip-
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Fig. 2: The proposed scene classification framework.

tor is proposed to boost the performance of BOW model. By
combining WSS and BOW, a hybrid descriptor is proposed to
model the visual content and spatial symmetry together in a
more compact way, which could effectively improve the ac-
curacy of scene classification.

2. THE PROPOSED APPROACH

The framework of our scene classification is illustrated as
Fig.2. The input image is first segmented into regions and
the WSS features are represented by distances of region his-
tograms. Then we model the spatial symmetry by a spatial
pyramid like SPM [1], and further encode them into the BOW
model. A nonlinear SVM classifier is used for final classifi-
cation.

2.1. Weakly spatial symmetry model

2.1.1. Segment image into regions

threshold=0.9 threshold=0.8 threshold=0.7 threshold=0.6 threshold=0.5

threshold=0.4 threshold=0.3 threshold=0.2 threshold=0.1

Fig. 3: Examples of segmentation results with different thresholds.

Before extracting the spatial symmetry information, we
adopt two different ways to partition images into regions. The

first way uses a meticulous segmentation approach in [11]. By
adjusting the threshold increasingly, the hierarchical segmen-
tation results can be obtained. This process is shown in Fig.3.

The second way is to obtain a rough segmentation by the
visual words distribution. Recall that in BOW model, the lo-
cal patches are sampled densely and each patch is labeled with
the nearest visual word in codebook. Thus each pixel can be
given the same label as its nearest local patch. In this way, the
region number is equal to size of the codebook.

2.1.2. Description of weakly spatial symmetry

Fig. 4: Four kinds of weakly spatial symmetry.

After region segmentation, four kinds of spatial symme-
try are extracted as illustrated in Fig.4. The image is parti-
tioned into two parts in four directions. For example, the first
partition describes left to right symmetry and the second de-
scribes top to down symmetry. For each part, a histogram is
generated to represent pixel distribution for each region. The
histogram distance between two parts is used to describe the
spatial symmetry.

Specifically, the image is segmented into N regions with
labels 1,2,. . . ,N . N is determined by threshold and codebook
size respectively under two segmentation methods. And the
area of each region is represented by A1, A2, . . . , AN . Obvi-
ously

∑N
i=1 Ai = A, where A is the area of the whole image.

For each kind of image partition, two histograms h1 and
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h2 are built based on the pixel numbers

h1 = [h11, h12, , h1N ] h2 = [h21, h22, , h2N ] (1)

where hki (k = 1, 2, i = 1, 2, . . . , N) represents number of
pixels in i th region. Since there exists obvious left to right
symmetry in Fig.4, the histograms of the left partition in Fig.4
are similar as illustrated in Fig.5. We use L1 distance to com-
pute the spatial symmetry between two parts. Now we can

Fig. 5: Histogram comparison of left and right part of ”coast” image.

obtain a 4-d feature vector to describe the spatial symmetry
of the whole image. Like SPM model, we partition the image
into hierarchical coarse-to-fine blocks as shown in Fig. 6, cal-
culate the spatial symmetry for each block, and concatenate
into a WSS feature vector,

Hwss = [hw1, hw2, . . . , hwN ] (2)

Fig. 6: Illustration of spatial pyramid partition.

2.2. Combing WSS and BOW for scene classification

We encode the spatial symmetry descriptors into the BOW
based classification framework. In BOW model, the his-
togram of visual words is represented as,

Hbow = [hb1, hb2, . . . , hbM ] (3)

where M is the codebook size. Then we combine the WSS
features vector with Hbow as follow,

Hbow+wss = [Hbow, cHwss]

= [hb1, . . . , hbM , chw1, . . . , chwN ] (4)

where c is the weight of the WSS feature and can be learned
by cross validation. Finally, a nonlinear SVM classifier is
trained for scene classification.

3. EXPERIMENTS

We verify the proposed approach on two publicly available
datasets: scene-15 and caltech101. In our experiments, SIFT
features are densely extracted with a step of 8 pixels and a
patch size of 16×16. Visual codebook is built with K-means
on randomly selected features. Hard quantization and aver-
age pooling are used to image encoding. And the intersection
kernel SVM is used for classification.

3.1. Experimental results on scene-15

Scene-15 dataset contains 4495 images of fifteen categories
of natural and indoor scenes such as coast, tall building, k-
itchen and so on. The number of images per category varies
from 200 to 400. For each category, 100 randomly selected
images are used for training and the rest for testing. The ex-
periments are conducted ten times and mean accuracy is used
for comparison. Since the image can be segmented by two
different ways, we show their results respectively.

3.1.1. Sensitivity to segmentation threshold

As illustrated in Sec.2.1.1, the WSS feature depends on the
segmentation results with the approach [11]. Thus an exper-
iment is performed to show the sensitivity to the threshold.
As Table 1, the classification performance of WSS model re-
mains relative stable when threshold varies between 0.1 and
0.5. The classification performance falls rapidly if the thresh-
old bigger than 0.5, since the number of salient edges are
greatly reduced.

Table 1: Performance of WSS model with different thresholds on scene-15.

Sensitivity to segmentation thresholds
Threshold 0.1 0.2 0.3 0.4 0.5
Accuracy 50.45% 51.59% 51.16% 50.52% 49.75%
Threshold 0.6 0.7 0.8 0.9
Accuracy 45.7% 43.38% 36.28% 26.83%

3.1.2. Sensitivity to different pyramid levels

To show the sensitivity to different pyramid levels, an exper-
iment is performed in scene-15. As shown in Table 2, the
first row shows classification accuracy of different levels from
coarse to fine. The finer level achieves better results than the
coarser ones. This is easy to understand because finer level
contains detailed information of the spatial symmetry infor-
mation for local regions. As can be concluded from Tab.2, the
WSS feature achieves an accuracy of 51.59% independently.

3.1.3. Comparison with different approaches

We compare our approach with BOW [2], SPM [1]. Four
codebooks are built with different size. For the WSS feature
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Table 2: Results on sensitivity to spatial pyramid levels in scene-15.

Sensitivity to spatial pyramid levels
Spatial Pyramid 1x1 2x2 4x4
Accuracy 26.57% 36.91% 48.54%
Spatial Pyramid 1x1 2x2 2x2 4x4 1x1 2x2 4x4
Accuracy 40.34% 50.92% 51.59%

can be extracted through two different ways of segmentation,
we will give the results respectively. For using the segmenta-

Table 3: Comparison with different approaches on scene-15 where images
are segmented by algorithm in [11].

Codebook Size 256 512 1024 2048
BOW 71.59% 74.04% 75.31% 76.05%

(256-d) (512-d) (1,024-d) (2,048-d)
SPM 77.08% 77.35% 78.06% 77.32%

(5,376-d) (10,752-d) (21,504-d) (43,008-d)
WSS+BOW 78.46% 78.96% 79.56% 79.53%

(340-d) (596-d) (1,108-d) (2,132-d)
WSS+SPM 80.50% 80.70% 81.51% 80.34%

(5,460-d) (10,836-d) (21,588-d) (43,092-d)

tion approach [11], as shown in Table 3, different approaches
are tested on four different sizes of codebook. WSS alone
reaches 51.59% which is lower than BOW since the dimen-
sion of WSS is only 84-d. But WSS is more complementary
with BOW than SPM. It can be observed that with certain
codebook, WSS+BOW always achieve better results than SP-
M [1] with a shorter feature, and WSS+SPM always achieve
the highest accuracy. Fig.7 shows the performance of dif-

Fig. 7: Comparison results of different approaches for different codebooks
on scene-15.

ferent approaches under different codebooks. SPM is bet-
ter than BOW which is consistent with Lazebnik et al. [1],
and WSS+BOW is always better and more stable than SPM
with much shorter feature vector (84-d). WSS+SPM achieve
81.51%, which is about 3.45% higher than SPM. It can also
be seen in Fig. 7 that as the codebook size becomes bigger,
the performance of BOW keeps ascending, while SPM peak-
s at codebook size of 1024 and drops at 2048. Since the t-

wo hybrid methods rely respectively on BOW and SPM, their
performance also follow the similar trend. For image segmen-

Table 4: Comparison of different approaches on scene-15 dataset where im-
ages are segmented incidentally by BOW model.

Accuracy 256 512 1024 2048
BOW+WSS 77.72% 78.43% 78.63% 78.66%

(340-d) (596-d) (1,108-d) (2,132-d)
SPM+WSS 79.97% 80.54% 80.50% 79.36%

(5,460-d) (10,836-d) (21,588-d) (43,092-d)

tation by BOW model, as illustrated in Table 4, WSS+BOW
also achieves a better performance than BOW and SPM, al-
though this is a relative coarse segmentation. But the results
are not as good as WSS with the segmentation approach [11]
in Table 3.

3.2. Experimental results on Caltech101

Caltech101 contains 9145 images of 102 categories (includ-
ing a background category). We randomly select 30 images
in each categories for training, and the rest for testing (num-
ber of test images not exceeds 50). As [10] mentioned, the
images in Caltech101 are all aligned too well to test the true
classification ability of different methods. For example, if we
randomly flip or rotate some images, the performance of SPM
will drop significantly.

The results are shown in Tab.5. Only the codebook of size
1024 is considered for simplicity. All images are flipped left
to right with a probability of 0.5. As in Tab.5, performance
of SPM dropped 7.81% after flipping, while WSS+BOW only
dropped 2.18%. Therefore its performance is lower than SPM
because its feature dimension (1108) is almost only 5% of
SPM’s (21504). However the performance of our WSS+SPM
is higher than SPM, which demonstrates that WSS contains
extra spatial information.

Table 5: Performance comparison of different models on Caltech101.

Model BOW WSS+BOW SPM WSS+SPM
Without flip 48.96% 56.20% 66.21% 67.57%
Left-right flip 48.96% 54.02% 58.40% 60.78%
Accuracy drop 0% 2.18% 7.81% 6.79%

4. CONCLUSIONS

This paper focuses on improving the performance of scene
classification with spatial symmetry information. A novel
feature named weakly spatial symmetry (WSS) is proposed
to describe the spatial symmetry. This feature could be effec-
tively encoded in the BOW based classification framework.
The comprehensive experimental evaluations on the two pub-
lic datasets of Scene-15 and Caltech101 demonstrate the ef-
fectiveness of the proposed method.
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