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Meta-Prototypical Learning for Domain-Agnostic Few-Shot Recognition
Rui-Qi Wang , Xu-Yao Zhang , Senior Member, IEEE, and Cheng-Lin Liu , Fellow, IEEE

Abstract— Few-shot learning (FSL) aims to classify novel images based
on a few labeled samples with the help of meta-knowledge. Most previous
works address this problem based on the hypothesis that the training set
and testing set are from the same domain, which is not realistic for
some real-world applications. Thus, we extend FSL to domain-agnostic
few-shot recognition, where the domain of the testing task is unknown.
In domain-agnostic few-shot recognition, the model is optimized on data
from one domain and evaluated on tasks from different domains. Previous
methods for FSL mostly focus on learning general features or adapting
to few-shot tasks effectively. They suffer from inappropriate features
or complex adaptation in domain-agnostic few-shot recognition. In this
brief, we propose meta-prototypical learning to address this problem.
In particular, a meta-encoder is optimized to learn the general features.
Different from the traditional prototypical learning, the meta encoder
can effectively adapt to few-shot tasks from different domains by the
traces of the few labeled examples. Experiments on many datasets
demonstrate that meta-prototypical learning performs competitively on
traditional few-shot tasks, and on few-shot tasks from different domains,
meta-prototypical learning outperforms related methods.

Index Terms— Domain-agnostic few-shot recognition, image
classification, meta-learning, prototypical learning.

I. INTRODUCTION

Deep learning has reported dramatic performance improvements on
many visual recognition tasks [1]–[6]. However, the ability to learn
novel concepts with only a few labeled examples is still the hallmark
of real intelligence such as humans. Aiming to fill in the gap between
machine intelligence and human intelligence, few-shot learning (FSL)
draws wide attention in the research community [7]–[13].

FSL is a problem that requires a model to distinguish images of
novel classes with only a few labeled examples. Unlike common
classification that requires sufficient training data for target classes,
in FSL, rich labeled samples from completely different classes are
available. These samples are used to learn the meta knowledge to
mimic the prior knowledge of humans. For example, these data can
be used to learn a feature encoder that embeds visual attributes.
Generally, there is no class overlap among the training, testing, and
validation sets in FSL. The evaluation protocol is as follows: Many
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Fig. 1. Illustration of domain-agnostic few-shot recognition in comparison
with conventional FSL. Domain-agnostic few-shot recognition focuses more
on few-shot tasks from different domains (datasets).

few-shot classification tasks consisting of the support set of shots
(a few labeled examples) and the query set of queries (data to be
recognized) are sampled from the testing set. For each few-shot task,
the model is required to classify queries based on the given shots.
If the support set consists of k shots for each of n classes, the task
is called n-way k-shot. The performance is measured by the mean
accuracy with a confidence interval of many sampled tasks. Recent
methods usually use a meta-learning strategy to mimic the testing
protocol during training. Technically, the training set is also sampled
into many few-shot tasks and the model is learned according to the
classification loss of these tasks. Previous methods on FSL can be
divided into two classes: Some methods focus on learning a feature
encoder as the meta-knowledge that can be directly applied to novel
classes [10], [13], [14], and the support set is usually only used to
generate classification weights such as prototypes. Other methods
focus on adapting the meta knowledge to each few-shot task with
the help of the support set [15], [16].

Most previous methods neglect the fact that the testing tasks can
come from different domains in real-world applications. We name this
problem domain-agnostic few-shot recognition as shown in Fig. 1,
where the model is evaluated by testing few-shot tasks from different
domains. Existing methods for FSL suffer from the agnostic domains.
For the methods focusing on general features, the encoder lacks
adaptation ability and the performance is limited. For the methods
focusing on effective adaptation, the learned meta-knowledge can
adapt to tasks of new domains, but the procedure is complex
and the final performance is severely limited. Thus, we propose
meta-prototypical learning to address the domain-agnostic few-shot
recognition problem. Technically, meta-prototypical learning incor-
porates prototypical learning [14] and model-agnostic meta-learning
(MAML) [16] to learn a meta feature encoder that can adapt
to novel tasks efficiently by a few steps of adaptation based
on shots.

Our contributions can be summarized as follows: First, we extend
FSL to domain-agnostic few-shot recognition, in which the domain of
the testing task is changed. Second, we formulate meta-prototypical
learning for domain-agnostic few-shot recognition, and an effective
first-order approximation is introduced to train the meta encoder.
Experiments on different datasets show that the meta-encoder can
adapt to new tasks effectively and achieve better performance in
domain-agnostic few-shot recognition problems.
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The rest of this brief is organized as follows. Section II describes
related works. Section III introduces the proposed meta-prototypical
learning method. Section IV presents experimental results. At last,
Section V draws concluding remarks.

II. RELATED WORKS

A. Few-Shot Learning

FSL aims to gain classification ability based on only a few
examples with meta-knowledge. Some methods focus on learning
general representation and classify queries by matching them with
shots or prototypes of shots. Vinyals et al. [10] proposed a matching
network to recognize unlabeled data (queries) based on labeled
data (shots) using matching measurement between their attentive
embeddings. Furthermore, Snell et al. [14] proposed a prototypical
network to classify queries based on prototypes derived from shots.
Meta-learning is another widely used strategy for FSL. Ravi and
Larochelle [15] proposed an LSTM [17] based meta-learner to train
a custom model for each few-shot task. Gidaris and Komodakis [18]
utilized a meta-learning generated classifier to classify novel few-shot
classes. Besides, there are also image retrieval-based FSL frame-
works [19] and reinforcement learning based ones [20].

The proposed meta-prototypical learning is closely related to
prototypical network [14] and MAML [16]. We take advantage of the
general feature encoder in [14] and the efficient adaptation of [16]
to learn a meta encoder that adapts to few-shot tasks from different
domains efficiently and effectively.

B. Meta-Learning

Meta-learning [21]–[23] enables a model to learn fast on new
missions and is also called “learning to learn.” Some researchers
addressed this problem using a meta-learner that learns how to
optimize the parameters of the original model [24]–[26]. These
approaches can also be applied to deep networks [27]–[29]. Recent
approaches also learn weight initialization for few-shot image recog-
nition [15], [16]. Another type of approach for meta-learning takes
advantage of recurrent networks, where a recurrent learner will adapt
to new tasks by unfolding the recurrent layers [11], [12].

Among all these methods, we follow MAML [16] that has good
scalability and can be easily integrated with other methods. Generally,
for a given model, MAML learns a meta-initialization that adapts to
new tasks effectively based on gradient. Different from traditional
learning methods, the meta-model is optimized based on losses after
a few steps of adaptation on sampled tasks. This indicates that
MAML focuses on performance after several updates. As a result,
it learns an initialization that can adapt to different tasks effectively.
We incorporate MAML into prototypical learning to learn the meta
encoder that can adapt to new domains effectively.

C. Prototypical Learning

Prototypical learning is a classical method in pattern recognition.
The earliest method for prototypical learning is a k-nearest neighbor
(k-NN). Then learning vector quantization (LVQ) [30] proposed
using learnable prototypes for classification. Traditional prototypical
learning methods are mainly based on manually designed features.
Recently, the combination of prototypical learning and deep learning
draws increasing attention and demonstrates superiority in robust
classification [31] and few-shot recognition [14]. With deep neural
networks, prototypical learning can now use convolutional neural net-
works (CNNs) as the feature extractor other than manually designed
features.

Meta-prototypical learning incorporates prototypical learning to
optimize the encoder, with which the classification weights can

be calculated based on shots. Thus, the adaptation process can be
shortened by a relatively good performance other than a random guess
at the beginning.

III. META-PROTOTYPICAL LEARNING

Consider the prototypical learning method in FSL, the optimization
of the model can be formulated as follows:

θ = arg min
θ

ET {L(T ; θ)} (1)

where θ is the optimizable parameter of the model (usually feature
encoder), L is the classification loss function and T is a few-shot task
sampled from the training set. T contains support set S and query
set Q. Labeled samples in S are used to generate class prototypes to
classify samples in Q, based on which the loss is constructed.

Prototypical learning considers learning a general encoder
without adaptation on specific few-shot tasks T . However,
in meta-prototypical learning, we optimize θ by making it adapt
effectively, which can be formulated as follows:

θ = arg min
θ

ET {Lmeta(T ;φ = arg min
φ

L S(S, φ;φ0 = θ))}
(2)

where Lmeta is the classification loss of a few-shot task T and
L S is the loss for adapting feature encoder parameter φ based on
gradients from support set S of T . And θ is the initialization
of φ for all few-shot tasks. Different from prototypical learning,
meta-prototypical learning optimizes θ by solving a bilevel optimiza-
tion problem as shown in (2). The inner problem is adapting the
parameter of feature encoder φ for each specific few-shot task. And
the outer problem is optimizing θ , the parameter of the meta-encoder
(meta-initialization) for all few-shot tasks.

Fig. 2 illustrates our meta-prototypical learning process. Given a
meta-encoder f (·; θ), the final goal is to find the meta-initialization θ

that can adapt to different tasks effectively with gradients of support
set S , which is called inner update. After several steps of inner
update, a loss can be constructed based on the classification results of
samples in the query set Q to evaluate the adaptation capability of θ
and calculate gradients. The optimization process of the parameter of
meta-encoder θ is called meta update.

The motivation of meta-prototypical learning is to consider adap-
tation during training. Prototypical learning demonstrates strong
generalization and robustness in previous work [31]. But in
domain-agnostic few-shot recognition, the learned feature may fail
because of changed domains. Thus, adaptation to the domain of the
testing task is required. We incorporate MAML [16] to achieve a
meta-learned prototype encoder that can adapt to tasks of changed
domains within a few inner updates on the support set. It should be
noticed that different from MAML, inner update and meta update
in our meta-prototypical learning framework are based on different
losses. For inner update, we directly optimize the distances between
embeddings in the support set. For meta update, we use the proto-
typical classification loss on the query set.

A. Inner Update

Inner update adapts the encoder to few-shot recognition tasks from
different domains. It is performed based on the support set according
to a supervised clustering loss that drives the embeddings of shots
in support set S to be compact within classes and separate between
classes. With given distance metric M(·, ·), the inner update loss Ls
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Fig. 2. Training of meta-prototypical learning. For a specific few-shot task, the meta encoder is used as the initialization of the encoder. It is updated by
minimizing the largest sample distances within classes and maximizing the shortest sample distances between classes in support set S (inner update). Finally,
samples in the query set Q are classified based on prototypes generated with shots. And the parameter of the meta encoder is updated based on classification
loss of queries (meta update).

can be formulated as follows:
Ls(S;φ) =

∑
i, j

M( f (xi ;φ), f (x j ;φ))

−
∑
m,n

M( f (xm ;φ), f (xn;φ)) (3)

where xi , x j ∈ S represent two images from the same class and
xm, xn ∈ S are two images from different classes. And f (·;φ) is the
encoder for this specific few-shot task with learnable parameter φ.
In the implementation, we choose the largest embedding distances
within the classes and the smallest embedding distances between
classes to fulfill the inner update. The optimization of inner update
based on gradient descent can be written as

φk+1 = φk − α∇φk Lsk , k = 0, 1, 2, . . . (4)

where φk indicates parameter after kth inner update and φ0 = θ is
initialized with the meta-initialization. Lsk is the loss for inner update
at kth step.

B. Meta Update

Meta update solves the outer problem of (2) to optimize the
meta-encoder parameter (meta-initialization) θ , which depends on
classification loss on the query set Q using the encoder parameter
after the last inner update φK . After inner updates, the encoder maps
images from support and query set into the same embedding space.
The embeddings of shots are averaged as class prototypes Pc. With
the distance metric M(·, ·), the distance between a query image qj

and the prototype of cth class is computed in embedding space as
dist jc = M( f (qj ;φK ),Pc). Then the probability pjc that the j th
query image is from class c is computed based on these distances as

pjc = exp(−dist jc)∑C
k=1 exp(−distik )

(5)

where C is the number of classes. Meta loss is constructed simply
by maximizing the probability that all images are classified correctly.

It can be formulated as

Lmeta = − 1

N

N∑
j=1

log pjz j (6)

where pjz j is the probability that a query image qj ∈ Q belongs to
its genuine class z j . N is the total number of queries in a few-shot
task. It should be noticed that Lmeta is constructed based on φK and
used to optimize θ (initialization φ0 at the beginning of inner update),
which makes the optimization complicated. Fortunately, the relation
between φK and θ is simple as (4) shows. Based on this, we can
formulate the gradient for meta update with inner update learning
rate α as follows:

∂Lmeta

∂θ
= ∂Lmeta

∂φ0
= ∂Lmeta

∂φK
· ∂φK

∂φK−1
· · · ∂φ1

∂φ0

= ∂Lmeta

∂φK
· (1− α∇2

φk−1
Lsk−1

) · · · (1− α∇2
φ0

Ls0

)

= ∂Lmeta

∂φK
·
⎛
⎝1− α

k−1∑
i=0

∇2
φi

Lsi + α2
k−1∑
i=0

k−1∑
j=0, j �=i

∇2
θi

Lsi

· ∇2
φ j

Ls j − α3
∑∑ ∑

+· · ·
)

. (7)

(∂Lmeta/∂θ) will be multiplied by a small meta-learning rate β

in meta update. Thus, all terms with second-order derivatives have
little effect on meta update and can be omitted because they are
further multiplied by α. This is a first-order approximation, which
is also mentioned and evaluated to be effective in [16]. Readers
can refer to [32] for further analysis. Meta update with first-order
approximation can be formulated as follows:

θ ← θ − β · ∂Lmeta

∂φK
(8)

where θ = φ0 is the meta-initialization. φK is the parameter after
K steps of inner update. The first-order approximation not only
simplifies the computation but also reduces the requirement of
memory, because we no longer need to store all K inner update
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Fig. 3. Samples of different datasets. The domain gaps between
mini-ImageNet and others are visually large.

processes except the last one. Generally, we can save K times
memory space with first-order approximation in the inner update
process for meta-prototypical learning with K steps of inner update.

IV. EXPERIMENTS

In this section, we evaluate the proposed meta-prototypical
learning method in comparison with prototypical network [14]
and MAML [16]. All methods were optimized on the train-
ing set of mini-ImageNet [15] and evaluated on test tasks
from different datasets including mini-ImageNet, MNIST [33],
CIFAR-10 [34], and Fashion-MNIST [35]. All experiments were
implemented with PyTorch [36] 0.4.0. Code will be released at
https://github.com/RuiqiWang95/meta-prototypical-learning.

A. Datasets, Protocols, and Implementation Details

1) Datasets: Four datasets were used in our experiments: mini-
ImageNet, MNIST, CIFAR-10, and Fashion-MNIST. The dataset of
mini-ImageNet [15] consists of 100 classes with 600 images selected
from ImageNet [37] for each class. The 100 classes are split into
a training set (64 classes), validation set (16 classes), and test set
(20 classes). MNIST [33] is a monochrome handwritten digit dataset
of ten classes with 60 K images for training and 10 K images for
testing. Similarly, fashion-MNIST [35] is a monochrome fashion
dataset with ten classes. CIFAR-10 [34] includes ten classes of
color images, which has 50 K images for training and 10 K images
for testing. The testing sets of these four datasets were used to
sample few-shot tasks from different domains for evaluation, while
the models were trained only on the training set of mini-ImageNet.
Samples from the four datasets are visualized in Fig. 3 to demonstrate
the strong domain gaps.

2) Protocols: We review the training and evaluation proto-
cols used in previous works [14], [16] and introduce the adjust-
ments for domain-agnostic evaluation. For both conventional
and domain-agnostic few-shot recognition, the training set of
mini-ImageNet is sampled into many few-shot tasks for optimization.
The trained model is evaluated with few-shot tasks sampled from the
testing set. A few-shot task consists of a support set (few-shot training
set) and a query set. Samples in the query set are classified based
on the support set. The performance is measured as mean accuracy
with a confidence interval of many (e.g., 1000) few shot tasks of
the same setting (e.g., 5-way 5-shot). For domain-agnostic few-shot
recognition, the model is evaluated with not only the testing set of
mini-ImageNet but also testing sets from other datasets of different
domains.

3) Implementation Details: All images shared the same pre-
processing: resized to 84 × 84 pixels and normalized. Euclidean
distance was used as the metric M in the experiments as in [14]. The
encoder (feature extractor) remained the same as that of prototypical
network [14] and MAML [16], which consisted of four convolutional
blocks. Each block contained a 3 × 3 convolutional layer of 64 filters,
a batch normalization [38], a ReLU nonlinear activation, and a
2 × 2 max-pooling layer. Meta-prototypical learning and prototypical

Fig. 4. Typical adaptation process of the three methods on MNIST while
trained on mini-ImageNet. The horizontal axis demotes steps of inner update
and the vertical axis denotes performance. (a) Meta-prototypical learning.
(b) Prototypical network. (c) MAML.

TABLE I

EXPERIMENTAL RESULTS ON MINI-IMAGENET FEW-SHOT RECOGNITION
WITH 5-WAY 5-SHOT CONDITION. RESULTS ARE PROVIDED AS

AVERAGED ACCURACY AND CONFIDENCE INTERVAL WITH

95% CONFIDENCE OVER 600 TASKS. “*” MEANS OUR

IMPLEMENTATION. WITH OUR IMPLEMENTATION, FIVE
STEPS OF INNER UPDATE ARE PERFORMED IN MAML

AND META-PROTOTYPICAL LEARNING

learning [14] compute prototypes of classes for classification. Differ-
ently, MAML contains an additional linear layer as the classifier.
For meta-prototypical learning and prototypical learning, the training
set was sampled into many 20-way 5-shot tasks with 15 queries for
each class. For MAML, it was trained with sampled tasks of n-way
5-shot 15 queries, and n was decided by the target evaluation task.
All models were optimized with Kinga and Adam [39] optimizer
with a learning rate β = 1e − 3 if not specified. The learning rate
was divided by 2 after every 2000 tasks during the whole training
process of 60 000 sampled tasks. For MAML and meta-prototypical
learning, the default inner-update learning rate αtr were 1e − 2 and
1e − 4 by default, and three steps of adaptation were performed
during training. In evaluation, 1000 tasks were sampled from the
testing set and the mean accuracy with a confidence interval with
95% confidence was reported. Evaluation tasks for mini-ImageNet
were 5-way 5-shot tasks, to be consistent with previous methods.
And those from datasets of different domains were 10-way 5-shot
tasks.

B. Domain-Agnostic Few-Shot Recognition Experiments

Meta-prototypical learning is proposed to address few-shot recog-
nition tasks with different domains that are agnostic during training.
Evaluation on mini-ImageNet (the same domain as the training set)
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TABLE II

EXPERIMENTAL RESULTS ON AGNOSTIC TASKS FROM MNIST, CIFAR-10, AND FASHION-MNIST. “@k” INDICATES THE PERFORMANCE AFTER
kTH STEP OF INNER UPDATE. ALL THREE DATASETS ARE SAMPLED INTO 10-WAY 5-SHOT TASKS. MODELS USED HERE ARE TRAINED ON

MINI-IMAGENET. PERFORMANCES ARE PROVIDED AS AVERAGED ACCURACY AND CONFIDENCE INTERVAL WITH 95% CONFIDENCE

OVER 1000 TASKS. T SHOWS THE MULTIPLE RELATIONSHIPS BETWEEN DIFFERENT METHODS AND

PROTOTYPICAL NETWORK [14]

Fig. 5. Hyper-parameter analysis on mini-ImageNet. In “Cx Ay,” x is the class number of training few-shot tasks and y is the αtr in training. The horizontal
axis denotes steps of inner update and the vertical axis denotes the performance. (a) αte = 1e− 3. (b) αte = 1e − 4. (c) αte = 1e− 5.

is provided in Table I with comparison to previous methods. The
inner update learning rate was 1e − 5 for meta-prototypical learning
because these evaluation tasks were from the same domain as that
of training tasks. Table II demonstrates results on three datasets of
different domains, in which the inner update learning rate was 1e−3.

1) Conventional Few-Shot Recognition: Table I shows that the
proposed meta-prototypical learning method reports competitive per-
formance compared with previous methods on conventional few-shot
recognition evaluation. That is, when evaluated with tasks of the same
domain as training tasks, meta-prototypical learning performs closely
to prototypical learning and outperforms MAML by 5%.

2) Domain-Agnostic Few-Shot Recognition: In Table II, we com-
pare meta-prototypical learning, prototypical learning, and MAML on
tasks from different domains. Meta-prototypical learning reported the
best performance on three different datasets. By comparing MAML
with different adaptation steps, we can see that it is still effective,
but the performance is limited and the adaptation is time-consuming.
The difference between meta-prototypical learning and prototypical
learning lies in that meta-prototypical learning can adapt effectively.
By comparing the two methods on three datasets, it is clear that
the adaptation helps meta-prototypical learning to improve perfor-
mance on tasks from different domains. Further, meta-prototypical
learning with 5 adaptation steps outperforms MAML with 20 adap-
tation steps. This is a result of the different strategies to com-
pute classification weights. MAML adapts to few-shot tasks with
a classifier that performs random guesses at the beginning. In
comparison, meta-prototypical learning computes the prototypes as
the classification weights, which provides decent performance at the
beginning and shortens the adaptation. This is more clearly demon-
strated in Fig. 4 and Table III. Thus, we can draw the conclusion
that meta-prototypical learning is more effective than MAML on
tasks from different domains. However, meta-prototypical learning
is 35 times slower than prototypical network, because prototypical

network needs no adaptation. And this is the main limitation of our
proposed method, which requires further investigations in the future
works.

3) Adaptation Process: Although prototypical learning considers
no adaptation during training, it can also be forced to “adapt”
to few-shot tasks using the same strategy in meta-prototypical
learning. We visualize the adaptation processes of meta-prototypical
learning, prototypical network, and MAML in Fig. 4. The inner
update learning rates for adaptation αte were 1e− 2 for MAML and
1e− 3 for both prototypical learning and meta-prototypical learning.
The experiments show that MAML can adapt to specific tasks, but
the process is slow and time-consuming. The encoder trained with
prototypical learning fails to adapt. In comparison, meta-prototypical
learning adapts to tasks effectively and achieves the best performance.
These validate that meta-prototypical learning has a stronger adapta-
tion ability than prototypical learning because the learning of meta
encoder considers adaptation in optimization. And by learning the
encoder and generating classification weights based on the support
set, meta-prototypical learning has a much higher initial performance
than MAML, which shortens the adaptation process significantly and
provides better final performance.

C. Hyper-Parameter Analysis

1) Hyper-Parameters of Meta-Prototypical Learning: Meta-
prototypical learning involves hyper-parameters that may influence
the performances. We focused on the class number of each task
during training and the inner update learning rate in training
and testing (αtr and αte). Because in meta-prototypical learning,
n-way of training tasks can be different from that of testing tasks.
And α controls inner update for adaptation, which is important
in meta-prototypical learning. We evaluated models trained with
different hyper-parameters on mini-ImageNet (the same domain) and
MNIST (different domain).
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Fig. 6. Hyper-parameter analysis on MNIST. Results of models trained with the same inner update learning rate αtr are organized in the same line chart.
Different lines indicate different inner update learning rates αte. The horizontal axis denotes steps of inner update and the vertical axis denotes the performance.
(a) αtr = 1e − 2. (b) αtr = 1e − 3. (c) αtr = 1e − 4.

TABLE III
HYPER-PARAMETER COMPARISONS OF PROTOTYPICAL LEARNING [14], MAML [16], AND META-PROTOTYPICAL LEARNING (OURS). WE FOCUS ON

THE INNER-UPDATE LEARNING RATE DURING TRAINING αtr AND TESTING αte . “@k” INDICATES THE PERFORMANCE AFTER THE kTH STEP

OF INNER UPDATE. “*” NOTES THE HYPER-PARAMETER CHOICE THAT FAILS

Fig. 5 shows the experimental results of different hyper-parameter
settings on mini-ImageNet. As the results demonstrated, the adap-
tation process on mini-ImageNet hardly benefited the performance,
because the testing tasks were from the same domain as that of
training data. And larger inner update learning introduced over-fitting
to the few support samples, which resulted in lower performance.
By comparing the results of different training ways (class number of
training tasks), we find that it has little influence on the performance.

Fig. 6 shows the results of different αtr and αte on MNIST, in which
the adaptation process is clearly beneficial for tasks from different
domains. We can see that among all settings, αtr = αte = 1e − 3
achieves the best performance of 81.56%. And model trained with
αte = 1e − 2 reported an unstable adaptation process.

2) Hyper-Parameter of the Three Methods: We also report results
of different hyper-parameter choices of the three methods in Table III.
As the experiments show, prototypical network [14] fails to adapt
with different hyper-parameter choices. MAML [16] suffers from
limited performance and is sensitive to αtr . MAML trained with αtr =
1e − 3 failed to converge and the model showed no effect. Because
MAML adapts to different tasks from random guess, which makes
smaller αtr hard to show effect and fails to optimize the meta-model.
In comparison, the proposed meta-prototypical learning can adapt
effectively and robustly. If we choose different hyper-parameters for
different target datasets, the performance can be further boosted, such
as 79.53%→ 81.56% on MNIST.

V. CONCLUSION

In this brief, we investigate the domain-agnostic few-shot recog-
nition, where the testing tasks have different domains from training
tasks. To address this problem, we propose meta-prototypical learning
that adapts a meta encoder to different few-shot recognition tasks.

Technically, meta-prototypical learning takes advantage of prototyp-
ical learning to get a good initial performance and meta-learning to
achieve efficient adaptation. The adaptation capability of the encoder
is successfully improved by adding the adaptation as the inner prob-
lem into the optimization of the encoder. Experimental results on var-
ious datasets demonstrate that adapting the meta-encoder to specific
tasks helps to improve the performance for domain-agnostic few-shot
recognition. Moreover, in implementation, meta-prototypical learning
is more robust to hyper-parameters compared with MAML. The main
limitation of meta-prototypical learning is computational efficiency.
In the future, we will try to find more advanced methods with higher
efficiency to address domain-agnostic few-shot recognition.
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