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Abstract: Artificial intelligence (AI) technology is widely applied in different medical fields, including
the diagnosis of various diseases on the basis of facial phenotypes, but there is no evaluation or
quantitative synthesis regarding the performance of artificial intelligence. Here, for the first time, we
summarized and quantitatively analyzed studies on the diagnosis of heterogeneous diseases on the
basis on facial features. In pooled data from 20 systematically identified studies involving 7 single
diseases and 12,557 subjects, quantitative random-effects models revealed a pooled sensitivity of 89%
(95% CI 82% to 93%) and a pooled specificity of 92% (95% CI 87% to 95%). A new index, the facial
recognition intensity (FRI), was established to describe the complexity of the association of diseases
with facial phenotypes. Meta-regression revealed the important contribution of FRI to heterogeneous
diagnostic accuracy (p = 0.021), and a similar result was found in subgroup analyses (p = 0.003). An
appropriate increase in the training size and the use of deep learning models helped to improve the
diagnostic accuracy for diseases with low FRI, although no statistically significant association was
found between accuracy and photographic resolution, training size, AI architecture, and number of
diseases. In addition, a novel hypothesis is proposed for universal rules in AI performance, providing
a new idea that could be explored in other AI applications.

Keywords: artificial intelligence; computer-aided diagnosis; facial phenotypes; machine learning;
complexity theory

1. Introduction

Many diseases display distinctive facial manifestations, especially endocrine diseases
and genetic diseases, including monogenic disorders, chromosomal diseases, and thou-
sands of rare diseases [1]. Recognition by the human eye often causes misjudgment and
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delays diagnosis due to inconspicuous early facial symptoms associated with these dis-
eases, large individual facial differences, and lack of physicians’ knowledge of rare diseases.
With the development of artificial intelligence (AI) technology, AI methods have been
widely applied in different fields [2–6]. Automatic image recognition based on AI could
identify image features for the diagnosis and screening of various diseases, with satisfac-
tory performance for the diagnosis of pulmonary nodules, tumors, fundus diseases, even
COVID-19 [7–10]. Among these AI techniques, facial recognition based on artificial intelli-
gence enables computers to detect underlying facial patterns and has played an important
role in the diagnosis and screening of diseases with facial phenotypes or changes in recent
years [11,12]. It is assumed that artificial intelligence could help to improve diagnostic
accuracy and to avoid delayed diagnosis, leading to earlier intervention, conservation of
social healthcare resources, and implementation of health policies in the future [12–14].
Different models and systems have been developed to provide possible improvement for
diagnostic accuracy [15].

However, there remains a lack of exploration of the factors influencing AI performance
or of universal rules to reduce heterogeneity [14]. As has been shown before, diagnostic
accuracy of facial recognition for Turner syndrome tended to be lower than that of Down
syndrome, although a larger sample size helped to improve it [16,17]. However, the
heterogeneity of diseases and AI methods studied and the limited number of works on rare
diseases makes it difficult to review and summarize individual studies in a unified manner.
Since the complexity theory could be applied to quantitatively describe facial features, this
theory needs to be developed to explore the universal rules determining the diagnostic
performance of AI based on facial features for heterogeneous diseases.

This is the first study that conducted a systematic review and meta-analysis to sum-
marize the data regarding the diagnosis of heterogeneous diseases on the basis of facial
features and explored the universal rules governing the application of facial recognition
based on AI in the field of medical diagnosis. We aimed to quantitatively analyze the
diagnostic accuracy of facial recognition based on AI, as well as the factors influencing
the diagnostic performance and to provide a potential reference for clinical practice. In
addition, our study proposes a potential hypothesis for evaluating the performance of AI
in other fields, such as image recognition based on AI, and provides a new idea for dealing
with heterogeneity when reviewing and analyzing the performance of AI applications.

2. Materials and Methods
2.1. Study Identification and Selection

We searched Medline, PubMed, IEEE, Cochrane Library, EMBASE to identify po-
tential eligible studies published from 1 January 2010 to 15 August 2021. The references
of relevant publications were also checked manually. The detailed search strategy con-
taining the index test (facial recognition) and the target condition (diagnosis) is shown in
Supplementary Table S1.

Studies were included if they evaluated facial recognition by algorithms of artificial
intelligence for the diagnosis of diseases based on facial phenotypes or deformities using
photographs and provided sufficient information for quantitative data synthesis. Studies
were excluded of they were reviews, lacked a control group, or identified more than one
possible disease as a diagnostic result by facial recognition. The titles and the abstracts were
screened by two reviewers independently (DW and SC), and the full texts of potentially
eligible studies were further screened.

2.2. Data Extraction and Quality Assessment

The data obtained from each study included publication characteristics (authors and
year of publication); characteristics of the targeted disease (number of diseases and specific
facial features); characteristics of the sample set (data sources, age, sex, and resolution of
photographs); characteristics of the index test (algorithms, and number of images used in
model training); characteristics of the reference standard (diagnostic criteria); accuracy data
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(number of true positives, true negatives, false positives, and false negatives). Supplements
in each study were also reviewed if available.

Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) was used to assess
the risk of bias in patient selection, index test, reference standard, and flow and timing of
the included studies. Publication bias was not assessed in our study because there is not a
universally accepted method for the review of diagnostic studies to detect publication bias
according to the Cochrane Handbook for Diagnostic Tests Review.

2.3. Definition and Calculation of FRI

We defined facial recognition intensity (FRI) as an index to describe the difference of
facial features between a studied disease and healthy controls. FRI is calculated as shown
in Equation (1) by multiplying the number of independent facial phenotypes of a disease
and the maximum penetrance among these facial features.

FRI = Nf × Pmax (1)

In Equation (1), Nf represents the number of facial phenotypes relevant to a disease,
and Pmax is the maximum penetrance among these facial features, representing the per-
centage of individuals in a group of patients who exhibited a specific facial phenotype. The
facial features and the penetrance of facial phenotypes were collected from the original
articles and relevant reviews. If a facial phenotype was associated with a specific group
of patients, penetrance was defined to be 100%. Since some of the facial phenotypes were
correlated, such as small jaws and crowded teeth, associated phenotypes were counted
only once to calculate FRI. For example, Down syndrome displayed nine independent
facial phenotypes, and the maximum penetrance of these facial phenotypes was 100% [18];
hence, FRI of Down syndrome was calculated by multiplying 9 by 100%, resulting in 9. FRI
was defined to summarize the common characteristics of objects, e.g., facial phenotypes in
the presence of different diseases, and to minimize heterogeneity among objects analyzed
by AI methods so to make them comparable in the subsequent analysis of performance of
facial recognition based on AI for disease diagnosis.

2.4. Statistical Methods

Extracted two-by-two data are graphically shown in a forest plot with the point
estimate of sensitivity and specificity and their 95% CIs. Considering the unclear and
heterogeneous thresholds for diagnosing different disease with facial phenotypes by facial
recognition methods, we used a quantitative random-effects model with bivariate mixed-
effects binary regression to combine the sensitivity and specificity and to estimate the
summary receiver operating characteristic (SROC) curve. The combined SROC curve and
the optimum diagnostic threshold with 95% confidence region and 95% prediction region
were plotted. Subgroup analyses and meta-regression were used to explore the heterogene-
ity between studies. Facial recognition intensity (FRI) and sample size of the training set
were analyzed as covariates in meta-regression to explore quantitative relationships with
diagnostic accuracy of facial recognition. The result of the meta-regression is shown in a
bubble chart and demonstrates a fitting straight line. In addition to FRI and sample size of
the training set, we also estimated the following covariates in subgroup analysis: resource
of the control group, photo resolution, number of included diseases, and model of facial
recognition. Covariates with statistically significant coefficients were regarded as a source
of heterogeneity. The robustness of the main results was evaluated by sensitivity analyses.
We explored the effect of excluding studies not reporting the model of facial recognition
or gold standard of targeted conditions and those using internal validation to evaluate
the models.

Data analysis for this paper was performed using Stata Statistical Software 16 (Stat-
aCorp., College Station, TX, USA) with two-tailed probability of Type I error of 0.05
(α = 0.05).
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3. Results
3.1. Systematic Review

Figure 1 shows the flow diagram for filtering articles. We identified 2534 records by
electronic search and 29 by hand search. In total, 141 full-text articles were assessed for eligi-
bility, and 20 studies in 14 publications met our criteria for inclusion.
Ozdemir et al. [19] included three studies, and Basel-Vanagaite et al. [20], Gurovich et al. [2],
Zhao et al. [17], and Saraydemir et al. [16] included two studies using different sample sets
in one publication.
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Figure 1. Flow chart for study inclusion and exclusion. The titles and the abstracts were screened by
two reviewers independently, and the full texts of potentially eligible studies were further screened.

The detailed characteristics of the eligible studies are shown in Supplementary Table S2.
The total number of subjects tested in the included studies was 12,557. A single disease
was targeted in 16 studies, including 3 studies on Cornelia de Lange syndrome [2,20], 2 on
Turner syndrome [21,22], 3 on Down syndrome [16,17], 1 on Angelman syndrome [2], 4 on
acromegaly [23–26], 2 on Cushing’s syndrome [27,28], and 1 study on fetal alcohol spectrum
disorders (FASD) [29], as multiple diseases were detected in 4 studies [17,19]. Nine studies
used photographs from public databases and web pages [2,25,27], and 11 studies obtained
their photographs in local hospitals [20–24]. Ten studies described the demographic char-
acteristics of their study population, reporting a percentage of males ranging from 0 to
66.2% [16,17,21,22,24–26]. The diagnostic criteria of the targeted diseases were reported
in 12 studies and included analysis of gene mutation [2,20] and karyotype [16,17,21,22],
success of previous treatment [23], experts’ opinions [26], diagnostic tests [24,27,29]. An in-
ternal validation set was used for evaluation of the model in 12 studies [16,17,19,21,26–29],
and an external validation set was reported in 8 studies [2,20,22–25]. Nine studies in-
cluded a healthy control group [2,17,19,20,22], and patients with other diseases were
included in 11 studies as a control group [16,17,21,23–29]. Apart from 5 studies not re-
porting the used AI architecture [17,19,20,26,27], several types of machine learning mod-
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els were applied in 15 studies, including 7 studies using algorithms of deep learning
and neural network [2,20,22,28,29] or a combination of neural network and other mod-
els [24]. The following models were also reported: SVM [16,21,23], Haar cascade classi-
fier [25], hierarchical decision tree [19], k-NN [16,19] and combination of conventional mod-
els [11]. Fourteen studies reported a resolution of photographs ranging from 100 × 100 to
1500 × 1000 pixels [2,16,17,19,21,22,24–26,28]. The number of photographs used to train
the model was reported in 20 studies and ranged from 30 to 3465, whereas the number of
photographs in the testing set ranged from 17 to 242 [2,16,17,19–29].

3.2. Risk of Bias Assessment of the Eligible Studies

Supplementary Tables S2 and S3 show the results of the risk of bias assessment of
the included studies. Regarding patient selection, risk of bias was unclear in 4 studies
due to the insufficient information describing the sampling method [2,20] and high in
16 studies with a case–control design [16,17,19,21–29]. With respect to the index test,
facial recognition was based on artificial intelligence algorithms without knowledge of
the clinical diagnosis in all studies. As for the reference standard, risk of bias was low in
15 studies [2,16,17,20–22,24,26–29] and unclear in 5 studies that did not report the reference
standard or an interpretation [19,23,25]. In the domain of flow and timing, risk of bias
was low in 16 studies [2,16,17,20–23,25–29], unclear in 3 studies that did not report the
reception of the reference standard [19], and high in 1 study because not all patients were
subjected to the two tests assessed in the study [24].

3.3. Meta-Analysis

Figure 2 shows the paired forest plot for sensitivity and specificity with the corre-
sponding 95% CIs for each study. Eligible studies were further combined, and the summary
receiver operating characteristic (SROC) curve is shown in Figure 3 with the 95% confidence
region and 95% prediction region. We calculated the following summarized estimates
using random-effects models with 95% confidence interval (CI): sensitivity 89% (95% CI
82% to 93%), specificity 92% (95% CI 87% to 95%), positive likelihood ratio 11.1 (95% CI 6.5
to 18.8), negative likelihood ratio 0.12 (95% CI 0.08 to 0.20), and diagnostic odds ratio (OR)
90 (95% CI 35 to 230).
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3.4. Sensitivity Analysis

After excluding eight studies that evaluated the models with an external validation
set [2,20,22–25], pooled sensitivity was 86% (95% CI 75% to 93%), and specificity was 90%
(95% CI 82% to 95%). After excluding studies with unclear models [17,19,20,26,27], pooled
sensitivity was 90% (95% CI 83% to 94%), and specificity was 91% (95% CI 84% to 96%).
After excluding studies with an unclear reference standard [17,20,25,28], pooled sensitivity
was 89.0% (95% CI 82.0% to 94.0%), and specificity was 93.0% (95% CI 88.0% to 96.0%).
Since these estimates were similar to the main results for the whole dataset, we did not
find evidence that the overall combined estimates were influenced by external validation
sets, unclear models, or unclear reference standards.

3.5. Evaluation of Facial Recognition Intensity (FRI)

Table 1 shows the prevalence, facial phenotypes of disease, and maximum penetrance
of the phenotypes in the eligible studies. Among 16 studies targeting a single disease,
Down syndrome showed 9 specific facial phenotypes, and the maximum penetrance of
the facial phenotypes was 100% [18]; hence, the calculated FRI of Down syndrome was 9.
As for Cornelia de Lange syndrome [2,20], it showed nine facial phenotypes, and the
maximum penetrance was 82.7% according to the international consensus statement [30].
After calculation, FRI of Cornelia de Lange syndrome was 7.443. Angelman syndrome
showed six facial features, with maximum penetrance of facial phenotypes of 100% and
FRI of 8. Turner syndrome showed six facial phenotypes and the maximum penetrance of
facial phenotypes was 56% [31]; therefore, FRI of Turner syndrome was 3.36. Fetal alcohol
spectrum disorders (FASD) were associated with four facial phenotypes with maximum
penetrance of 100% [29], resulting in FRI of 4.
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Table 1. Assessment of facial recognition intensity (FRI) of diseases in the eligible studies.

Disease Prevalence
Maximum
Penetrance

(Pmax)

Facial Phenotypes Facial
Recognition

Intensity (FRI)
Independent Facial

Phenotypes
Number of Facial
Phenotypes (Nf)

Down syndrome
[16,17] 1/300~1000 100%

Short face
Upward slanting eyes

Epicanthus
Brushfield spots (white

spots on the colored part of
the eyes)

Low-set ears
Small ears

Flattened nose
Small mouth

Protruding tongue

9 9

Acromegaly
[23–26] 7/1000 100%

Forehead bulge
Prominent jaw

Prominent zygomatic arch
Deep nasolabial folds

Enlarged nose
Enlarged brow
Enlarged ear
Enlarged lip

8 8

Cornelia de Lange
Syndrome [2,20] 1/10,000~1/30,000 82.7%

Short face
Small jaw

Arched eyebrows
Joined eyebrows

Short nose
Forward nostril
Long philtrum
Thin upper lip

Upturned corners of the
mouth

9 7.443

Angelman
syndrome [2] 1/20,000~1/12,000 100%

Narrow bifrontal diameter
Huge jaw

Almond-shaped palpebral
fissures

Narrow nasal bridge
Thin upper lip

Protruding tongue

6 6

Cushing’s
syndrome [27,28] 4/100,000 100%

Red face
Full moon face

Acne
Excessive hair

Chemosis conjunctiva

5 5

Fetal alcohol
spectrum disorders

(FASDs) [29]
7.7/1000 100%

Small head
Short palpebral fissures

Smooth philtrum
Thin vermilion border of the

upper lip

4 4

Turner syndrome
[21,22] 1/2500 56%

Small jaw
Epicanthus

Ptosis
Ocular hypertelorism

Low-set ears
Multiple facial nevi

6 3.36
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Among endocrine diseases, acromegaly showed eight facial phenotypes [28]. Since the
maximum penetrance was 100%, FRI of acromegaly was 8. Cushing’s syndrome showed
five facial phenotypes and maximum penetrance of facial phenotypes of 100% [27,28],
resulting in FRI of 5.

3.6. Effect of FRI on the Accuracy of Facial Recognition

Table 2 shows the results of random-effects model meta-regression analysis exploring
the relationship between facial recognition intensity (FRI), sample size of the training set,
and diagnostic accuracy of facial recognition. The coefficient of FRI in the model was
0.4868 (95% CI 0.0935 to 0.8800, p = 0.015), revealing a significant association with natural
logarithms of OR of automatic diagnosis by facial recognition. Meanwhile, the sample
size of the training set was not associated with diagnostic accuracy of facial recognition,
indicating no significant contribution to the heterogeneity between studies.

Table 2. Meta-regression between FRI, sample size of the training set, and ln(OR) of automatic
diagnosis by facial recognition. FRI = facial recognition intensity, OR = diagnostic odds ratio. FRI
and sample size of the training set were analyzed as covariates in a meta-regression model to explore
the heterogeneity between studies. Their coefficient and 95% confidence interval in the model are
shown with two-tailed probability of type I error of 0.05 (α = 0.05).

Covariate Coefficient [95 Cl] p Value

Facial recognition intensity (FRI) 0.4939 [0.0710,0.9169] 0.022
Sample size of the training set 0.0004 [−0.0006,0.0014] 0.467

Therefore, after excluding the sample size of the training set from the model, the rela-
tionship between facial recognition intensity and diagnostic accuracy of facial recognition
was determined as shown in Figure 4. The model with FRI as a variable showed significant
association with natural logarithms of OR of automatic diagnosis, with the coefficient of
FRI corresponding to 0.4960 (95% CI 0. 0748 to 0.9171, p = 0.021), indicating that a larger FRI
value of a disease was significantly associated with a higher diagnostic accuracy by facial
recognition. The relationship between FRI value for a disease and diagnostic accuracy is
shown in Equation (2):

ln (OR) = ln [Se Sp/((1 − Se) × (1 − Sp))] = 0.4960 × FRI + 1.459 (2)
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Figure 4. Bubble plots of meta-regression between FRI and ln(OR) of automatic diagnosis by facial
recognition. FRI = facial recognition intensity, OR = diagnostic odds ratio. The straight line indicates
linear prediction in the meta-regression model between FRI and diagnostic accuracy. The gray zone
indicates the 95% confidence region, and the round bubbles represent the eligible studies. The size of
the bubbles indicates the impact on the model.
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According to Equation (2), Table 3 shows the quantitative association between FRI and
accuracy of automatic diagnosis by facial recognition. When both sensitivity and specificity
reached 85%, it was required that the FRI value of a disease reached 4.05. When sensitivity
and specificity rose to 90%, FRI should correspondingly increase to 5.92. FRI needed to
reach 8.93 to ensure that the sensitivity and specificity reached 95%.

Table 3. Association between FRI and accuracy of automatic diagnosis by facial recognition.
FRI = facial recognition intensity, OR = diagnostic odds ratio. Quantitative relationship between FRI
and diagnostic accuracy (including Figure 2. in meta-analysis. ln (OR) = ln [Se Sp/(1 − Se) (1 − Sp)]
= 0.4951 × FRI + 1.46.

Sensitivity Specificity OR ln(OR) FRI

85% 85% 32.11 3.47 4.05
90% 85% 51.00 3.93 4.98
90% 90% 81.00 4.39 5.92
95% 90% 171.00 5.14 7.42
95% 95% 361.00 5.89 8.93

3.7. Effect of Sample Size of the Training Set and AI Model on the Accuracy of Facial Recognition

Table 4 lists the range of FRI, sample sizes of the training set, AI models, as well as
relative median and range of diagnostic accuracy by facial recognition. As for the sample
size of the training set, which ranged from 30 to 3465 in the eligible studies, it was shown
that the diagnostic accuracy of diseases with FRI higher than 8 was greater than 0.95, even
if the sample size of the training set was lower than 100, with the minimum sample size
being 30. Diseases with FRI ranging from 6 to 8 showed relatively low diagnostic accuracy
when the sample size of the training set was lower than 100, with the minimum sample
size being 49, and the accuracy increased with the sample size. The minimum training size
for diseases with FRI lower than 6 was 60, and a sample size greater than 1000 significantly
improved the diagnostic accuracy of facial recognition, indicating that a modest increase in
the sample size of the training set played an important role in improving the diagnostic
accuracy of diseases with low FRI.

Table 4. Association between FRI, sample size of the training set, AI models, and accuracy of automatic diagnosis by facial
recognition. FRI = facial recognition intensity, DL = deep learning. The diagnostic accuracy is shown as median (minimum,
maximum).

FRI

Minimum
Sample Size
of Training

Set

Range of
Sample Size
of Training

Set

Range of Accuracies

AI Models

Range of Accuracies

Sensitivities Specificities Sensitivities Specificities

>8 30
<100 0.967 (0.960~0.973) 0.967 (0.960~0.973)

Non-DL 0.973 (0.960~0.977) 0.962 (0.960~0.973)100~200 0.977 0.962

6~8 49
<100 0.710 1.000

Non-DL
DL

0.810 (0.719~0.901)
0.860 (0.800~0.960)

0.972 (0.944~1.000)
1.000 (0.890~1.000)

100~1000 0.790 (0.719~0.860) 0.903 (0.890~0.915)
>1000 0.901 (0.800~0.960) 1.000 (0.944~1.000)

<6 60
<100 0.769 (0.688~0.850) 0.913 (0.875~0.950) Non-DL 0.688 0.875

100~1000 0.714 (0.537~0.890) 0.697 (0.690~0.704)
DL 0.929 (0.890~0.967) 0.830 (0.690~0.970)>1000 0.967 0.970

AI methods also showed a similar trend. Diagnostic accuracy of AI reached more than
0.95 with non-deep learning models for diseases with FRI higher than 8, and the application
of deep learning models contributed to a higher sensitivity for diseases with lower FRI.
Especially for diseases with FRI lower than 6, the median sensitivity improved from 0.688
to 0.929 by using deep learning models. However, the specificity was not influenced by the
use of deep learning models.
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3.8. Sources of Heterogeneity

Table 5 shows the detailed results of subgroup analyses exploring the potential source
of between-study heterogeneity. Facial feature strength was significantly associated with
diagnostic accuracy by facial recognition (p = 0.003). However, we found no association
between facial recognition’s accuracy and photographic resolution, sample size of train-
ing sets, model of machine learning, number of targeted diseases, and selection of the
control group.

Table 5. Subgroup analyses for the accuracy of automatic diagnosis by facial recognition. Image resolution was calculated by
multiplying column pixels by row pixels. If images of different resolution were used, the average resolution was calculated.
The two-tailed probability of type I error was 0.05 (α = 0.05).

Subgroup Variables Numbers of
Eligible Studies Sensitivity, % [95 Cl] Specificity, % [95 Cl] p for Interaction

Image resolution 0.415
<30,000 pixels 7 0.85 [0.73–0.97] 0.90 [0.82–0.98]
≥30,000 pixels 7 0.90 [0.82–0.98] 0.94 [0.89–0.98]

Sample size of training set 0.145
<1000 14 0.87 [0.80–0.93] 0.89 [0.84–0.95]
≥1000 6 0.92 [0.86–0.99] 0.97 [0.93–1.00]

Model/system of AI 0.802
Neural network 7 0.91 [0.83–0.99] 0.93 [0.85–1.00]

Non-neural network 8 0.92 [0.86–0.97] 0.92 [0.86–0.98]

Number of diseases 0.930
1 16 0.90 [0.86–0.95] 0.78 [0.60–0.97]

>1 4 0.93 [0.89–0.97] 0.88 [0.74–1.00]

Selection of control group 0.573
Healthy 9 0.85 [0.75–0.95] 0.94 [0.89–0.99]

Other diseases 11 0.90 [0.84–0.96] 0.91 [0.86–0.97]

Facial recognition intensity (FRI) 0.003
≤6 7 0.81 [0.71–0.90] 0.90 [0.83–0.96]
>6 9 0.95 [0.92–0.98] 0.95 [0.91–0.98]

4. Discussion

At present, artificial intelligence methods have been widely applied in different fields.
However, studies exploring factors influencing the diagnostic accuracy of these methods, as
well as systematic reviews and meta-analyses summarizing AI application in the diagnosis
of heterogeneous diseases are still lacking. To our knowledge, this is the first study that
fills this gap by summarizing heterogeneous studies on the automatic diagnosis of diseases
on the basis of facial features and quantitatively analyzes the diagnostic capability of
facial recognition based on AI. The review and meta-analysis were conducted strictly
following the guidelines for diagnostic reviews [32]. Comprehensive and large-scale
studies published so far were included, searched in both medical databases and engineering
and technology databases. Representative and high-quality studies focused on different
diseases using various known AI methods and were conducted in different countries. Our
study summarized and quantitatively analyzed heterogeneous studies on the automatic
diagnosis of different diseases based on facial features, showing a pooled sensitivity of
89% (95% CI 82% to 93%) and a specificity of 92% (95% CI 87% to 95%), similar to the
results of previous meta-analyses on automatic image recognition for diabetic retinopathy
screening [8,33,34], colorectal neoplasia, and breast cancer [35–38], indicating a promising
diagnostic performance of facial recognition based on AI for heterogeneous diseases. A
sensitivity analysis was conducted to evaluate the robustness of the results. The results
were interpreted logically and adapted to clinical applications.
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We propose a new index, facial feature intensity (FRI), to reflect the complexity
of facial features associated with a targeted object. FRI was defined to minimize the
heterogeneity across objects in AI applications and is calculated by multiplying the number
of independent facial phenotypes by the maximum penetrance of these facial phenotypes.
The number of details in facial features determines the complexity that distinguishes
facial features of the targeted object from those of other objects, and the penetrance is
the proportion of patients showing a certain complexity of facial features. Since FRI was
revealed as the most important influencing factor for the diagnostic accuracy of facial
recognition based on AI, the complexity of a targeted object plays the most important
role in AI performance, rather than AI technology itself. According to Equation (2) in the
meta-regression analysis, the expected accuracy of facial recognition for detecting a disease
with the known FRI value could be predicted by calculation, which is of great clinical value.

The interactions between AI parameters and FRI were also taken into consideration,
including sample size of the training set and AI architecture. The results revealed that,
although larger training size and selection of deep-learning models did not contribute
significantly to the heterogeneity between studies in either meta-regression or subgroup
analysis, they showed a trend indicating improved diagnostic accuracy for diseases with
lower FRI. An appropriate increase in the size of the training samples and the use of
deep-learning models improved the accuracy of facial recognition, revealing that the
improvement of AI parameters contributed to a better performance of AI for objects with
low complexity. This finding is also supported by results on the detection of breast cancer,
showing that increasing the training set size would not increase the diagnostic accuracy
continuously [38]. Since the number of patients with rare diseases is limited, this finding is
clinically significant as it indicates that the sample size of the training set can be within
reasonable limits in AI applications. Moreover, the existing AI models have still to be
improved to increase the diagnostic accuracy by facial recognition. Therefore, technology
innovation is needed, and new AI methods might show better diagnostic accuracy by
facial recognition.

Moreover, according to our findings, we propose a new hypothesis regarding AI
application, that we named object’s complexity theory (OCT) and that could be expanded
to the application of AI technology in other fields. According to OCT, within the limits
of a reasonable research design, the complexity of the targeted objects determines the
complexity of AI processing and plays the most important role in AI performance, while
improvement of AI parameters contributes to a better performance of AI for objects with
low complexity. The hypothesis is consistent with existing evidence and is supported by
previous theorems. According to the complexity theory proposed by J. Hartmanis and
R. E. Stearns in 1965, the deep commonalities typical of complex systems determine the
process of solving problems, which is relevant in diverse fields [39]. OCT represents the
development and extension of the complexity theory regarding the performance of AI
applications. According to the No Free Lunch Theorem (NFLT) for artificial intelligence
proposed by David Wolpert and William Macready in 1996 [40] and optimized in 1997 [41],
an algorithm performing well on a certain object paid with degraded performance on all
remaining objects. If we use i to index the examined objects arbitrarily and Oi to represent
an object, the NFLT is represented by Equation (3)

∑
k

f (Ok, ai) = ∑
k

f
(
Ok, aj

)
, ∀i, j (3)

where ai and aj are algorithms, and f (Ok, ai) is the performance of ai on the object Ok. The
equation shows that the overall performances of all the algorithms were the same. The
only way a strategy could outperform another is to specialize the structure of the specific
object under consideration [42]. As for our hypothesis, OCT, based on the application in
facial recognition, we can establish Equation (4), on the basis of NFLT:

f (Ok, ai) = g(Ok, FRIk), ∀i, if FRIk ≥ 6 (4)
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where g(Ok, FRIk) is the performance of the algorithm ai on the k-th object. The equation
revealed that the structure of the object is reflected in the FRI. For objects with a large
enough FRI, independently of the parameters of AI technology, the performances are more
or less the same. The theory provides a new idea, suggesting that more indices for the
evaluation of the complexity of targeted objects should be explored and developed in
further studies to better determine AI performance in other fields.

Moreover, OCT and its application in facial recognition provide a new idea to deal
with heterogeneity in studies and to evaluate the complexity of targeted objects. OCT
should be applied and developed in further studies to determine AI performance in other
fields. For image recognition based on AI, facial feature intensity (FRI) could also be
converted into image feature intensity (IRI) to describe the characteristics of images related
to more diseases. IRI might be the most important factor for AI performance within
the limits of a reasonable sample size and of the study design. Previous studies have
demonstrated that the image characteristics of diseases play an important role in the
performance of image recognition by AI methods [43], including the automatic screening
of pulmonary nodules [7,44,45], referable glaucomatous optic neuropathy (GON) [46],
colorectal adenoma and polyps [47,48], which also indicates that IRI describes image
characteristics of diseases and is critical for AI performance in automatic image recognition.
As has been shown before for diabetic retinopathy screening, no statistically significant
contribution to heterogeneous diagnostic accuracy has been demonstrated for sample size
of the training sets and architecture of convolutional neural networks [34]. Therefore,
the complexity theory explains the relationship between complexity of a disease and AI
performance and should be extended to other AI applications.

There are some limitations in our study. First, the photographs overlapped in several
studies using the same data sources, and it was difficult to eliminate this and evaluate its
influence. Second, the risk of bias for the domain of patient selection was high or unclear
in several studies. More than half of the studies had a case–control design, due to the
limited number of patients with rare diseases. In addition, no traditional thresholds were
mentioned in these studies, and we could only compare the sensitivity and specificity by
finding the best cut-off point.

5. Conclusions

We quantitatively analyzed studies on the association of heterogeneous diseases with
facial features and revealed the promising diagnostic performance of facial recognition
based on AI in detecting diseases on the basis of facial features. A new index, facial feature
intensity (FRI), was proposed to describe the complexity with facial features associated with
different diseases, which was proved to be the most important factor influencing diagnostic
accuracy by facial recognition. In addition, we explored the universal rules governing facial
recognition based on AI in the field of medical diagnosis and provide a potential reference
to solve practical problems in AI applications. An appropriate increase in training sample
size and the use of deep learning models might play a role in improving the diagnostic
accuracy for diseases with lower FRI. Our study firstly proposes a new hypothesis, the
object’s complexity theory (OCT), on the performance of AI and provides a new idea for
dealing with heterogeneity when evaluating AI performance in other applications.
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